Сайт о телевидении

Сайт о телевидении

» » Жесткий диск и съемные носители информации. Съемные носители

Жесткий диск и съемные носители информации. Съемные носители

Так как при выключении компьютера вся информация из оперативной памяти исчезает, то нам необходимо устройство, которое могло бы хранить все наши программы и личную информацию вне зависимости от того включен компьютер или нет.

Таким устройством является жесткий диск (англ. HDD, Hard Drive Disk). В разговорной речи вы можете услышать еще название «винчестер» или «винт». Жесткий диск, так же как и все другие устройства, располагается внутри системного блока в специальном отделении, куда он крепится винтами. Жесткий диск соединяется с материнской платой специальным кабелем, который называют шлейфом. Существует два основных разъема на материнской плате для подключения жестких дисков. Точнее их три, но один редко используется в домашних компьютерах.

На современных материнских платах уже не устанавливаются устаревшие разъемы IDE (Integrated Drive Electronics), но в вашем компьютере эти разъемы вполне могут быть. В настоящее время широко используется разъем SATA (Serial Advanced Technology Attachment). Пусть вас не пугают эти страшные аббревиатуры. Это всего лишь обозначение типа разъема, т. е. попросту говоря «розетки», в которую втыкается «вилка».

Если вы решите заменить жесткий диск вашего компьютера на более объемный, то вам необходимо знать, какой тип разъема используется на вашей материнской плате. Вы можете взять целый системный блок с собой в магазин, и вам продавец-консультант на месте подберет варианты жестких дисков. Или же есть более простой вариант – возьмите с собой только книжку от материнской платы. В ней будут описаны все разъемы, в том числе и для подключения жестких дисков и продавцу-консультанту не составит труда подобрать жесткий диск для вас.

Объем жестких дисков, как и оперативной памяти, измеряют в байтах, точнее в мегабайтах и терабайтах. На жестком диске хранится вся ваша информация. Это ваши фотографии, фильмы, музыка и текстовые документы. Программы и операционная система Windows также хранятся в виде файлов и папок на жестком диске.

Кроме жестких дисков информацию долгое время можно хранить на так называемых съемных носителях. Из названия понятно, что с помощью съемных носителей вы можете перенести информацию с одного компьютера на другой. Жесткий диск в вашем компьютере установлен внутри системного блока. Хоть его и можно снять, но все же он считается несъемным носителем. А вот различные флэшки или внешние жесткие диски, подключаемые через разъем USB (о разъеме поговорим чуть позже), относятся к этому классу устройств.

Флэшки — это наверно самый популярный в настоящее время тип съемного носителя информации, но все же еще рано списывать со счетов компакт-диски.

01.11.2012

FDD (Floppy Disk Drive) -- Устройство для записи информации на съёмные магнитные диски (дискеты).

Дискета -- портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х -- конце 1990-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД -- «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД -- «накопитель на гибких магнитных дисках»).

Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства -- дисковода гибких дисков (флоппи-дисковода).

Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения.

· 1971 -- Первая дискета диаметром в 200 мм (8?) с соответствующим дисководом была представлена фирмой IBM. Обычно само изобретение приписывается Алану Шугарту, работавшему в конце 1960-х годов в IBM.

· 1973 -- Алан Шугерт основывает собственную фирму Shugart Associates.

· 1976 -- Алан Шугерт разработал дискету диаметром 5,25?.

· 1981 -- Sony выводит на рынок дискету диаметром 3,5? (90 мм). В первой версии объём составляет 720 килобайт (9 секторов). Поздняя версия имеет объём 1440 килобайт или 1,40 мегабайт (18 секторов). Именно этот тип дискеты становится стандартом (после того, как IBM использует его в своём IBM PC).

Позже появились так называемые ED-дискеты (от англ. Extended Density -- «расширенная плотность»), имевшие объём 2880 килобайт (36 секторов), которые так и не получили широкого распространения.

Исчезновение

Одной из главных проблем, связанных с использованием дискет, была их недолговечность. Наиболее уязвимым элементом конструкции дискеты был жестяной или пластиковый кожух, закрывающий собственно гибкий диск: его края могли отгибаться, что приводило к застреванию дискеты в дисководе, возвращавшая кожух в исходное положение пружина могла смещаться, в результате кожух дискеты отделялся от корпуса и больше не возвращался в исходное положение. Сам пластиковый корпус дискеты не служил достаточной защитой гибкого диска от механических повреждений (например, при падении дискеты на пол), которые выводили магнитный носитель из строя. В щели между корпусом дискеты и кожухом могла проникать пыль.

Массовое вытеснение дискет из обихода началось с появлением перезаписываемых компакт-дисков, и особенно, носителей на основе флэш-памяти, обладающих гораздо меньшей удельной стоимостью, на порядки большей емкостью, большим фактическим числом циклов перезаписи и долговечностью и большей скоростью обмена данными.

CD-ROM (англ. compact disc read-only memory ) -- компактный оптический диск, содержащий данные доступные для компьютера. Поскольку диск изначально предполагался для сохранения и воспроизведения музыкальных произведений, впоследствии он был доработан для хранения цифровых данных. Диски CD-ROM -- популярное средство для распространения программного обеспечения, компьютерных игр, мультимедийных приложений. Некоторые CD содержат как компьютерные, так и аудио-данные с возможностью последующего воспроизведения в CD-плеере, в то время как компьютерные данные (такие как программное обеспечение или цифровое видео) становятся доступными только при помощи компьютера. Такой тип дисков называется усовершенствованными дисками (англ. Enhanced CD ).

Технические детали

Компакт-диск представляет собой поликарбонатную подложку толщиной 1,2 мм, покрытого тончайшим слоем металла (алюминий, золото, серебро и др.) и защитным слоем лака, на котором обычно наносится графическое представление содержания диска. Принцип считывания через подложку был принят, поскольку позволяет весьма просто и эффективно осуществить защиту информационной структуры и удалить её от внешней поверхности диска. Диаметр пучка на внешней поверхности диска составляет порядка 0,7 мм, что повышает помехоустойчивость системы к пыли и царапинам. Кроме того, на внешней поверхности имеется кольцевой выступ высотой 0,2 мм, позволяющий диску, положенному на ровную поверхность, не касаться этой поверхности. В центре диска расположено отверстие диаметром 15 мм. Вес диска без коробки составляет приблизительно 15,7 гр. Вес диска в обычной (не «слим») коробке приблизительно равен 74 гр.

Компакт-диски имеют в диаметре 12 см и изначально вмещали до 650 Мбайт информации. Однако, начиная приблизительно с 2000 года, всё большее распространение стали получать диски объёмом 700 Мбайт, впоследствии полностью вытеснившие диск объёмом 650 Мбайт. Встречаются и носители объёмом 800 мегабайт и даже больше, однако они могут не читаться на некоторых приводах компакт-дисков. Бывают также 8-сантиметровые диски, на которые вмещается около 140 или 210 Мб данных и CD, формой напоминающие кредитные карточки (т. н. диски-визитки).

CD-ROM под электронным микроскопом

Информация на диске записывается в виде спиральной дорожки так называемых питов (углублений), выдавленных в поликарбонатной основе. Каждый пит имеет примерно 100 нм в глубину и 500 нм в ширину. Длина пита варьируется от 850 нм до 3,5 мкм. Промежутки между питами называются лендом. Шаг дорожек в спирали составляет 1,6 мкм.

Различают диски только для чтения («алюминиевые»), CD-R -- для однократной записи, CD-RW -- для многократной записи. Диски последних двух типов предназначены для записи на специальных пишущих приводах.

CD-R (Compact Disc -Recordable , Записываемый Компакт-Диск) -- разновидность компакт-диска (CD), разработанная компаниями Philips и Sony для однократной записи информации. CD-R поддерживает все возможности стандарта «Red Book» и плюс к этому позволяет записать данные.

Технические детали

Обычный CD-R представляет собой тонкий диск из прозрачного пластика -- поликарбоната -- толщиной 1,2 мм, диаметром 120 мм (стандартный)вес 16-18гр. или 80 мм (мини) . Ёмкость стандартного CD-R составляет 74 минуты аудио или 650 МБ данных. Однако, на данный момент стандартным можно считать CD-R ёмкостью 702 МБ данных (точнее 736 966 656 байт) или 79 минут 59 секунд и 74 фрейма. Такая ёмкость достигается небольшим превышением допусков, описанных в стандарте «Оранжевой Книги» (CD-R/CD-RW). Также на рынке имеются 90 минутные / 790 МБ и 99 минутные / 870 МБ диски, которые получили гораздо меньшее распространение.

Поликарбонатный диск имеет спиральную дорожку для направления луча лазера при записи и считывании информации. С той стороны, где находится эта спиральная дорожка, диск покрыт записывающим слоем, который состоит из очень тонкого слоя органического красителя и затем отражающим слоем из серебра, его сплава или золота. Этот отражающий слой покрывается защитным фотополимеризуемым лаком и отверждается ультрафиолетовым излучением. И уже на этот защитный слой наносятся различные надписи краской.

Чистый CD-R не является полностью пустым, на нём имеется служебная дорожка с сервометками ATIP -- Absolute Time In Pregroove -- абсолютное время в служебной дорожке. Эта служебная дорожка нужна для системы слежения, которая удерживает луч лазера при записи на дорожке и следит за скоростью записи (то есть следит, чтобы длина пита была постоянной). Помимо функций синхронизации, служебная дорожка также содержит информацию об изготовителе этого диска, сведения о материале записывающего слоя, длине дорожки для записи и т. п. Служебная дорожка не разрушается при записи данных на диск и многие системы защиты от копирования используют её для того, чтобы отличить оригинал от копии.

Первыми компаниями, которые начали выпуск «болванок» CD-R были Taiyo Yuden, Kodak, Maxell и TDK. С тех пор стандарт CD-R подвергался дальнейшему развитию для обеспечения всё больших скоростей записи и в настоящее время (2006) максимальная возможная скорость записи CD-R равна 52x, то есть в 52 раза больше чем та, которая определена в стандарте «Оранжевой Книги» (1x = 150 КБ/с). Эти доработки заключаются, в основном, в новых материалах для записывающего слоя, лучшей геометрии дорожки и технологии нанесения записывающего слоя. Низкоскоростная запись 1х используется до сих пор для записи особых «аудио CD-R», так как записывающие деки на компакт-дисках были стандартизованы именно на эту скорость.

Используется три основных типа записывающего слоя для CD-R:

1. Цианин (англ. Cyanine ) -- Цианиновый краситель обладает сине-зелёным (цвет «морской волны») оттенком рабочей поверхности. Этот материал использовался в самых первых «болванках» CD-R и запатентован фирмой Taiyo Yuden. Этот краситель химически нестоек, что является причиной короткого срока гарантированного хранения записанной информации. Краситель может выцвести за несколько лет. Хотя многие производители используют дополнительные химические добавки для увеличения стабильности цианина, такие диски не рекомендуется использовать в целях резервного копирования и долговременного хранения архивных данных.

2. Azo -- Металлизированный азо-краситель, имеет тёмно-синий цвет. Его формула запатентована фирмой Mitsubishi Chemicals. Этот краситель химически стоек и его способность хранить информацию исчисляется десятилетиями (сами фирмы пишут о 100 годах).

3. Фталоцианин (англ. Phthalocyanine ) -- Чуть более поздняя разработка активного записываемого слоя. Фталоцианин практически бесцветен, с бледным оттенком салатового или золотистого цвета, из-за чего диски на основе фталоцианинового активного слоя часто называют «золотыми». Фталоцианин -- несколько более современная разработка. Диски на основе этого активного слоя менее чувствительны к солнечному свету и ультрафиолетовому излучению, что способствует увеличению долговечности записанной информации и несколько более надёжному хранению в неблагоприятных условиях (фирмы заявляют о сотнях лет).

К сожалению, многие производители используют различные добавки в записывающий слой, чтобы цианиновые болванки были похожи по цвету на фталоцианиновые. Поэтому нельзя просто по цвету определить материал записывающего слоя. Также и отражающий слой «золотого» цвета не гарантирует, что это фталоцианиновый CD-R.

CD-RW (англ. Compact Disc-Rewritable , Перезаписываемый компакт-диск) -- разновидность компакт-диска (CD), разработанный в 1997 году для многократной записи информации.

Технические детали

CD-RW является дальнейшим логическим развитием записываемого лазерного компакт-диска CD-R, однако, в отличие от него, позволяет многократно перезаписывать данные. Этот формат был представлен в 1997 году и в процессе разработки назывался CD-Erasable (CD-E, Стираемый Компакт-Диск). CD-RW во многом похож на своего предшественника CD-R, но его записывающий слой изготавливается из специального сплава халькогенидов, который при нагреве выше температуры плавления переходит из кристаллического агрегатного состояния в аморфное. Фазовые переходы между различными состояниями вещества всегда сопровождаются изменением физических параметров среды. Нормальным состоянием твердых тел и основным в окружающей нас природе является кристаллическое. В этом отношении аморфные тела -- редкость, так как стеклообразное (аморфное) состояние реализуется только при затвердевании переохлажденного расплава. От других аморфных состояний стекла отличаются тем, что процессы перехода расплав -- стекло и стекло -- расплав обратимы. Эта их особенность чрезвычайно важна для создания реверсивных носителей оптической записи, то есть обеспечивающих многократную перезапись. Основным условием образования стекловидных состояний, в том числе металлов, является охлаждение, настолько быстрое, что атомы не успевают занять отведенные им места в кристаллических ячейках и «замирают» как попало, когда тепловая релаксация атомов сопоставима или становится меньше межатомных расстояний. При толщине активного слоя оптического диска в 0,1 мкм создать условия для сверхбыстрого охлаждения не трудно. Полный цикл: запись -- многократное воспроизведение -- стирание -- новая запись выглядит следующим образом. Подогревая лазером, рабочий слой оптического диска, находящийся в кристаллическом состоянии, переводят в расплав. За счет быстрой диффузии тепла в подложку расплав быстро охлаждается и переходит в фазу стекла. Кристаллическому и стеклообразному состояниям присущи разные диэлектрическая проницаемость, коэффициент отражения, а следовательно, и интенсивность отраженного света, которая и несет информацию о записи на диске. Считывание производится при пониженной интенсивности излучения лазера, не влияющей на фазовые переходы. Для новой записи необходимо вернуть рабочий слой в исходное кристаллическое состояние. Для этого используется двухступенчатая модуляция (короткий мощный импульс для расплава активного слоя и длинный импульс для постепенного охлаждения вещества) мощности лазера. Перегрев замедлит процесс диффузии тепла и создаст условия для возврата в кристаллическую фазу. Активный слой обычно изготовляют из халькогенидного стекла -- сплава серебра (Ag), индия (In), сурьмы (Sb) и теллура (Te).

Многократная перезапись в принципе может приводить к механической усталости рабочего слоя и, как следствие, к его разрушению. Поэтому при выборе веществ важным фактором становится отсутствие эффекта накопления усталости. Современные CD-RW диски позволяют перезаписывать информацию порядка 1000 раз. Работа с дисками CD-RW очень похожа на работу с однократно записываемыми дисками CD-R. Позднее появился новый формат записи болванок CD-RW -- Universal Disk Format (UDF, Packet Writing), который позволяет «отформатировать» диск и работать с ним как с обычной большой дискетой, позволяющей чтение/запись/удаление/изменение данных. Объём таких UDF-форматированных дисков равен примерно 530 Мбайт, в отличие от обычных 700 Мбайт при записи одной сессией на весь диск.

CD-RW диски не удовлетворяют требованиям, описанным в стандартах «Red Book» (CD-ROM) и «Orange Book Part II» (CD-R), в отношении коэффициента отражения. Поэтому такие диски не читаются в старых приводах компакт-дисков, выпущенных до 1997 года. CD-R считается более подходящим стандартом носителей для резервного копирования, так как записанная на них информация уже не может быть изменена и производители «болванок» указывают бомльшее время хранения данных для дисков CD-R, чем для CD-RW.

При обычной записи на CD-RW (не UDF), периодически нужно полностью стирать диск. Существует два вида стирания -- «полное» и «быстрое». Как следует из названия, при «полном» стирании весь диск переводится в кристаллическое состояние и старая информация уничтожается физически. А «быстрое» стирание очищает только небольшую часть диска (англ. Lead-in -- зона, где хранится информация о содержании диска), что происходит гораздо быстрее. Однако при этом существует техническая возможность восстановить данные. Поэтому, если есть необходимость сохранения конфиденциальности информации, то нужно использовать полное стирание.

DVD (англ. Digital Versatile Disc -- цифровой многоцелевой диск; также англ. Digital Video Disc -- цифровой видеодиск) -- носитель информации, выполненный в виде диска, внешне схожий с компакт-диском, однако имеющий возможность хранить бомльший объём информации за счёт использования лазера с меньшей длиной волны, чем для обычных компакт-дисков.

Первые диски и проигрыватели DVD появились в ноябре 1996 года в Японии и в марте 1997 года в США.

В начале 1990-х годов разрабатывалось два стандарта для оптических информационных носителей высокой плотности. Один из них назывался Multimedia Compact Disc (MMCD ) и разрабатывался компаниями Philips и Sony, второй -- Super Disc -- поддерживали 8 крупных корпораций, в числе которых были Toshiba и Time Warner. Позже усилия разработчиков стандартов были объединены под началом IBM, которая не хотела повторения кровопролитной войны форматов, как было со стандартами кассет VHS и BetaMax в 1970-х. Официально DVD был анонсирован в сентябре 1995 года. Первая версия спецификаций DVD была опубликована в сентябре 1996 года. Изменения и дополнения в спецификации вносит организация DVD Forum (ранее называвшаяся DVD Consortium), членами которой являются 10 компаний-основателей и более 220 частных лиц.

Первый привод, поддерживающий запись DVD-R, выпущен Pioneer в октябре 1997 года. Стоимость этого привода, поддерживающего спецификацию DVD-R версии 1.0, составляла 17 000 долл. Болванки объёмом 3,95 Гб стоили по 50 долл. каждая.

Изначально «DVD» расшифровывалось как «Digital Video Disc» (цифровой видеодиск), поскольку данный формат первоначально разрабатывался как замена видеокассетам. Позже, когда стало ясно, что носитель подходит и для хранения произвольной информации, многие стали расшифровывать DVD как Digital Versatile Disc (цифровой многоцелевой диск). Toshiba, заведующая официальным сайтом DVD Forum"а, использует «Digital Versatile Disc».

К консенсусу не пришли до сих пор, поэтому сегодня «DVD» официально вообще никак не расшифровывается.

Техническая информация

Для считывания и записи DVD используется красный лазер с длиной волны 650 нанометров.

DVD по структуре данных бывают четырёх типов:

· DVD-видео -- содержат фильмы (видео и звук);

· DVD-Audio -- содержат аудиоданные высокого качества (гораздо выше, чем на аудио-компакт-дисках);

· DVD-Data -- содержат любые данные;

· смешанное содержимое.

В отличие от компакт-дисков, в которых структура аудиодиска фундаментально отличается от диска с данными, в DVD всегда используется файловая система UDF (для данных может быть использована ISO 9660).

Любой из типов носителей DVD может нести любую из четырёх структур данных (см. выше).

Физически DVD может иметь одну или две рабочие стороны и один или два рабочих слоя на каждой стороне. От их количества зависит ёмкость диска (из-за чего они получили также названия DVD-5, -9, -10, -14, -18, по принципу округления ёмкости диска в Гб до ближайшего сверху целого числа):

Указанные цифры -- приблизительные. На DVD данные записываются секторами; один сектор содержит 2048 байт. Поэтому точное значение ёмкости DVD можно определить умножением 2048 на число секторов на диске, которое слегка варьируется у различных типов DVD носителей (цифры даны для 1-сторонних дисков; у 2-сторонних, соответственно, всё в 2 раза больше):

Примечание: формат DVD-R(W) не задаёт точное число секторов, а лишь требует, чтобы ёмкость была не ниже 4,7 млрд байт. Однако большинство производителей придерживаются цифры 2 298 496 секторов, что и указано в таблице.

Вместимость можно определить на глаз -- нужно посмотреть, сколько рабочих (отражающих) сторон у диска и обратить внимание на их цвет: двухслойные стороны обычно имеют золотой цвет, а однослойные -- серебряный, как компакт-диск.

Единица скорости (1x) чтения/записи DVD составляет 1 385 000 байт/с (то есть около 1352 Кбайт/с = 1,32 Мбайт/с), что примерно соответствует 9-й скорости (9x) чтения/записи CD, которая равна 9 ? 150 = 1350 Кбайт/с. Таким образом, 16-скоростной привод обеспечивает скорость чтения (или записи) DVD равную 16 ? 1,32 = 21,12 Мбайт/с.

Форматы DVD±R и их совместимость

Стандарт записи DVD-R(W) был разработан в 1997 году группой компаний, входящих в DVD Forum, как официальная спецификация записываемых (впоследствии и перезаписываемых) дисков. Однако цена лицензии на эту технологию была слишком высока, и поэтому несколько производителей пишущих приводов и носителей для записи объединились в DVD+RW Alliance (англ.), который и разработал в середине 2002 года стандарт DVD+R(W), стоимость лицензии на который была ниже. Поначалу болванки (чистые диски для записи) DVD+R(W) были дороже, чем болванки DVD-R(W), но теперь цены сравнялись.

Все приводы для DVD могут читать оба формата дисков, и большинство пишущих приводов также могут записывать оба типа болванок. Среди остальных приводов форматы «+» и «-» одинаково популярны -- половина производителей поддерживает один стандарт, половина -- другой. Идут споры, вытеснит ли один из этих форматов своего конкурента или они продолжат мирно сосуществовать. Однако, поскольку формат DVD-R(W) появился почти на 5 лет раньше DVD+R(W), многие старые или дешёвые плееры вероятнее всего поддерживают лишь DVD-R(W). Это следует учитывать, особенно при записи дисков для распространения, когда тип читающего устройства (плеера или DVD-привода) заранее не известен.

BD-ROM (англ. blue ray -- синий луч и disc -- диск) -- формат оптического носителя, используемый для записи и хранения цифровых данных, включая видео высокой чёткости с повышенной плотностью. Стандарт Blu-ray был совместно разработан консорциумом BDA.

Blu-ray (букв. «синий-луч») получил своё название от использования для записи и чтения коротковолнового (405 нм) «синего» (технически сине-фиолетового) лазера. Представлен на международной выставке потребительской электроники Consumer Electronics Show (CES), которая прошла в январе 2006 года. Коммерческий запуск формата Blu-ray прошел весной 2006 года.

С момента появления формата в 2006 году и до начала 2008 года у Blu-ray существовал серьезный конкурент -- альтернативный формат HD DVD. В течение двух лет многие крупнейшие киностудии, которые изначально подерживали HD DVD, постепенно перешли на Blu-ray. Warner Brothers, последняя компания, выпускавшая свою продукцию в обоих форматах, отказалась от использования HD DVD в январе 2008 года. 19 февраля того же года Toshiba, создатель формата, прекратила разработки в области HD DVD. Это событие положило конец так называемой «войне форматов».

Вариации и размеры

Однослойный диск Blu-ray (BD) может хранить 23,3/25/27 или 33 Гб, двухслойный диск может вместить 46,6/50/54 или 66 Гб. Также в разработке находятся диски вместимостью 100 Гб и 200 Гб с использованием соответственно четырёх и восьми слоёв. Корпорация TDK уже анонсировала прототип четырёхслойного диска объёмом 100 Гб.

На данный момент доступны диски BD-R и BD-RE, в разработке находится формат BD-ROM. В дополнение к стандартным дискам размером 120 мм, выпущены варианты дисков размером 80 мм для использования в цифровых фото- и видеокамерах. Планируется, что их объём будет достигать 15 Гб для двухслойного варианта

Технические особенности

Лазер и оптика

В технологии Blu-ray для чтения и записи используется сине-фиолетовый лазер с длиной волны 405 нм. Обычные DVD и CD используют красный и инфракрасный лазеры с длиной волны 650 нм и 780 нм соответственно.

Такое уменьшение позволило сузить дорожку вдвое по сравнению с обычным DVD-диском (до 0,32 мкм) и увеличить плотность записи данных.

Более короткая длина волны сине-фиолетового лазера позволяет хранить больше информации на 12 см дисках того же размера, что и у CD/DVD. Эффективный «размер пятна», на котором лазер может сфокусироваться, ограничен дифракцией и зависит от длины волны света и числовой апертуры линзы, используемой для его фокусировки. Уменьшение длины волны, использование большей числовой апертуры (0,85, в сравнении с 0,6 для DVD), высококачественной двухлинзовой системы, а также уменьшение толщины защитного слоя в шесть раз (0,1 мм вместо 0,6 мм) предоставило возможность проведения более качественного и корректного течения операций чтения/записи. Это позволило записывать информацию в меньшие точки на диске, а значит, хранить больше информации в физической области диска, а также увеличить скорость считывания до 432 Мбит/с.

Гибкие диски

Накопители на магнитной ленте

Другим популярным типом внешнего хранилища данных большой емкости являются накопители на магнитной лепте. Эти устройства позволяют сохранять большие объемы данных на небольших кассетах с магнитной лентой. Накопители на магнитной ленте обычно применяются для приложений, сохраняющих большие объемы информации, к которой не нужен частый или быстрый доступ. Примером таких приложений может служить создание резервных копий программ или данных. Резервное копирование яв­ляется необходимой операцией для таких данных, как деловые транзакции, бухгалтер­ские записи и т. п.

Кроме жестких магнитных дисков, для хранения информации в ПК применяются гиб­кие магнитные диски (floppy disk). Типичный гибкий диск представляет собой диск из материала, называющегося майлар (Mylar), диаметром в 3,5 дюйма, покрытый ферро­магнитным материалом. Он заключен в защитный пластиковый контейнер между двумя вкладышами с низким коэффициентом трения, чтобы не допускать попадания на 5 диск пыли и других загрязнителей. Гибкие диски стоят сравнительно недорого и их легко переносить и хранить. Кроме этого, заполненные диски можно извлекать из при вода и вставлять пустые.

Подобно жестким дискам, гибкие диски разбиты на дорожки и секторы. Типичный гибкий диск имеет 40 или 80 дорожек на каждой стороне, каждая из которых разбита на 8, 9 или 18 секторов. Емкость сектора гибкого диска для PC-совместимых систем - 512 байт.

В большинстве случаев приводы гибких дисков подключаются к системной плате по­средством 34-проводникового плоского кабеля, называющегося шлейфом. Одна сторо­на шлейфа помечена цветом, таким образом указывая расположение контакта № 1. Шлейф нужно подключать к разъемам привода и системной плате таким образом, что­бы помеченная сторона была сориентирована на контакт № 1 на обоих разъемах. Обычно к шлейфу можно подключить до двух приводов, которые система распознает как логические приводы А: и В:. Привод, подключенный к конечному разъему шлейфа, будет обозначен как.привод А:.

Полезно принять во внимание тот факт, что многие современные системы не оснащены приводом гибких дисков, и в будущем они могут исчезнуть совсем.

К съемным носителям относятся все рассмотренные технологии: гибкие диски, ком­пакт-диски CD-R и CD-RW, диски DVD-R и DVD-RW и накопители на магнитной лен­те. К ним также относятся другие типы развивающихся не менее известных съемных носителей, включая смонтированные в кассете гибкие диски большой емкости (Zip-Диски), полупроводниковые диски, подключаемые через разъем USB (устройства па­мяти на микросхемах, сконфигурированные таким образом, что они распознаются сис­темой как механические жесткие диски), и диски PC Card. Съемные носители PC Card представляют собой устройства, которые могут содержать либо миниатюрные приводы жестких дисков с пластинами диаметром 1,8 дюйма, либо полупроводниковые диски.



Многие современные ПК оснащены устройством чтения/записи карточек памяти, обычно встроенных в переднюю панель компьютера. Эти устройства могут работать с различными типами модулей памяти, используемых в различных электронных устрой­ствах, таких как карманные компьютеры (PDA, Personal Digital Assistant- личный электронный секретарь) или цифровые фотоаппараты. Это позволяет переносить хра­нящуюся в таких модулях цифровую информацию, например аудио- или видеоданные, с устройства на компьютер для последующей обработки. На рис. 1.21 показано монти­руемое в переднюю панель устройство чтения карточек памяти, поддерживающее во­семь типов карточек, а также оснащенное портом USB. Как можно видеть на рисунке, поддержка разных стандартов карточек памяти обеспечивается несколькими разъема ми, каждый для своего типа карточки.

Рис. 1.21. Устройство для считывания карточек памяти, монтируемое в переднюю панель компьютера

Большинство внешних запоминающих устройств со съемными носителями подключается через стандартные порты ввода/вывода (USB, FireWire, SCSI, параллельный порт ЕСР (Extended Capabilities Port, порт с расширенными возможностями)). Таким образом, ме­ханизм PnP операционной системы может обнаружить новое устройство, подключенное к системе. Но большинство таких устройств является нестандартным и требует установки специального программного обеспечения (называемого драйвером - driver), предоставляемого разработчиком устройства, для работы с ними. Но полупроводниковые диски USB автоматически загружают драйверы USB и функционируют, как новый привод (например, привод Е:). А в случае со съемными носителями, монтируемыми в устройства PC Card, само устройство поддерживает PnP и может быть подключено и отключено погорячему (hot swapping), т.е. без выключения питания системы.

Что было известно первому человеку? Как убить мамонта, бизона или поймать кабана. В эпоху палеолита хватало стен в пещере, чтобы зафиксировать все изученное. Пещерная база данных целиком бы уместилась на скромную флешку размером мегабайт. За 200000 лет своего существования мы узнали о геноме африканской лягушки, нейронных сетях и больше не рисуем на скалах. Сейчас у нас есть диски, облачные хранилища. А также другие виды носителей информации, способные сохранить на одном чипсете всю библиотеку МГУ.

Что такое носитель информации

Носитель информации - это физический объект, свойства и характеристики которого используются для записи и хранения данных. Примерами носителей информации являются пленки, компактные оптические диски, карты, магнитные диски, бумага и ДНК. Носители информации различаются по принципу осуществления записи:

  • печатная или химическая с нанесением краски: книги, журналы, газеты;
  • магнитная: HDD, дискеты;
  • оптическая: CD, Blu-ray;
  • электронная: флешки, твердотельные накопители.

Классифицируются хранилища данных по форме сигнала:

  • аналоговые, использующие для записи непрерывный сигнал: аудио компакт-кассеты и бобины для магнитофонов;
  • цифровые - с дискретным сигналом в виде последовательности чисел: дискеты, флешки.

Первые носители информации

История записи и хранения данных началась 40 тысяч лет назад, когда Homo sapiens пришла идея делать эскизы на стенах своих жилищ. Первое наскальное творчество находится в пещере Шове на юге современной Франции. Галерея содержит 435 рисунков, изображающих львов, носорогов и других представителей фауны позднего палеолита.

На смену Ориньякской культуре в бронзовом веке возник принципиально новый вид носителей информации - туппу́м. Девайс представлял собой пластину из глины и напоминал современный планшет. На поверхность с помощью тростниковой палочки - стилуса - наносились записи. Чтобы труд не размыло дождем, туппумы обжигались. Все таблички с древней документацией тщательно сортировались и хранились в специальных деревянных ящиках.

В Британском музее есть туппум, содержащий информацию о финансовой сделке, произошедшей в Месопотамии во времена правления царя Ассурбанипала. Офицер из свиты принца подтверждал продажу рабыни Арбелы. Табличка содержит его именную печать и записи о ходе операции.

Кипу и папирус

С III тысячелетия до нашей эры в Египте начинают использовать папирус. Запись данных происходит на листы, изготовленные из стеблей растения papyrus. Портативный и легкий вид носителей информации быстро вытеснил свою глиняную предшественницу. На папирусе пишут не только египтяне, но и греки, римляне, византийцы. В Европе материал использовали до XII века. Последний документ, написанный на папирусе, - папский декрет 1057 года.

Одновременно с древними египтянами, на противоположном конце планеты инки изобретают кипу, или «говорящие узелки». Информация фиксировалась с помощью завязывания узлов на прядильных нитях. Кипу хранили данные о налоговых сборах, численности населения. Предположительно использовалась нечисловая информация, но ученым ее только предстоит разгадать.

Бумага и перфокарты

С XII до середины XX века основным хранилищем данных была бумага. Ее использовали для создания печатных и рукописных изданий, книг, средств масс-медиа. В 1808 году из картона начали делать перфокарты - первые цифровые носители информации. Представляли собой листы картона с проделанными в определенной последовательности отверстиями. В отличие от книг и газет, перфокарты считывались машинами, а не людьми.

Изобретение принадлежит американскому инженеру с немецкими корнями Герману Холлериту. Впервые автор применил свое детище для составления статистики смертности и рождаемости в Нью-Йоркском Совете здравоохранения. После пробных попыток, перфокарты использовали для переписи населения США в 1890 году.

Но сама идея проделывать дырки в бумаге, чтобы записывать информацию, была далеко не новой. Еще в 1800 году перфокарты ввел в обиход француз Джозеф-Мари Жаккард для управления ткацким станком. Поэтому технологический прорыв заключался в создании Холлеритом не перфокарт, а табуляционной машины. Это был первый шаг на пути к автоматическому считыванию и вычислению информации. Компания TMC Германа Холлерита по производству табуляционных машин в 1924 году была переименована в IBM.

OMR-карты

Представляют собой листы плотной бумаги с информацией, записанной человеком в виде оптических меток. Сканер распознает метки и обрабатывает данные. OMR-карты используют для составления опросников, тестов с опциональным выбором, бюллетеней и форм, которые необходимо заполнять вручную.

Технология основана на принципе составления перфокарт. Но машина считывает не сквозные отверстия, а выпуклости, или оптические метки. Погрешность исчислений составляет менее 1 %, поэтому OMR-технологию продолжают использовать государственные учреждения, экзаменационные органы, лотереи и букмекерские конторы.

Перфолента

Цифровой носитель информации в виде длинной бумажной полоски с отверстиями. Перфорированные ленты были впервые использованы Базиле Бушоном в 1725 году для управления ткацким станком и механизирования отбора нитей. Но ленты были очень хрупкими, легко рвались и при этом дорого стоили. Поэтому их заменили на перфокарты.

С конца XIX века перфолента получила широкое применение в телеграфии, для ввода данных в компьютеры 1950-1960 годов и в качестве носителей для мини-компьютеров и станков с ЧПУ. Сейчас бобины с намотанной перфолентой стали анахронизмом и канули в Лету. На смену бумажным носителям пришли более мощные и объемные хранилища данных.

Магнитная лента

Дебют магнитной ленты в качестве компьютерного носителя информации состоялся в 1952 году для машины UNIVAC I. Но сама технология появилась гораздо раньше. В 1894 году датский инженер Вольдемар Поульсен обнаружил принцип магнитной записи, работая механиком в Копенгагенской телеграфной компании. В 1898 году ученый воплотил идею в аппарате под названием "телеграфон".

Стальная проволока проходила между двумя полюсами электромагнита. Запись информации на носитель осуществлялась посредством неравномерного намагничивания колебаний электрического сигнала. Вольдемар Поульсен запатентовал свое изобретение. На Всемирной выставке 1900 года в Париже он имел честь записать голос императора Франца-Иосифа на свой девайс. Экспонат с первой магнитной звукозаписью по сей день хранится в Датском музее науки и техники.

Когда патент Поульсена истек, Германия занялась улучшением магнитной записи. В 1930 году стальная проволока была заменена гибкой лентой. Решение использовать магнитные полосы принадлежит австрийско-немецкому разработчику Фрицу Пфлеймеру. Инженер придумал покрывать тонкую бумагу порошком оксида железа и осуществлять запись посредством намагничивания. С использованием магнитной пленки были созданы компакт-кассеты, видеокассеты и современные носители информации для персональных компьютеров.

HDD-диски

Винчестер, HDD или жесткий диск - это аппаратное устройство с энергонезависимой памятью, что означает полное сохранение информации, даже при отключенном питании. Является вторичным запоминающим устройством, состоящим из одной или нескольких пластин, на которые записываются данные с использованием магнитной головки. HDD находятся внутри системного блока в отсеке дисководов. Подключаются к материнской плате с помощью кабеля ATA, SCSI или SATA и к блоку питания.

Первый жесткий диск был разработан американской компанией IBM в 1956 году. Технологию применили в качестве нового вида носителей информации для коммерческого компьютера IBM 350 RAMAC. Аббревиатура расшифровывается как «метод случайного доступа к учету и контролю».

Чтобы вместить девайс у себя дома, потребовалась бы целая комната. Внутри диска было 50 алюминиевых пластин по 61 см в диаметре и 2,5 см шириной. Размер системы хранения данных приравнивался к двум холодильникам. Его вес составлял 900 кг. Емкость RAMAC была всего лишь 5МБ. Смешная цифра на сегодняшний день. Но 60 лет назад это расценивалось как технология завтрашнего дня. После анонсирования разработки, ежедневная газета города Сан Хосе выпустила репортаж под названием «Машина с суперпамятью!».

Размеры и возможности современных HDD

Жесткий диск - компьютерный носитель информации. Используется для хранения данных, включая изображения, музыку, видео, текстовые документы и любые созданные или загруженные материалы. Кроме того, содержат файлы для операционной системы и программного обеспечения.

Первые винчестеры вмещали до нескольких десятков Мбайт. Постоянно развивающаяся технология позволяет современным HDD хранить терабайты информации. Это около 400 фильмов со средним расширением, 80 000 песен в mp3-формате или 70 компьютерных ролевых игр, аналогичных «Скайрим», на одном устройстве.

Дискета

Floppy, или гибкий магнитный диск, - носитель информации, созданный IBM в 1967 году как альтернатива HDD. Дискеты стоили дешевле винчестеров и предназначались для хранения электронных данных. На ранних компьютерах не было CD-ROM или USB. Гибкие диски были единственным способом установки новой программы или резервного копирования.

Вместительность каждой 3,5-дюймовой дискеты была до 1,44 Мбайт, когда одна программа «весила» не менее полутора мегабайт. Поэтому версия Windows 95 появилась сразу на 13 дискетах DMF. Floppy disk на 2,88 Мбайт появился только в 1987 году. Просуществовал этот электронный носитель информации до 2011 года. В современной комплектации компьютеров отсутствуют флоппи-дисководы.

Оптические носители

С появлением квантового генератора началась популяризация оптических запоминающих устройств. Запись осуществляется лазером, а считываются данные за счет оптического излучения. Примеры носителей информации:

  • Blu-ray диски;
  • CD-ROM диски;
  • DVD-R, DVD+R, DVD-RW и DVD+RW.

Устройство представляет собой диск, покрытый слоем поликарбоната. На поверхности находятся микроуглубления, которые считываются лазером при сканировании. Первый коммерческий лазерный диск появился на рынке в 1978 году, а в 1982 году японская компания SONY и Philips выпустили в продажу компакт-диски. Их диаметр составлял 12 см, а разрешение было увеличено до 16 бит.

Электронные носители информации формата CD использовались исключительно для воспроизведения звуковой записи. Но на то время это была передовая технология, за которую в 2009 году Royal Philips Electronics получила награду IEEE. А в январе 2015 года CD был награжден как ценнейшая инновация.

В 1995 году появились цифровые универсальные диски или DVD, ставшие оптическими носителями нового поколения. Для их создания использовалась технология другого типа. Вместо красного лазер DVD использует более короткий инфракрасный свет, что увеличивает объем носителя информации. Двухслойные DVD-диски способны хранить до 8,5 Гбайта данных.

Flash-память

Флеш-память - это интегральная микросхема, которая не требует постоянной мощности для сохранения данных. Другими словами, это энергонезависимая полупроводниковая компьютерная память. Запоминающие устройства с флеш-памятью постепенно завоевывают рынок, вытесняя магнитные носители.

Преимущества Flash-технологии:

  • компактность и мобильность;
  • большой объем;
  • высокая скорость работы;
  • низкое энергопотребление.

К запоминающим устройствам Flash-типа относят:

  • USB-флешки. Это самый простой и дешевый носитель информации. Используется для многократной записи, хранения и передачи данных. Размеры варьируются от 2 Гбайт до 1 Тбайта. Содержит микросхему памяти в пластиковом или алюминиевом корпусе с USB-разъёмом.
  • Карты памяти. Разработаны для хранения данных на телефонах, планшетах, цифровых фотоаппаратах и других электронных девайсах. Отличаются размером, совместимостью и объемом.
  • SSD. Твердотельный накопитель с энергонезависимой памятью. Это альтернатива стандартному жесткому диску. Но в отличие от винчестеров у SSD нет движущийся магнитной головки. За счет этого они обеспечивают быстрый доступ к данным, не издают скрипов, как HDD. Из недостатков - высокая цена.

Облачные хранилища

Облачные онлайн-хранилища - это современные носители информации, представляющие собой сеть из мощных серверов. Вся информация хранится удаленно. Каждый пользователь может получать к данным доступ в любое время и из любой точки мира. Недостаток в полной зависимости от интернета. Если у вас нет подключения к Сети или Wi-Fi, доступ к данным закрыт.

Облачные хранилища гораздо дешевле своих физических аналогов и обладают большим объемом. Технология активно используется в корпоративной и образовательной среде, разработке и проектировании веб-приложений компьютерного софта. На облаке можно хранить любые файлы, программы, резервные копии, использовать их как среду разработки.

Из всех перечисленных видов носителей информации самыми перспективными являются облачные хранилища. Также все больше пользователей ПК переходят с магнитных жестких дисков на твердотельные накопители и носители с Flash-памятью. Развитие голографических технологий и искусственного интеллекта обещает появление принципиально новых девайсов, которые оставят флешки, SDD и диски далеко позади.

Съемный носитель информации - носитель информации, предназначенный для ее автономного хранения и независимого от места записи использования.

В настоящее время имеют распространение С.н.и. следующих (в порядке убывания максимальных объемов памяти) видов: съемные винчестеры, флэш-память, оптические лазерные диски (CD,DVD,BD), дискеты. Последние морально устарели, но продолжают использоваться, поскольку на них хранится информация, еще не записанная на более современные носители информации.

Флэш-память - специальный вид памяти для компьютера. Является разновидностью электрически стираемого и программируемого постоянного запоминающего устройства . Отличается от других видов постоянной памяти высокой скоростью записи.

Флэш-память устроена таким образом, что для записи даже одного байта необходимо осуществить цикл чтение-стирание-запись страницы памяти. Это делает практически невыгодным использование флеш-памяти для запоминающих устройств прямого доступа, однако вполне пригодным для блочно-ориентированных запоминающих устройств.

Компакт-диск (CD , сокр. от Compact Disc ), - лазерный диск, который используется для хранения информации в цифровом виде.

Стандартный полноразмерный компакт-диск имеет диаметр 120 мм и может содержать до 700 МиБ данных (оригинальный стандарт - 650 МиБ).

DVD (ди-ви-ди́, англ. Digital Versatile Disc - цифровой многоцелевой диск; также англ. Digital Video Disc - цифровой видеодиск) - носитель информации, выполненный в форме диска, имеющего такой же размер, как и компакт-диск, но более плотную структуру рабочей поверхности, что позволяет хранить и считывать больший объём информации за счёт использования лазера с меньшей длиной волны и линзы с большей числовой апертурой.

Blu-ray Disc , BD (англ. blue ray - синий луч и disc - диск; написание blu вместо blue - намеренное) - формат оптического носителя, используемый для записи с повышенной плотностью и хранения цифровых данных, включая видео высокой чёткости. Стандарт Blu-ray был совместно разработан консорциумом BDA. Первый прототип нового носителя был представлен в октябре 2000 года. Современный вариант представлен на международной выставке потребительской электроники Consumer Electronics Show (CES), которая прошла в январе 2006 года.



Запись информации на флэшку.

1. Вставляем флэшку в соответствующий ей разъем.

Признаком того, что система флэшку увидела и сумела подключить, будет появление в области уведомлений значка с символическим изображением, примерно таким .

Может также появиться запрос о том, что с этим устройством делать: открыть для просмотра, проиграть видео-или аудио файлы и т.д. (зависит от содержания флешки) – это автозапуск.

2. Выбираем→Открыть папку для просмотра файлов .

Откроется новое окно проводника, в котором и будет показана самая первая, корневая директория (папка) флэшки.

3. Ищем и открываем на компьютере нужную нам папку и копируем её содержимое(файлы и папки) на флэшку, простым перетаскиванием, или через правую кнопку мыши→отправить на флэшку .

Пока копирование не закончено, не вынимайте флэшку из разъема, иначе можно потерять недокопированные данные.

Правильный способ извлечения флэшки.

Щелкнуть мышкой по значку сменного диска в лотке (области уведомлений), а потом в появившемся списке подключенных внешних устройств щелкнуть по тому из них, которое вы хотите извлечь. Останется дожидаться, пока система сообщит о том, сто работа окончена, и флэшку можно вытащить.


Простым перетаскиванием, с теми же приемами (открыв два окна и таская файлы из одного места в другое) мы можем скопировать файлы с флэшки на компьютер, с CD/DVD/BD на компьютер, с одного жесткого диска на другой.

Совсем другое дело, если мы хотим записать файлы на оптический диск. Во первых нам предложат подготовить диск к работе, выбрав один из вариантов такой подготовки: для работы в компьютере или для работы с бытовыми аудио- и видеоплеерами.

Для CD-RW,DVD-RW (перезаписываемые) удобнее всего выбрать вариант вариант – Как флэш-накопитель USB. Сначала диск отформатируетя, а затем можно будет писать на него как на флэшку, без ограничений, хоть и заметно медленнее.

Для CD-R,DVD-R (однократная запись) нужно выбрать – С проигрывателем CD/DVD . Если выбрать вариант – Как флэш-накопитель USB – в результате форматирования диск будет просто испорчен.

Откроется папка с пустым диском, куда можно перетащить все файлы, которые нужно будет записать на диск (так называемый «образ диска»). После команды Записать на компакт-диск , запустится процесс записи. Записывать данные нужно в один прием, стараясь не превышать допустимый объем.