Сайт о телевидении

Сайт о телевидении

» » Сеть и технология ATM. Технология ATM: значение, расшифровка аббревиатуры. Способ передачи данных по сети, основы, принцип работы, преимущества и недостатки данной технологии

Сеть и технология ATM. Технология ATM: значение, расшифровка аббревиатуры. Способ передачи данных по сети, основы, принцип работы, преимущества и недостатки данной технологии

Сегодня для всех организаций вопросы стандартизации играют немалую роль. Не остаются в стороне от этого процесса и вопросы стандартизации сетевых решений.

Корпоративные сетевые стандарты позволяют обеспечить эффективное взаимодействие всех станций сети за счет использования одинаковых версий программ и однотипной конфигурации. Однако, значительные сложности возникают при унификации технологии доступа рабочих станций к WAN-сервису, поскольку в этом случае происходит преобразование данных из формата token ring или Ethernet в форматы типа X.25 или T1/E1. ATM обеспечивает связь между станциями одной сети или передачу данных через WAN-сети без изменения формата ячеек - технология ATM является универсальным решением для ЛВС и телекоммуникаций.

Нет сомнений в том, что скоростные технологии ЛВС являются основой современных сетей. ATM, FDDI и Fast Ethernet являются основными вариантами для организация сетей с учетом перспективы. Очевидно, что приложениям multimedia, системам обработки изображений, CAD/CAM, Internet и др. требуется широкополосный доступ в сеть с рабочих станций. Все современные технологии обеспечивают высокую скорость доступа для рабочих станций, но только ATM обеспечивает эффективную связь между локальными и WAN-сетями.

ATM - история и базовые принципы

Технология ATM сначала рассматривалась исключительно как способ снижения телекоммуникационных расходов, возможность использования в ЛВС просто не принималась во внимание. Большинство широкополосных приложений отличается взрывным характером трафика. Высокопроизводительные приложения типа ЛВС клиент-сервер требуют высокой скорости передачи в активном состоянии и практически не используют сеть в остальное время. При этом система находится в активном состоянии (обмен данными) достаточно малое время. Даже в тех случаях, когда пользователям реально не нужна обеспечиваемая сетью полоса, традиционные технологии ЛВС все равно ее выделяют. Следовательно, пользователям приходится платить за излишнюю полосу. Перевод распределенных сетей на технологию ATM позволяет избавиться от таких ненужных расходов.

Комитеты по стандартизации рассматривали решения для обеспечения недорогих широкополосных систем связи в начале 80-х годов. Важно то, что целью этого рассмотрения было применение принципов коммутации пакетов или статистического мультиплексирования, которые так эффективно обеспечивают передачу данных, к системам передачи других типов трафика. Вместо выделения специальных сетевых ресурсов для каждого соединения сети с коммутацией пакетов выделяют ресурсы по запросам (сеансовые соединения). Поскольку для каждого соединения ресурсы выделяются только на время их реального использования, не возникает больших проблем из-за спада трафика.

Проблема, однако, состоит в том, что статистическое мультиплексирование не обеспечивает гарантированного выделения полосы для приложений. Если множество пользователей одновременно захотят использовать сетевые ресурсы, кому-то может просто не хватить полосы. Таким образом, статистическое мультиплексирование, весьма эффективное для передачи данных (где не требуется обеспечивать гарантированную незначительную задержку), оказывается малопригодным для систем реального времени (передача голоса или видео). Технология ATM позволяет решить эту проблему.

Проблема задержек при статистическом мультиплексировании связана в частности с большим и непостоянным размером передаваемых по сети пакетов информации. Возможна задержка небольших пакетов важной информации из-за передачи больших пакетов малозначимых данных. Если небольшой задержанный пакет оказывается частью слова из телефонного разговора или multimedia-презентации, эффект задержки может оказаться весьма существенным и заметным для пользователя. По этой причине многие специалисты считают, что статистическое мультиплексирование кадров данных дает слишком сильную дрожь из-за вариации задержки (delay jitter) и не позволяет предсказать время доставки. С этой точки зрения технология коммутации пакетов является совершенно неприемлемой для передачи трафика типа голоса или видео.

ATM решает эту проблему за счет деления информации любого типа на небольшие ячейки фиксированной длины. Ячейка ATM имеет размер 53 байта, пять из которых составляют заголовок, оставшиеся 48 - собственно информацию. В сетях ATM данные должны вводиться в форме ячеек или преобразовываться в ячейки с помощью функций адаптации. Сети ATM состоят из коммутаторов, соединенных транковыми каналами ATM. Краевые коммутаторы, к которым подключаются пользовательские устройства, обеспечивают функции адаптации, если ATM не используется вплоть до пользовательских станций. Другие коммутаторы, расположенные в центре сети, обеспечивают перенос ячеек, разделение транков и распределение потоков данных. В точке приема функции адаптации восстанавливают из ячеек исходный поток данных и передают его устройству-получателю, как показано на рисунке 4.1.

Рисунок 4.1 Адаптация ATM

Передача данных в коротких ячейках позволяет ATM эффективно управлять потоками различной информации и обеспечивает возможность приоритизации трафика.

Пусть два устройства передают в сеть ATM данные, срочность доставки которых различается (например, голос и трафик ЛВС). Сначала каждый из отправителей делит передаваемые данные на ячейки. Даже после того, как данные от одного из отправителей будут приниматься в сеть, они могут чередоваться с более срочной информацией. Чередование может осуществляться на уровне целых ячеек и малые размеры последних обеспечивают в любом случае непродолжительную задержку. такое решение позволяет передавать срочный трафик практически без задержек, приостанавливая на это время передачу некритичной к задержкам информации. В результате ATM может обеспечивать эффективную передачу всех типов трафика.

Даже при чередовании и приоритизации ячеек в сетях ATM могут наступать ситуации насыщения пропускной способности. Для сохранения минимальной задержки даже в таких случаях ATM может отбрасывать отдельные ячейки при насыщении. Реализация стратегии отбрасывания ячеек зависит от производителя оборудования ATM, но в общем случае обычно отбрасываются ячейки с низким приоритетом (например, данные) для которых достаточно просто повторить передачу без потери информации. Коммутаторы ATM с расширенными функциями могут при отбрасывании ячеек, являющихся частью большого пакета, обеспечить отбрасывание и оставшихся ячеек из этого пакета - такой подход позволяет дополнительно снизить уровень насыщения и избавиться от излишнего объема повторной передачи. Правила отбрасывания ячеек, задержки данных и т.п. определяются набором параметров, называемым качеством обслуживания (Quality of Service) или QoS. Разным приложениям требуется различный уровень QoS и ATM может обеспечить этот уровень.

Поскольку приходящие из разных источников ячейки могут содержать голос, данные и видео, требуется обеспечить независимый контроль для передачи всех типов трафика. Для решения этой задачи используется концепция виртуальных устройств. Виртуальным устройством называется связанный набор сетевых ресурсов, который выглядит как реальное соединение между пользователями, но на самом деле является частью разделяемого множеством пользователей оборудования. Для того, чтобы сделать связь пользователей с сетями ATM как можно более эффективной, виртуальные устройства включают пользовательское оборудование, средства доступа в сеть и собственно сеть ATM.

В заголовке ATM виртуальный канал обозначается комбинацией двух полей - VPI (идентификатор виртуального пути) и VCI (идентификатор виртуального канала. Виртуальный путь применяется в тех случаях, когда 2 пользователя ATM имеют свои собственные коммутаторы на каждом конце пути и могут, следовательно, организовывать и поддерживать свои виртуальные соединения. Виртуальный путь напоминает канал, содержащий множество кабелей, по каждому из которых может быть организовано виртуальное соединение.

Поскольку виртуальные устройства подобны реальным, они также могут быть "выделенными" или "коммутируемыми". В сетях ATM "выделенные" соединения называются постоянными виртуальными устройствами (PVC), создаваемыми по соглашению между пользователем и оператором (подобно выделенной телефонной линии). Коммутируемые соединения ATM используют коммутируемые виртуальные устройства (SVC), которые устанавливаются путем передачи специальных сигналов между пользователем и сетью. Протокол, используемый ATM для управления виртуальными устройствами подобен протоколу ISDN. Вариант для ISDN описан в стандарте Q.931, ATM - в Q.2931.

Виртуальные устройства ATM поддерживаются за счет мультиплексирования трафика, что существенно снижает расходы на организацию и поддержку магистральных сетей. если в одном из виртуальных устройств уровень трафика невысок, другое устройство может использовать часть свободных возможностей. За счет этого обеспечивается высокий уровень эффективности использования пропускной способности ATM и снижаются цены. Небольшие ячейки фиксированной длины позволяют сетям ATM обеспечить быструю передачу критичного к задержкам трафика (например, голосового). Кроме того, фиксированный размер ячеек обеспечивает практически постоянную задержку, позволяя эмулировать устройства с фиксированной скоростью передачи типа T1E1. Фактически, ATM может эмулировать все существующие сегодня типы сервиса и обеспечивать новые услуги. ATM обеспечивает несколько классов обслуживания, каждый из которых имеет свою спецификацию QoS.

Большая часть трафика, передаваемого через сети ATM использует класс обслуживания C, X или Y. Класс C определяет параметры QoS (качество обслуживания) для задержки и вероятности отбрасывания, но требует от пользователя аккуратного управления трафиком во избежание перенасыщения сети. трафик класса X дает пользователю большую свободу, но может не обеспечить стабильной производительности. Класс Y, называемый также "Available Bit Rate" (ABR или доступная скорость) позволяет пользователю и сети установить совместно скорость на основе оценки потребностей пользователя и возможностей сети.

ATM как технология ЛВС

Технология ATM изначально создавалась как часть сервиса "Broadband ISDN" под эгидой CCITT (сейчас ITU). Однако возможности ATM можно эффективно использовать и в локальных сетях.

Современные крупные сети используются для передачи самых разных типов данных, включая изображения, звук, CAD/CAM и т.п. Несмотря на то, что большинство компьютерных приложений используется уже достаточно давно, возможности современных настольных компьютеров позволяют по новому подойти к организации работы. Однако, рост возможностей настольных компьютеров существенно опережает расширение сетевых возможностей (в частности, пропускной способности сетей).

Возьмем для примера издательские системы, где с одним набором данных может одновременно работать множество людей. Представьте себе процесс подготовки газетной полосы для публикации. редакторы работают с одной частью полосы, корректоры просматривают текст, дизайнеры размещают материал на полосе - и все это происходит в одно время. Не будем забывать и о том, что высокое качество печати требует использования графических фалов размером в сотни мегабайт. Традиционные сети обеспечивают разделение доступа к таким файлам, однако из-за ограниченной пропускной способности доступ к расположенному на другом компьютере файлу размером в несколько сот мегабайт будет отнюдь не быстрым. ATM 25 позволяет пользователям организовать каналы доступа с полосой 25 Мбит/с для работы с серверами. Такое решение избавляет от задержек и позволяет готовить публикации существенно быстрее.

Преимущества ATM не ограничиваются вертикальным рынком. Сегодня организации могут связать через магистрали ATM свои корпоративные серверы. Можно ожидать и достаточно широкого использования ATM в настольных компьютерах при работе пользователей с большими объемами данных или использовании критичных к задержкам приложений.

Экономический фактор играет далеко не последнюю роль в расширении использования технологий ATM. Сегодня большинство людей использует в своей работе и телефон и компьютер. В течение нескольких лет существенно расширится обмен данными multimedia (клипами), использование видеоконференций и т.п. технология ISDN позволяет решить такие задачи. Однако, это потребует установки оборудования ISDN в каждый компьютер. Телефонные и сетевые кабельные системы не могут полностью совпадать, что дополнительно увеличивает сложность такого решения. Использование решения на базе ISDN с необходимостью приведет к возникновению параллельных кабельных систем для ЛВС и телефонии и подключению каждого компьютера к обеим системам. Нужно учесть еще и телевизионные кабели, которые также требуется проложить по причине расширения использования настольных видео-приложений. Такая кабельная система будет весьма сложна, а ее установка и поддержка потребуют высоких расходов. Переход на использование технологии ATM в локальных сетях позволяет обойтись одной кабельной системой и одним адаптером в компьютере, что не может не привести к значительному снижению расходов.

ATM позволяет не только организовать ЛВС, но может обеспечить передачу голосового и видео-трафика. Такое решение позволяет использовать настольные системы видеоконференций и приложения multimedia.

Фактически, использование ATM обеспечивает сразу множество преимуществ. Во-первых, высокая скорость доступа за приемлемую цену, во-вторых, возможность организации компактных магистралей на базе ATM (collapsed backbone). Наконец, эта архитектура обеспечивает сквозное повышение эффективности использования сетевых ресурсов.

Пользователи, которые думают об использовании ATM в будущем, должны использовать совместимые с ATM устройства уже сегодня - в противном случае переход может оказаться слишком дорогим и трудоемким. Мы рассмотрим этот вопрос более подробно в следующем разделе.

ATM как современная инфраструктура

Если виртуальные устройства напоминают реальные, ATM можно легко приспособить для текущих приложений, просто заменив выделенные или коммутируемые линии виртуальными устройствами ATM. Фактически, этот способ вместе с переходом на ATM в сетевых магистралях, является наиболее очевидным первым шагом.

На рисунках 4.2 , 4.3 и 4.4 показан типичный пользовательский сайт с устройствами, порождающими разнотипный трафик (голос, видео, данные). Эти три типа трафика могут передаваться с использованием сервиса ATM тремя показанными на рисунках способами.

1. Голос, данные и видео преобразуются в ячейки ATM в сети оператора с использованием функций адаптации ATM. Оператор будет реализовать все функции доступа и передачи, а для каждого устройства потребуется отдельная линия доступа в сеть ATM.

Рисунок 4.2 Преобразование в ATM осуществляется оператором

2. ЛВС, голосовые и видео-устройства подключаются к локальному коммутатору ATM для преобразования трафика в ячейки. Для доступа в сеть оператора используется одна линия, передающая все потоки трафика одновременно (как виртуальные устройства). Сеть оператора обеспечивает маршрутизацию трафика. Такое решение более экономично и может использоваться для организации "частных сетей ATM" для пользователей, которые имеют доступ к ATM-сервису или хотят создать свою распределенную сеть на базе ATM. Отметим, что находящийся в сети пользователя коммутатор ATM может принадлежать оператору и находиться у него на обслуживании.

Рисунок 4.3 Преобразование в ATM осуществляется у пользователя

3. Устройства оборудуются собственными интерфейсами ATM. Одно устройство доступа позволяет объединить весь пользовательский трафик в одном транке, связанном с сетью оператора. В этом случае на стороне пользователя устанавливается принадлежащее ему оборудование ATM, которое можно использовать для организации магистралей ЛВС или подключения настольных станций.

Рисунок 4.4 Сеть на базе ATM

Скорое появление интерфейсов ATM в телефонном и видео-оборудовании не представляется вероятным, поэтому реализация третьего варианта соединения с сетью не сможет в ближайшие годы стать доминирующей. Фактически, скорость распространения каждого из приведенных вариантов будет определяться темпами снижения цен на оборудование и услуги операторов сетей ATM. Отсутствие эффективного управления этими процессами порождает определенный хаос и не позволяет надежно предсказать перспективы того или иного сервиса ATM.

Стандарт, определяющий интерфейс между операторами и пользователями ATM называется Public User Network Interface или Public UNI. Этот интерфейс определяется для различных значений скорости. Первые услуги ATM предлагались в основном со скоростью T3 (45 Мбит/с). Сейчас многие операторы предлагают скорость 155 Мбит/с и выше, но такая полоса обычно не требуется пользователям, да и стоимость подобных услуг весьма высока. Для большинства пользователей, планирующих организовать доступ к ATM или создать частную сеть ATM основной проблемой является стоимость оборудования.

Форум ATM - организация производителей оборудования ATM и пользователей работает в направлении развития стандартов и обеспечения интероперабельности оборудования. В конечном итоге это не может не привести к снижению цен. Кроме обеспечения интероперабельности ATM ведется большая работа по реализации ATM на скоростях меньше T3. Здесь возможно несколько вариантов:

  • Полнофункциональные решения ATM при скорости T1. Один стандарт для ATM T1 уже утвержден, но некоторые производители и пользователи считают, что связанные с реализацией этого стандарта накладные расходы слишком велики - канал T1 с полосой 1.544 Мбит/с может обеспечить полезную полосу только около 1.1 Мбит/с.
  • Так называемый dixie-стандарт (от акронима DXI - Data eXchange Interface). DXI был разработан как способ использования ATM в кадровом режиме с маршрутизаторами и другими устройствами передачи данных и специальными устройствами DSU, обеспечивающими преобразование кадров в реальные ячейки ATM. DXI работает через стандартные интерфейсы типа V.35 и HSSI.
  • Интерфейс пользователь - сеть Frame Relay или F-UNI (произностися как FOONY), являющийся стандартом использования frame relay для доставки "кадров данных ATM" в сеть, которая будет конвертировать их в ячейки непосредственно на границе сети.
  • Инверсное мультиплексирование ATM или AIM - стандарт для инверсного мультиплексирования множества линий T1 в один транк с полосой между T1 и T3. Такая полоса обеспечивает поддержку ATM для приложений, где скоростные запросы незначительно превышают возможности T1.
  • Проверка этих вариантов показывает, что они в основном подходят для систем обмена данными. Причиной этого является эффективная поддержка технологией ATM взрывного трафика современных систем передачи данных (ЛВС). Как было отмечено выше ATM может просто использоваться взамен выделенных линий в таких сетях, обеспечивая коммутацию ЛВС, поддерживаемую ATM UNI.

    Замена выделенных линий системами ATM позволяет более эффективно организовать сети. Отметим, что виртуальные устройства ATM используются для организации многосвязных систем, позволяющих обеспечить доставку трафика непосредственно адресату. Сегодня желание пользователей применять многосвязные системы на базе ATM для связи своих сетей в значительной мере определяется предлагаемыми операторами ценами на услуги. Если оператор берет деньги за каждое виртуальное устройство ATM UNI, а не за общий трафик, стоимость организации многосвязной сети может оказаться слишком велика. Конечно, в кампусной магистрали ATM стоимость полосы в многосвязной системе будет несравненно ниже. Поддержка многосвязности требует лишь прокладки дополнительных физических соединений (кабелей) и установки более скоростных транковых портов в коммутаторы. Эти дополнительные расходы достаточно малы по сравнению с общей стоимостью сети.

    Рисунок 4.5 Многосвязная сеть

    В многосвязной (каждый с каждым) сети ATM существует меньше транзитных точек, снижающих производительность и вносящих дополнительные задержки и насыщение. Такое решение обеспечивает существенное повышение стабильности работы приложений. Более того, каждый коммутатор является соседом для всех остальных коммутаторов и связан с ними напрямую. Это упрощает задачу динамического определения маршрута для протоколов маршрутизации типа RIP, используемого TCP/IP или NetWare, OSPF или IS-IS. Эти протоколы часто генерируют значительный трафик и могут существенно замедлить сеть при обмене конфигурационными данными (интервал сближения или конвергенции).

    Если существует способ передачи "телефонного номера" ATM точке публичной сети ATM, которая достаточно близка к пользователям традиционной ЛВС, насколько можно приблизиться к пользователям? Ближайшей, готовой к использованию ATM станцией, сегодня является коммутатор. Это может быть магистральный коммутатор пользователя, коммутатор рабочей группы или даже настольный компьютер с адаптером ATM. В этом случае ATM используется как универсальная архитектура для коммуникаций, обеспечивающая связь между настольными системами вместе с традиционными технологиями ЛВС, а в некоторых случаях - взамен их. Это наиболее интересная, но и наиболее спорная часть применений ATM.

    Сквозная ATM-парадигма для сетей

    ATM на настольных станциях имеет несколько преимуществ. Во-первых, способность ATM гарантировать для приложений качество обслуживания (QoS) обеспечивает сквозную передачу критичного к задержкам трафика типа видео или голоса. Будучи технологией передачи данных, ATM не только может поддерживать "приложения завтрашнего дня", но и эффективно справляется с сегодняшними задачами. Пользователи задаются двумя основными вопросами - как будут формироваться распределенные сети на базе ATM и какие шаги нужно предпринять, чтобы быть готовым к переходу? Есть три разных варианта включения ATM в архитектуру межсетевого взаимодействия для современных и будущих приложений:

  • Эмуляция традиционных протоколов ЛВС с использованием оборудования ATM. В этом случае существующие приложения будут продолжать работать как раньше, а ATM-добавит к существующим протоколам новые, специально разработанные для приложений multimedia. Отметим, что слово "новые" в данном контексте отнюдь не означает, что эти протоколы еще не существуют (они скорее еще не стали общепринятыми).
  • Подключение сервиса ATM напрямую к интерфейсам прикладных программ, используемых сегодня, в обход традиционных протоколов нижних уровней. Для поддержки этого варианта потребуется разработка новых API.
  • Использование новых API для "новых" приложений и эмуляция традиционных протоколов для существующих приложений.
  • Поскольку использование ATM обычно начинается с нескольких станций, которым требуются multimedia-приложения, требуется обеспечить эмуляцию традиционных протоколов ЛВС в сетях ATM. Это позволяет обеспечить надежное взаимодействие между новыми станциями на базе ATM и традиционными ЛВС. Для эмуляции ЛВС в системах на базе ATM (ATM LAN emulation) предложены два варианта - ATM Forum LAN Emulation (LANE) и RFC 1577. Говоря здесь об эмуляции, мы имеем в виду оба варианта.

    Как LANE, так и RFC 1577 основаны на допущении что пользователи ATM применяют адаптеры, поддерживающие интерфейс ATM UNI. Поскольку этот интерфейс располагается со стороны пользователя, его иногда называют "Private UNI"; существует набор стандартов, определяющих данный интерфейс. Стандарты Private UNI существуют для скоростей 25 Мбит/с (по медному кабелю), 100 Мбит/с (оптический кабель)и 155 Мбит/с (медь и оптика). Оба стандарта эмуляции ЛВС предполагают также, что пользователи подключены к коммутатору ATM. Некоторые ATM-коммутаторы поддерживают также станции других типов (не ATM). Такие коммутаторы обеспечивают взаимодействие между ЛВС Ethernet и token ring и сетями ATM. Коммутаторы также поддерживают порты (для подключения станций и серверов) и транки (для соединения коммутаторов ATM или подключения к магистральным коммутаторам) ATM. Интерфейс между коммутаторами основан на UNI, но включает дополнительно специальные сообщения для маршрутизации и управления состоянием маршрутов. ATM Forum называет этот интерфейс Private Network-to-Network Interface или P-NNI.

    Эмуляция ЛВС во всех вариантах состоит из двух программных частей - функции клиента используются на конечных системах, подключенных к эмулируемым ЛВС, а функции сервера - реализуются в каждой группе клиентских станций. Группа клиентов и связанный с ней сервер называются эмулируемой ЛВС (Emulated LAN или ELAN).

    Протоколы ЛВС являются многоуровневыми и, следовательно, любой стандарт, обеспечивающий взаимодействие традиционных ЛВС и ATM должен обеспечивать поддержку соответствующих уровней. В этом вопросе существующие стандарты эмуляции ЛВС существенно различаются. ATM LANE (стандарт ATM Forum) предназначен для эмуляции протоколов канального (MAC/LLC) уровня. Поскольку этот протокол занимает самый нижний для ЛВС уровень, LANE можно использовать со всеми протоколами ЛВС вышележащих уровней, включая TCP/IP, NetWare SPX/IPX, IBM SNA/LLC2. RFC 1577, с другой стороны, работает на сетевом уровне (уровень 3) и предназначен для протокола TCP/IP.

    Оба варианта эмуляции ЛВС похожи по принципам работы, несмотря на различие уровней. При организации ATM ЛВС клиентские системы пытаются вступить в контакт с сервером и зарегистрировать адресную информацию, которая содержит адрес ATM, а также адреса канального и сетевого уровней. Сервер строит каталог адресной информации для последующего использования. По завершении регистрации клиенты и серверы переходят в режим ожидания пользовательского трафика.

    Пользовательские программы, работающие на клиентских и серверных системах, функционируют в среде эмуляции ЛВС как в обычных средах традиционных локальных сетей и только коммуникационные драйверы нижних уровней связаны с ATM. Когда программа генерирует сообщение, это сообщение передается вниз по стеку протоколов программам ATM, прибывая к ним в форме дейтаграммы или сообщения без организации соединения на уровне два (канальном) или уровне 3 (сетевом) в зависимости от способа эмуляции ЛВС. Программы ATM должны обеспечить эмуляцию ЛВС.

    Если между отправителем и получателем будет существовать виртуальное устройство, дейтаграммы можно просто помещать в это виртуальное устройство и передавать получателю в исходной форме (дейтаграмма) для обработки на станции получателя программами ATM и приложением. Фактически, каждый клиент ATM поддерживает таблицу адресов канального и сетевого уровня, а же идентификаторов виртуальных устройств ATM (VPI/VCI). Если адрес получателя найден в таблице, дейтаграмма передается соответствующему виртуальному устройству. Проблема возникает когда адрес получателя не найден - в этом случае в игру вступает сервер эмуляции ЛВС.

    Клиентская система, не имеющая виртуального устройства ATM, должна организовать его, но дейтаграмма является сообщением ЛВС и не содержит ATM-адреса получателя. Для получения этого адреса клиент посылает сообщение своему серверу, указывая получателя дейтаграммы с помощью адреса сетевого и/или канального уровня и запрашивая соответствующий адрес ATM. Сервер сообщает адрес, после чего клиент организует коммутируемое соединение ATM SVC с адресатом, в которое направляется поток дейтаграмм.

    Сервер также обеспечивает поддержку широковещательного и неадресованного (broadcast and unknown) трафика для клиентов, рассылающих широковещательные и групповые (multicast() дейтаграммы. Сервер в таких случаях пересылает принятые дейтаграммы всем зарегистрированным клиентам. Перед организацией SVC клиент может также использовать режим "broadcast and unknown" для рассылки дейтаграмм адресатам, для которых адреса ATM еще не получены.

    Устройства традиционных ЛВС должны обмениваться данными со станциями ATM, работающими в эмулируемых ЛВС; коммутаторы обеспечивают функции proxy-клиента от имени станций традиционных ЛВС (не ATM). В этом случае станция ATM, вызывающая станцию ЛВС будет получать от сервера адрес proxy-клиента и организовывать SVC по этому адресу. Proxy-клиент будет в этом случае играть роль моста или маршрутизатора для передачи дейтаграмм нужной станции. На практике такое использование эмуляции является преобладающим, поскольку большинство настольных станций по-прежнему используют Ethernet или token ring.

    Это может выглядеть как попытка создания всемирной "плоской" сети, но это не так. RFC 1577 задает ограничение на размер доменов эмуляции ЛВС - не более одной IP-подсети на домен. ATM Forum LANE не содержит такого ограничения, но практический размер домена устанавливается числом генерируемых многоадресных сообщений (с ростом этого числа растет нагрузка на сервер и клиентов). В действительности LANE представляет собой мост, а широковещательный и групповой трафик всегда является ограничивающим фактором для сетей на базе мостов.

    Как связать между собой эмулируемые домены ЛВС? Лучшим способом является использование коммутаторов ЛВС. Поскольку коммутатор может одновременно работать с ATM LANE и дейтаграммами традиционных ЛВС, он может обеспечивать связь эмулируемых доменов (как подсетей IP или сегментов ЛВС).

    Проблема возникает при использовании маршрутизаторов для соединения устройств ATM, использующих multimedia-приложения. Маршрутизаторы, как устройства, работающие без организации соединений, не могут обеспечивать гарантии качества обслуживания (QoS), предлагаемой коммутаторами ATM. Таким образом, маршрутизатор между двумя станциями ATM существенно ограничивает возможности связи между этими станциями (до уровня станций традиционных ЛВС). Решения на базе коммутаторов позволяют сохранить гибкость и скорость ATM.

    Естественные соединения ATM требуют коммутируемого пути между адресатом и отправителем. Если оба устройства подключены к одному коммутатору, проблем не возникает. Также просто организовать связь между устройствами, использующими услуги одного оператора или коммутаторы одного производителя. При соединении устройств в среде с разнотипным оборудованием может потребоваться использование PNNI для организации мостов между двумя или несколькими коммутаторами ATM и в тех случаях, когда ATM-соединение организуется через распределенную сеть (WAN).

    Существует три варианта организации "реальных" соединений ATM через распределенную сеть:

  • Выделенная цифровая линия от оператора (T3, например) служить транком между двумя коммутаторами ATM - эти коммутаторы будут генерировать ячейки, обеспечивать сигнализацию ATM и поддерживать потоки трафика. Фактически, это вариант частной сети ATM.
  • Оператор ATM может обеспечивать виртуальный путь между парой коммутаторов. В этом случае оператор передает ячейки и принимает участие в управлении трафиком ATM, но соединенные между собой устройства управляются виртуальными устройствами как при использовании соединения по выделенной линии.
  • Может использоваться предоставляемое оператором коммутируемое соединение ATM SVC.
  • В первых двух вариантах ATM-коммутаторы принадлежат пользователю и должны выполнять все операции по преобразованию адресов (логические адреса, известные приложениям, конвертируются в реальные адреса ATM). В последнем варианте может потребоваться преобразование адресов оператором или, по крайней мере, использование архитектуры, поддерживающей соединений частных сетей через публичные. Одна из таких архитектур обеспечивается протоколом NHRP (маршрутизация в следующий интервал), предложенным IETF. Поскольку элементы протокола NHRP включены в базовую архитектуру стандарта ATM Forum MPOA, очевидно, что MPOA будет поддерживать управление адресами в больших сетях ATM, подключенных к системам общего пользования.

    В долгосрочной перспективе ATM может полностью заменить технологии ЛВС и системы межсетевого взаимодействия в их современном виде. Сети на базе коммутаторов, в результате, будут значительно более гибкими, нежели связанные между собой ЛВС. Стоимость таких решений также может оказаться меньше. Многие пользователи верят в перспективность ATM и даже неизбежность успеха этой технологии. Однако переход к использованию ATM тормозится высокими ценами на оборудование и сложностью его использования.

    Эволюция

    Большинство организаций входят в одну из трех категорий с точки зрения перспектив использования ATM:

  • Организации, которые используют приложения сильно выигрывающие в результате перехода на ATM. Примером компаний этого класса являются организации здравоохранения, брокерские фирмы с большими потоками коммерческой информации, компании, занимающиеся производством видеопродукции.
  • Организации, которые могут перейти на ATM в результате агрессивной ценовой политики поставщиков услуг.
  • "Оборонительная стратегия" Организации этого типа знают, что технология ATM обеспечит им целый ряд преимуществ, но пока не планируют использовать данную технологию.
  • Для любой компании первым правилом эволюции ATM является предотвращение потери средств, вложенных на этапе оценки технологии ATM . Это означает, что при покупке сетевого оборудования сегодня нужно принимать во внимание возможность использования этого оборудования в будущей сети на базе ATM. Если от закупаемого сегодня оборудования придется потом отказываться, лучше сразу поискать другое решение.

    Это правило наиболее ярко проявляется при выборе сетевых коммутаторов. Приобретаемые сегодня устройства должны обеспечивать возможность использования в системах на базе ATM. Минимальным требованием является возможность использования ATM-транков для связи между коммутаторами. Желательно также иметь в коммутаторе порт (или гнездо для его установки), позволяющий в будущем подключить настольные станции с интерфейсом ATM. Маршрутизаторы, пока не будет найдено более эффективного решения для ATM, должны использоваться как краевые устройства, обеспечивающие возможность подключения устройств традиционных ЛВС к сетям ATM. По крайней мере, такие устройства должны иметь интерфейс proxy-клиента эмуляции ЛВС.

    Организации с "оборонной" стратегией, отмеченные в категории три, могут счесть наличие транкового порта ATM в коммутаторе достаточной для ближайших перспектив использования ATM (использовать не будем, но на всякий случай возьмем).

    Компании, планирующие для ATM ключевую роль в своей сети, должны выбирать коммутаторы с портами ATM для подключения настольных станций. ATM обеспечивает широкий диапазон скоростей для подключения настольных станций - от 25 до 155 Мбит/с. ATM25 работает с кабельными системами категории 3 - 5 и может использоваться вместо token ring или 10BaseT для станций с высоким уровнем сетевых запросов.

    Снижение цен на оборудование ATM для настольных станций играет важную роль, поскольку сегодня приложений, не способных обойтись без возможностей ATM, еще не так много. Скорей всего, пользователи первых станций ATM будут работать с одним из рассмотренных выше вариантов эмуляции ЛВС и большинство приложений будут скорее использовать эмуляцию, нежели естественные ATM API. Адаптеры ATM и коммутационные технологии должны удовлетворять потребности пользователей в течение 5 -8 лет, а скорость отказа от традиционных технологий ЛВС будет в значительной мере определяться темпами расширения числа видеоприложений.

    Понимание того, что большинство пользователей не работает с приложениями, требующими возможностей ATM зачастую служит тормозом внедрения ATM, поскольку никому не хочется тратить деньги га приобретение неиспользуемых возможностей. Использование ATM только на части станций избавит от ненужных расходов на модернизацию сети.

    Если вы предполагаете начать использование ATM в настольных станциях в течение ближайшей пары лет, вам нужно выбирать коммутаторы с учетом этой перспективы. Коммутаторы должны иметь порты для подключения станций и магистральны порты 155 и 622 Мбит/с для соединения коммутаторов. Порты ATM должны поддерживать эмуляцию ЛВС. Важно также обратить внимание на перспективы реализации в коммутаторах поддержки таких протоколов, как RFC 1577 и MPOA. наконец, транковый интерфейс для связи с другими коммутаторами должен поддерживать стандарт PNNI.

    Если оператор ATM предлагает свои услуги по разумным ценам или ваша организация планирует организовать собственную магистраль ATM, следует оценить потребности до покупки оборудования ATM. Остается ответить на вопрос "Какой тип ATM-сервиса использовать?"

    Публичные или частные системы ATM будут нормально поддерживать подключение устройств frame relay через специальные преобразователи (ATM DSU/CSU). Если ваше соглашение с оператором ATM требует покупки такого оборудования для подключения других источников трафика к ATM, может оказаться более эффективной реализация сервиса frame relay на базе существующих коммутаторов и их связь с ATM через краевые устройства.

    Если для подключения связывающих сети устройств (типа маршрутизаторов) к ATM вам потребуется покупать дополнительные устройства, лучше будет купить интерфейс ATM для коммутатора. Этот интерфейс можно будет использовать и после перехода на ATM, тогда как устройства DSU/CSU после такого перехода станут просто ненужными. Существует три варианта подключения ATM к коммутаторам:

  • Естественная форма ATM (ячейки) с прямым подключением цифрового транка ATM (обычно T1 или T3) к маршрутизатору. Этот тип интерфейса может поддерживать все типы сервиса ATM (включая multimedia). Такой вариант целесообразно выбирать при планировании перехода от маршрутизаторов к коммутаторам ATM.
  • DXI-форма ATM - интерфейс на основе кадров, поддерживающий только транспортный сервис ATM, ориентированный на передачу данных. Такой тип подключения хорош для систем, где не планируется замена маршрутизаторов на коммутаторы ATM. Выбирая этот вариант, следует помнить, что некоторые операторы ATM не поддерживают DXI-сервис и может потребоваться покупка ATM DSU/CSU для преобразования DXI в ячейки ATM.
  • Интерфейс F-UNI, который представляет собой вариант интерфейса frame relay с поддержкой сигнализации ATM. Этот вариант пока распространен недостаточно широко, но может обеспечить просто и недорогой переход для маршрутизаторов, которые уже поддерживают frame relay.
  • При любом варианте перехода на ATM в первую очередь возникает задача организации магистралей. Организация компактных магистралей (collapsed backbone) без использования технологии ATM в таком случае будет весьма рискованным решением. Магистральные технологии при переходе на ATM приходится менять в первую очередь. Наиболее критичным при переходе на ATM будет первый шаг в сторону от традиционной коммутации ЛВС. В системах коммутации ЛВС без ATM-транков магистрали не используют технологии ATM и, следовательно, модернизация магистралей будет достаточно рискованным шагом. В идеальном случае коммутаторы ЛВС должны поддерживать магистрали ATM и других типов (например, FDDI).

    Переход приложений на ATM будет постепенным. На настольных станциях ATM будет поначалу использоваться для эмуляции ЛВС и работы с набором традиционных приложений ЛВС. По мере расширения инфраструктуры ATM станет возможным связать большие группы пользователей в "чистые" сети ATM. Это позволит использовать специальные приложения, рассчитанные на качество обслуживания ATM (видео, multimedia и т.п.) или упростить работу с традиционными потоками данных за счет более высокой производительности ATM.

    ATM, по мере реализации, будет делать сеть компании более гармоничной - сначала на уровне магистралей, а потом и для настольных систем. Полный переход на ATM наверняка будет определяться темпами снижения цен на порты для подключения настольных станций и адаптеры, а также реализацией поддержки возможностей в прикладных программах. Использование единой технологии для организации магистралей, подключения настольных станций и распределенных сетей может обеспечить, в конечном итоге, существенную экономию.

    В долгосрочной перспективе ATM должна стать единой архитектурой внутрикорпоративных и межкорпоративных коммуникаций. Коммутируемые виртуальные устройства, используемые настольными системами могут быть расширены за счет поддержки соединений SVC операторами публичных сетей, делая ATM универсальной технологией multimedia-сетей. Протоколы типа NHRP являются средством обеспечения универсальной связи, но в конечном итоге набор протоколов ATM для multimedia будет, по-видимому, основан на службах каталогов.

    Степень воздействия универсальных multimedia-коммуникаций на бизнес достаточно трудно прогнозировать с учетом отсутствия альтернативных вариантов. Несомненно, ATM будет играть значительную роль в коммерции, здравоохранении, обучении за счет систем распространения информации. Системы ATM основаны на экономичной технологии мультиплексирования, позволяющей преодолеть барьеры, связанные с взрывным характером трафика во многих приложениях.

    С учетом всех этих влияний технология ATM остается привлекательной реализацией и очевидно, что множество пользователей будут готовы перейти на ATM в ближайшем будущем. Это означает, что и ваша организация может быстро начать работу с ATM и расширять использование этой технологии для повышения эффективности работы.

    Приведенная в документе техническая информация может быть изменена без предупреждения.
    © 1997 Xylan Corporation.
    Перевод на русский язык © 1998, BiLiM Systems Ltd.

    Перспективными технологиями передачи информации в вычислительных сетях являются технологии, обеспечивающие высокие скорости передачи разнородной информации (данных, речевых и видеосигналов) на значительные расстояния. Действительно, передача голосовой и видеоинформации обычно требуется в режиме реального времени, и, следовательно, задержки должны быть только малыми (так, для голосовой связи — около 6 мс).

    Технология ATM кратко формулируется, как быстрая коммутация коротких пакетов фиксированной длины (53 байт), называемых ячейками. По этой причине и саму технологию ATM иногда называют коммутацией ячеек.

    Сети ATM относят к сетям с установлением соединения . Соединения могут быть постоянными и коммутируемыми (динамическими). Первые устанавливаются и разрываются администратором сети, их действие продолжительно, для каждого нового обмена данными между абонентами постоянного соединения не нужно тратить время на его установление. Вторые устанавливаются и ликвидируются автоматически для каждого нового сеанса связи.

    Каждое соединение получает свой идентификатор, который указывается в заголовке ячеек. При установлении соединения каждому коммутатору на выбранном пути следования данных передаются данные о соответствии идентификаторов и портов коммутаторов. Коммутатор, распознав идентификатор, направляет ячейку в нужный порт. Непосредственное указание в заголовке адресов получателя и отправителя не требуется, заголовок короткий — всего 5 байтов.

    Высокие скорости в ATM обеспечиваются рядом технических решений.

    Во-первых, физической основой для ATM служат высокоскоростные каналы передачи данных . Так, при применении технологии SONET в ATM предусматриваются каналы ОС-1, ОС-3, ОС-12 и ОС-48 на ВОЛС со скоростями соответственно 52, 155, 622 и 2488 Мбит/с.

    Кроме того, большое число каналов с временным мультиплексированием (TDM) можно использовать для параллельной передачи частей одного и того же "объемного" сообщения, что соответствует понятию "статистическое мультиплексирование". В технологиях E1/E4 статистическое мультиплексирование затруднено, так как для него требуется адресация слотов. В ATM ячейки адресуются, цикл синхронизации состоит из отдельных участков, длины участка и ячейки совпадают. Под конкретное сообщение можно выделить интервалов, совокупность которых называют виртуальным каналом . Скорость передачи можно регулировать, изменяя .

    Во-вторых, отрицательные квитанции при искажениях собственно сообщений (но не заголовков) возможны только от конечного пункта. Это исключает потери времени в промежуточных пунктах на ожидание подтверждений. Такой способ иногда называют коммутацией кадров (в отличие от коммутации пакетов). Контрольный код (четырехбайтный циклический) по информационной части сообщения имеется только в конце последнего пакета сообщения, что характерно для использования разновидности ATM, называемой AAL5. В других разновидностях ATM, ориентированных на передачу мультимедийного трафика, потери отдельных ячеек вообще некритичны. Для контроля правильности заголовков используется один байт в заголовке ячейки, в котором размещается контрольный код Хемминга для заголовка. Искаженные и не восстановленные по Хеммингу ячейки отбрасываются.

    В-третьих, упрощена маршрутизация . Собственно установление соединения выполняется аналогично этой процедуре в TCP/IP . Однако далее номер рассчитанного маршрута помещается в заголовок каждого пакета, и для них не нужно заново определять маршрут по таблицам маршрутизаторов при прохождении через сеть. Другими словами, осуществляется передача с установлением соединения (в отличие, например, от ). При этом клиент направляет серверу запрос в виде специального управляющего кадра . Кадр проходит через промежуточные маршрутизаторы и/или коммутаторы, в которых соединению (каналу) присваивается идентификаторы виртуальных пути и канала VPI/VCI. Если передача адресована нескольким узлам, то соответствующие идентификаторы в коммутаторах присваиваются нескольким каналам.

    В-четвертых, фиксированная длина пакетов (кадров) упрощает алгоритмы управления и буферизации данных, исключает необходимость инкапсуляции или конвертирования пакетов при смене форматов в промежуточных сетях (если они соответствуют формату ячейки ATM).

    Малый размер ячейки (53 байт) обусловлен требованиями передачи телефонного (голосового) трафика. Действительно, если допустить, наряду с передачей голоса, также традиционных цифровых данных, упакованных в длинные пакеты, то возможны задержки передачи "голосовых" ячеек на время, заметно превышающее несколько миллисекунд, что для телефонного разговора недопустимо. В то же время слишком короткие ячейки приводят к нерациональному использованию пропускной способности каналов из-за значительной доли длины заголовка в размере ячейки. Поэтому длина 53 байт при длине заголовка в 5 байт — компромиссное решение.

    При этом задержки в передаче голоса, обусловленные размером ячейки, составляют 6 мс. Действительно, каждый из 48 байт является одним замером аналоговой величины при импульсно-кодовой модуляции , которые выполняются с интервалом в 125 мкс (при частоте замеров 8 кГц). Следовательно, между моментом первого замера и отправкой ячейки в сеть проходит время (время пакетизации), равное 0,125·48 = 6 мс.

    В ATM введены три уровня протоколов (рис. 1).

    Адаптационный уровень (AAL — ATM Adaptations Level) аналогичен транспортному уровню в ЭМВОС , на нем происходит разделение сообщения на пакеты с контрольной и управляющей информацией, которые, в свою очередь, делятся на 48-байтные ячейки. Происходит также преобразование битовых входных потоков в один поток с соблюдением пропорций между числом ячеек для данных, голосовой и видеоинформации. Программное обеспечение, реализующее функции AAL, требуется только в конечных узлах ATM-сети.

    Рис. 1. Уровни протокола ATM

    Введено несколько разновидностей протокола AAL, ориентированных на разные классы трафика. Протокол AAL1 предназначен для обслуживания мультимедийного трафика, характеризующегося стабильной скоростью и синхронизацией голоса и видео, и телефонного трафика, чувствительного к временным задержкам. В то же время потеря отдельных ячеек несущественно сказывается на качестве принимаемой информации. Протокол AAL3/4 предназначен для передачи нестабильной (пульсирующей) нагрузки, присущей связям между локальными вычислительными сетями . Задержки здесь не критичны, но потери ячеек не допускаются. Протокол AAL5 приспособлен для передачи данных вычислительного характера.

    На следующем уровне, называемом ATM, к каждой ячейке добавляется пятибайтовый заголовок с маршрутной информацией. Этот уровень служит также для установления соединений. В структуре пятибайтового заголовка ATM-ячейки имеются следующие поля (в скобках указано число битов):

    • управление (4);
    • VPI/VCI (24);
    • тип данных (3);
    • приоритет потери пакетов (1);
    • контроль заголовка (8).

    Поля идентификаторов VPI (Virtual Path Identifier) и VCI (Virtual Channel Identifier) используются для указания маршрута движения ячеек. Очевидно, что в пределах всей сети при передаче ячеек использовать уникальные номера узлов нельзя, так как для этого потребовалась бы значительно большая длина заголовка, чем 5 байт. Поэтому идентификация маршрута выполняется с помощью сочетаний VPI/VCI. При установлении соединения назначаются VPI/VCI и в каждом маршрутизаторе для каждого соединения сочетание этих идентификаторов будет уникальное. В то же время в процессе установления соединения размеры запросов и ответов не ограничены столь существенно, здесь используются иерархические 20-байтные адреса, специальные таблицы маршрутизации и протокол PNNI. Идентификатор VPI можно рассматривать, как старшую часть указателя маршрута, этот идентификатор оказывается одинаковым для совокупности каналов, проходящих через одинаковые фрагменты сети.

    Поле "тип данных" используется для указания типа пакета (запрос на установление соединения или передача) и индикации перегрузки сети. Бит "приоритет потери пакетов" служит для отметки тех пакетов, которые нарушают соглашение о качестве обслуживания.

    Следует отметить, что для сборки сообщения из ячеек нужно нумеровать ячейки одного и того же сообщения. Этот номер относится к заголовку адаптационного уровня, занимающего один или два байта в поле данных (т.е. в 48-битном поле).

    Поле "контроль заголовка" содержит код Хемминга и, помимо функций контроля и исправления ошибок в заголовке ячейки, служит для разграничения ячеек ATM при их выделении из потока данных, передаваемых по каналам SDH. Граница определяется по сравнению подсчитываемого кода Хемминга для каждой очередной последовательности из 5 байт с содержимым последнего из этих 5 байт (положительный результат сравнения означает, что эта последовательность и есть заголовок).

    Поле "управление" предназначено для индикации перегрузок, отказов узлов, важности ячеек (маловажные могут отбрасываться при перегрузках). Сигналы управления обычно передаются в обратном направлении по тому же пути с определенными интервалами.

    Скорости передачи, реализуемые системами АТМ, покрывают в настоящее время (2003 г.) диапазон от 64 Кбит/с до 40 Гбит/с и, как правило, соответствуют ряду n×64 Кбит/с: 1,5/2, 6/8, 13, 26, 32, 34/45, 52, 98, 100, 140, 155, 622 Мбит/с, 2,5, 10 и 40 Гбит/c.

    Третий уровень — физический (physical) — служит для преобразования данных в электрические или оптические сигналы. Как отмечено выше, средой для ATM часто служат каналы технологий SDH или SONET , возможно использование технологий PDH . Если сеть не может обеспечить требуемую полосу, то происходит отказ от соединения. При перегрузках часть передаваемых ячеек отбрасывается с соответствующим уведомлением пользователя. Потеря ячеек вызывает необходимость повторной передачи всех ячеек сегмента (в AAL5), поскольку контроль правильности передачи ведется по отношению ко всему сообщению (в данном случае — сегменту). Существенно сократить число повторно передаваемых ячеек позволяет применение специальных алгоритмов.

    Качество передачи характеризуется такими параметрами, как пропускная способность, процент потерянных ячеек, задержка передачи ячеек и ее вариации. Заказ услуг выполняется в процессе установления соединения. Для поддержания заказанного уровня услуг в сетях ATM имеются специальные службы, реализуемые в программном обеспечении коммутаторов. Наряду с соединениями, не требующими определенного качества передачи, используются соединения со следующими уровнями услуг:

    • поддержка постоянной скорости при заданных ограничениях на максимальную скорость, задержку и процент потерянных ячеек;
    • поддержка переменной скорости с ограничениями на среднюю скорость и максимальный размер пульсаций скорости, в том числе поддержка требований синхронизации потоков от передатчика и приемника;
    • обеспечение переменной скорости с ограничением на минимальную скорость без требований синхронизации потоков от передатчика и приемника.

    Если сеть ATM оказывается перегруженной, то во избежание потери информации и в отличие от коммутации каналов возможна буферизация данных для выравнивания загрузки каналов. Регулирование загрузки (управление потоком) осуществляется периодическим включением (обычно через 32 кадра) RM-ячейки в информационный поток. В эту ячейку конечный узел и/или промежуточные коммутаторы могут вставлять значения управляющих битов, сигнализирующие о перегрузке или недогрузке канала. RM-ячейка от конечного узла передается в обратном направлении источнику сообщения, который может соответственно изменить режим передачи. В частности, применяется режим занятия всех свободных ресурсов при перегрузке. Таким образом, происходит динамическое перераспределение нагрузки.

    LAN ) и высококачественного телевидения, которые требовали более высоких скоростей, чем те, что предоставляли службы ISDN .

    Однако разработка широкополосной цифровой сети интегрального обслуживания ( Broadband ISDN - BISDN) привела к созданию метода передачи, который резко отличался от узкополосной ISDN ( Narrow ISDN - NISDN), известной как асинхронный режим передачи ( Asynchronous Transfer Mode ).

    ATM объединяет возможности двух технологий - коммутации пакетов и коммутации каналов. ATM преобразует все виды нагрузки в поток ячеек ( cell ) длиной 53 байта. Как показано на рис. 10.1 , ячейка состоит из 48 байтов полезной нагрузки и 5 байтов заголовка , который позволяет передавать эту ячейку по сети.

    Метод ATM ориентирован на соединение с пакетным способом коммутации, который обеспечивает заданное качество обслуживания (QoS - Quality of Service ). ATM рассчитана на высокие скорости передачи, а также на различные виды нагрузки: равномерный поток нагрузки, пульсирующая (пачечная) нагрузка и другие промежуточные типы.


    Рис. 10.1.

    Эталонная модель протоколов BISDN показана на рис. 10.2 . Модель содержит три плоскости: плоскость пользователя (Uplane), плоскость управления (C-plane) и плоскость менеджмента - административного управления (M-plane). Плоскость пользователя (U-plane), включает в себя передачу и прием всех видов данных, обеспечение управления потоком и защиту от ошибок. Она имеет уровневую структуру.

    Плоскость управления (C-plane) содержит совокупность протоколов,используемых для сигнализации при установлении, контроле и разъеди- нении соединения. Она имеет уровневую структуру.

    Плоскость менеджмента (M-plane) включает в себя две плоскости: административное управление уровнями плоскостей и управление плоскостями.

    Функции управления уровнями содержат совокупность протоколов, координирующих:


    Рассмотрим более подробно уровни плоскости пользователя и управления.

    Плоскость пользователя имеет три основных уровня для поддержки пользовательских приложений: физический, адаптации ATM , уровень ATM . Уровень адаптации ATM ( ATM Adaptation Layer - AAL ) имеет несколько типов, функции которых определяются различными классами нагрузки пользователя. Уровень адаптации преобразует блоки данных пользователя ( SDU - Service Data Unite) в 48-байтовые блоки, которые переносятся ATM -ячейками. На рис.10.3 показана информация , генерируемая различными приложениями: передача речи, передача данных , передача видео.


    Рис. 10.3.
    • регулярный поток, который поступает от преобразователя аналоговой информации в цифровые отсчеты(A/D);
    • кадры изображения, которые после сжатия представляют собой пакеты различной длины;
    • поток данных, который представляет собой поток пакетов с пульсирующей длиной.

    Задача устройства уровня AAL : преобразовать информацию, разбить на блоки и предоставить для передачи через уровень ATM , который позволяет системе передать все характерные особенности данного приложения (например, тактовые последовательности). Можно отметить, что функции AAL могут размещаться в оконечном оборудовании, а другие функции - выполняться сетью, как это показано на рис. 10.4 .


    Рис. 10.4.

    ATM-уровень занимается только последовательной передачей ATM -ячеек, полученных от уровня AAL , в установленном по сети соединении (установлением соединения занимается плоскость управления). ATM -уровень принимает 48-байтовые блоки информации от AAL и дополняет их 5-байтовым заголовком, формируя ячейку ( ATM ). Заголовок содержит метку, которая определяет свойства устанавливаемого соединения и используется коммутатором для определения следующего участка пути, а также типа приоритета.

    ATM может обеспечить различное качество обслуживания разным соединениям. Это оговаривается до предоставления услуги специальным соглашением между пользователем и поставщиком услуг, которое называется контрактом на услуги ( service contract ). Пользователь вырабатывает требования, которые определяются предоставляемой им нагрузкой и коэффициентом качества (QoS) при установлении связи. Если сеть может предоставить требуемое качество, то контракт устанавливает гарантированный QoS, пока пользователь выполняет все характеристики установленного трафика. Механизм ведения очереди и расписания в ATM -коммутаторах обеспечивает возможность поставки информации с заданным QoS. Для того чтобы доставить информацию с предписанным QoS, ATM -сети используют механизм наблюдения. Он будет рассмотрен далее.

    В соответствии с числом подключаемых пользователей режим ATM поддерживает два типа соединений: " точка-точка " и "точка - много - точек". Связь " точка-точка " может быть однонаправленной или двунап-равленной. В последнем случае для каждого направления может быть установлено свое QoS. Связь " точка - много точек" всегда однонаправ-ленная и устанавливается от одного пользователя ко многим. По времени удержания соединения ATM обеспечивает постоянное виртуальное соединение ( Permanent Virtual Connection - PVC ) и коммутируемые виртуальные соединения ( Switch Virtual Connection - SVC ). PVC работает как постоянная, арендованная между сторонами пользователей линия. Точки соединения устанавливаются сетевым менеджером.При SVC оконечные точки задаются в момент инициализации вызова по запросу пользователей.

    SVC устанавливается посредством процедур обмена сигналами. Исходящий пользователь должен взаимодействовать с сетью с помощью интерфейса " пользователь - сеть " (User-Network Interface - UNI), как это показано на рис. 10.7.

    Запрос на установление соединения распространяется по сети и в конечном итоге включает в себя обмен по протоколу UNI между сетью и терминалом пункта назначения.

    В пределах одной сети станции взаимодействуют согласно интерфейсу " сеть - сеть " (network-network interface NNI ). Станции, которые принадлежат разным сетям, взаимодействуют по интерфейсу широкополосной межсетевой связи (Broad Band Intercarrier Interface - B-ICI). Исходящий

    Рост и увеличение загруженности корпоративных сетей приводят к необходимости их модернизации с учетом самых современных тенденций развития систем связи. И здесь следует стремиться к тому, чтобы не только свести к минимуму затрачиваемые средства, но и наиболее эффективно их вложить. Необходимо помнить, что появляющиеся новые приложения влекут за собой увеличение скорости передачи данных в сети, поэтому она должна строиться с учетом постоянного роста трафика.

    Чтобы справиться с ростом трафика и значительными изменениями в его структуре, организациям приходится пересматривать принятую ими стратегию развития сети. Магистрали корпоративных сетей, реализованные, например, на основе технологии временного мультиплексирования (TDM), уже не могут «угнаться» за новыми требованиями, особенно за теми, которые возникают при использовании приложений TCP/IP, генерирующих неравномерный трафик с пиковыми нагрузками. При планировании развития сети надо учитывать перспективные и рентабельные решения, которые смогут в ближайшем будущем предложить поставщики услуг связи, стремиться обеспечить безболезненный переход к новым сетевым архитектурам. И в этом смысле технология АТМ (режим асинхронной передачи) обладает всеми необходимыми характеристиками, чтобы стать основой для создания новой сетевой инфраструктуры.

    Технология АТМ представляет собой дальнейшее развитие принципов, которые были положены в основу технологий ISDN и Frame Relay. Технологии N-ISDN, X.25 и Frame Relay не могли обеспечить возможность построения достаточно качественной и гибкой цифровой сети с интегрированными услугами Технология N-ISDN обеспечивала гарантированное качество обслуживания, однако, не обладала необходимой гибкостью и не обеспечивала высокие (более 2 Мбит/сек) скорости передачи данных. Технология Frame Relay обеспечивала большие, чем технология N-ISDN скорости передачи данных и достаточную эффективность использования ресурсов физического канала, однако, она не обеспечивала выделения гарантированной полосы пропускания для передачи трафика, который чувствителен к задержкам (оцифрованный голос), то есть необходимого качества обслуживания. Аббревиатура ATM означает Asynchronous Transfer Mode (в дословном переводе - технология асинхронной передачи). Термин "асинхронный" в названии технологии указывает на её отличие от синхронных технологий с фиксированным распределением пропускной способности канала между информационными потоками (TDM, ISDN). Существенные отличия технологии АТМ от ISDN и Frame Relay заключается в том, что блок данных АТМ, ячейка, имеет фиксированную длину - 53 байта. Фиксированная длина ячейки АТМ обеспечивает гарантированное постоянное время её обработки на коммутирующем оборудовании, и следовательно - возможность обеспечения гарантированного качества обслуживания информационных потоков пользователя.

    История Создание

    Корневые технологии ATM были разработаны независимо во Франции и США в 1970-х двумя учеными: Jean-Pierre Coudreuse, который работал в исследовательской лаборатории France Telecom, и Sandy Fraser, инженер Bell Labs. Они оба хотели создать такую архитектуру, которая бы осуществляла транспортировку как данных, так и голоса на высоких скоростях, и использовала сетевые ресурсы наиболее эффективно.

    Компьютерные технологии создали возможность для более быстрой обработки информации и более скоростной передачи данных между системами. В 80-х годах ХХ века операторы телефонной связи обнаружили, что неголосовой трафик более важен и начинает доминировать над голосовым. Был предложен дизайн ISDN , который описывал цифровую сеть с коммутацией пакетов, предоставляющую услуги телефонной связи и передачи данных. Оптоволокно позволяло обеспечить передачу данных на высокой скорости с малыми потерями. Но технология коммутации пакетов не обеспечивала надежную передачу голоса, и многие сомневались, что когда-либо обеспечит. В противоположность сетям пакетной передачи данных в общественных телефонных сетях применяли технологию коммутации каналов. Эта технология идеальна для передачи голоса, но для передачи данных она неэффективна. И тогда телекоммуникационная индустрия обратилась к ITU для разработки нового стандарта для передачи данных и голосового трафика в сетях с широкой полосой пропускания. В конце 80-х Международным телефонным и телеграфным консультативным комитетом CCITT (который затем был переименован в ITU-T) был разработан набор рекомендаций по ISDN второго поколения, так называемого B-ISDN (широкополосный ISDN), расширения ISDN. В качестве режима передачи нижнего уровня для B-ISDN был выбран ATM. В 1988 г. на собрании ITU в Женеве была выбрана длина ячейки ATM - 53 байт. Это был компромисс между американцами, которые хотели размер данных в ячейке 64 байта и европейцами, которые склонялись к размеру данных 32 байта. Ни одна сторона не смогла выиграть в этом споре и в итоге был выбран средний размер 48 байт. Для поля заголовка был выбран размер 5 байт, минимальный размер, на который согласилась ITU. В 1990 г. был одобрен базовый набор рекомендаций ATM. Базовые принципы ATM положены рекомендацией I150. Это решение было очень похоже на системы разработанные Coudreuse и Fraser. Отсюда начинается дальнейшее развитие ATM.

    90-е годы: приход ATM на рынок

    В начале 90-х начинается ажиотаж вокруг технологии ATM. Корпорация Sun Microsystems еще в 1990 г. одна из первых объявляет о поддержке ATM. В 1991 году создан ATM Forum, консорциум для разработки новых стандартов и технических спецификаций по технологии ATM, и сайт с одноименным названием, где все спецификации выкладывались в открытый доступ. CCITT, уже будучи ITU-T, выдаёт всё новые ревизии своих рекомендаций, полируя и совершенствуя теоретическую базу ATM. Представители сферы IT в журналах и газетах пророчат великое будущее ATM. В 1995 г. компания IBM объявила о своей новой стратегии в области корпоративных сетей, основанной на технологии ATM. Считалось, что ATM будет спасителем Интернета, уничтожив нехватку ширины полосы пропускания и внеся в сети надежность. Dan Minoli, автор многих книг по компьютерным сетям, убежденно утверждал, что ATM будет внедрен в публичных сетях, и корпоративные сети будут соединены с ними таким же образом, каким в то время они использовали frame relay или X.25. Но к тому времени протокол IP уже получил широкое распространение и сложно было совершить резкий переход на ATM. Поэтому в существующих IP-сетях технологию ATM предполагалось внедрять как нижележащий протокол, то есть под IP, а не вместо IP. Для постепенного перехода традиционных сетей Ethernet и Token Ring на оборудование ATM был разработан протокол LANE, эмулирующий пакеты данных сетей.

    В 1997 г. в индустрии маршрутизаторов и коммутаторов примерно одинаковое количество компаний было выстроено на обеих сторонах, то есть использовало или не использовало технологию ATM в производимых устройствах. Будущее этого рынка было еще неопределенно. В 1997 г. доход от продажи оборудования и услуг ATM составил 2,4 млрд долларов США, в следующем году - 3,5 млрд, и ожидалось, что он достигнет 9,5 млрд долларов в 2001 году. Многие компании (например Ipsilon Networks) для достижения успеха использовали ATM не полностью, а в урезанном варианте. Многие сложные спецификации и протоколы верхнего уровня ATM, включая разные типы качества обслуживания, выкидывались. Оставлялся только базовый функционал по переключению байтов с одних линий на другие.

    Первый удар по ATM

    И тем не менее, было также много специалистов IT, скептически относящихся к жизнеспособности технологии ATM. Как правило, защитниками ATM были представители телекоммуникационных, телефонных компаний, а противниками - представители компаний, занимающимися компьютерными сетями и сетевым оборудованием. Steve Steinberg (в журнале Wired) посвятил целую статью скрытой войне между ними. Первым ударом по ATM были результаты исследований Bellcore о характере трафика LAN, опубликованных в 1994 г. Эта публикация показала, что трафик в локальных сетях не подчиняется ни одной существующей модели. Трафик LAN на временной диаграмме ведет себя как фрактал. На любом временном диапазоне от нескольких миллисекунд до нескольких часов он имеет самоподобный взрывной характер. ATM в своей работе все внеурочные пакеты должен хранить в буфере. В случае резкого увеличения трафика, коммутатор ATM просто вынужден отбрасывать невмещающиеся пакеты, а это означает ухудшение качества обслуживания. По этой причине PacBell потерпела неудачу при первой попытке использовать оборудование ATM.

    Появление главного конкурента ATM - Gigabit Ethernet

    В конце 90-х появляется технология Gigabit Ethernet, которая начинает конкурировать с ATM. Главными достоинствами первой является значительно более низкая стоимость, простота, легкость в настройке и эксплуатации. Также, переход с Ethernet или Fast Ethernet на Gigabit Ethernet можно было осуществить значительно легче и дешевле. Проблему качества обслуживания Gigabit Ethernet мог решить за счет покупки более дешевой полосы пропускания с запасом, нежели за счет умного оборудования. К окончанию 90-х гг. стало ясно что ATM будет продолжать доминировать только в сетях WAN, то есть корпоративных сетях. Продажи свитчей ATM для WAN продолжали расти, в то время как продажи свитчей ATM для LAN стремительно падали.

    2000-е годы

    В 2000-е гг. рынок оборудования ATM еще был значительным. ATM широко использовался в WAN-сетях, в оборудовании для передачи аудио/видео потоков, как промежуточный слой между физическим и вышележащим уровнем в устройствах ADSL для каналов не более 2 Мбит/с. Но в конце десятилетия ATM начинает вытесняться новой технологией IP-VPN. Свитчи ATM стали вытесняться маршрутизаторами IP/MPLS . По прогнозу компании Uvum от 2009г., к 2014г. ATM и Frame relay должны почти полностью исчезнуть, в то время как рынки Ethernet и IP-VPN будут продолжать расти с хорошим темпом. По докладу Broadband Forum за октябрь 2010 г, переход на глобальном рынке от сетей с коммутацией каналов (TDM, ATM и др.) к IP-сетям уже начался в стационарных сетях и уже затрагивает и мобильные сети. В докладе сказано, что Ethernet позволяет мобильным операторам удовлетворить растущие потребности в мобильном трафике более экономически эффективно, чем системы, основанные на TDM или ATM.

    Еще в апреле 2005г. произошло слияние ATM Forum с Frame Relay Forum и MPLS Forum в общий MFA Forum (MPLS-Frame Relay-ATM). В 2007г. последний был переименован в IP/MPLS Forum. В апреле 2009г. IP/MPLS Forum был объединен с Broadband Forum (BBF), и новый форум принял название Broadband Forum. Фактически IP/MPLS Forum был поглощен BBF. Спецификации ATM доступны в их исходном виде на сайте Broadband Forum, но их дальнейшая разработка полностью остановлена.

    Компоненты сетей АТМ

    Технология АТМ обеспечивает информационное взаимодействие на двух уровнях, которые соответствуют канальному и физическому уровням модели OSI. АТМ - коммутаторы представляют собой быстродействующие специализированные вычислительные устройства, которые аппаратно реализуют функцию коммутации ячеек ATM между несколькими своими портами. Устройства CPE (Customer Premises Equipment) обеспечивают адаптацию информационных потоков пользователя для передачи с использованием технологии ATM. Для передачи данных в сети ATM организуется виртуальное соединение - virtual circuit (VC).

    Идентификаторы виртуального соединения ATM

    В пределах интерфейса NNI виртуальное соединение определяется уникальным сочетанием идентификатора виртуального пути (virtual path identifier) и идентификатора виртуального канала (virtual circuit identifier).

    Виртуальный канал представляет собой фрагмент логического соединения, по которому производится передача данных одного пользовательского процесса.

    Виртуальный путь представляет собой группу виртуальных каналов, которые в пределах данного интерфейса имеют одинаковое направление передачи данных.

    Коммутатор АТМ состоит из двух коммутаторов - коммутатора виртуальных путей и коммутатора виртуальных каналов. Эта особенность организации АТМ обеспечивает дополнительное увеличение скорости обработки ячеек.

    ATM коммутатор анализирует значения, которые имеют идентификаторы виртуального пути и виртуального канала у ячеек, которые поступают на его входной порт и направляет эти ячейки на один из выходных портов. Для определения номера выходного порта коммутатор использует динамически создаваемую таблицу коммутации.

    Формат ячейки АТМ

    Ячейка состоит из двух частей: поле заголовка занимает 5 байт и ещё 48 байт занимает поле полезной нагрузки.

    Поле заголовка

    В заголовке ячейки содержатся следующие поля:

    • Virtual Path Identifier (VPI)
    • Virtual Ccircuit Identifier (VCI)
    • Payload Type (PT)
    • Congestion Loss Priority (CLP)
    • Header Error Control (HEC)

    Поля идентификаторов VPI и VCI

    Идентификаторы VPI и VCI используются для обозначения виртуальных соединений ATM.

    Поле типа нагрузки PT

    В этом поле располагается информация, которая определяет тип даных, которые находятся в поле полезной нагрузки ячейки АТМ.

    Бит понижения приоритета CLP

    Бит CLP в ячейке АТМ имеет такое - же значение, как бит DE в кадре Frame Relay.

    Поле контрольной суммы заголовка HEC

    В поле HEC размещается проверочная контрольная сумма 4-х предыдущих байтов заголовка.

    Поле Generic Flow Control (GFC)

    Технология АТМ (Asynchronous Transfer Mode - режим асинхронной передачи) - это одна из самых перспективных технологий построения высокоскоростных сетей любого класса, от локальных до глобальных. Термин «асинхронный» в названии технологии указывает на ее отличие от синхронных технологий с фиксированным распределением пропускной способности канала между информационными потоками (например ISDN). Первоначально (на рубеже 80–90-х годов) технология разрабатывалась для замены известной технологии Synchronous Digital Hierarchy (SDH, синхронная цифровая иерархия), имеющей ряд недостатков, но и по сей день широко используемой при построении волоконно-оптических широкополосных магистралей (одна магистраль Санкт-Петербург–Москва многого стоит) и обеспечивающей самые высокие скорости передачи.

    В качестве транспортного механизма АТМ лежит технология широкополосной ISDN(B-ISDN, Broadband ISDN), призванная обеспечить возможность создания единой, универсальной, высокоскоростной сети взамен множества сложных неоднородных существующих сетей. Частично ей это уже удалось. Технология АТМ, как уже говорилось, используется в сетях любого класса, для передачи любых видов трафика: как низко- и среднескоростного (факсы, почта, данные), так и высокоскоростного в реальном масштабе времени (голос, видео); технология работает с самыми разнообразными терминалами и по самым разным каналам связи.

    Основные компоненты сети АТМ:

    l АТМ-коммутаторы, представляющие собой быстродействующие специализированные вычислительные устройства, которые аппаратно реализуют функцию коммутации ячеек ATMмежду несколькими своими портами;

    l устройства Customer Premises Equipment (CPE), обеспечивающие адаптацию информационных потоков пользователя при передаче с привлечением технологии ATM.

    Для передачи данных в сети ATM организуется виртуальное соединение - virtual circuit (VC). В пределах интерфейса NNI виртуальное соединение определяется уникальным сочетанием идентификатора виртуального пути (virtual path identifier) и идентификатора виртуального канала (virtual circuit identifier). Виртуальный канал представляет собой фрагмент логического соединения, по которому производится передача данных одного пользовательского процесса. Виртуальный путь представляет собой группу виртуальных каналов, которые в пределах данного интерфейса имеют одинаковое направление передачи данных.

    Коммутатор АТМ состоит из:

    l коммутатора виртуальных путей;

    l коммутатора виртуальных каналов.

    Эта особенность организации АТМ обеспечивает дополнительное увеличение скорости обработки ячеек. ATM-коммутатор анализирует значения, которые имеют идентификаторы виртуального пути и виртуального канала у ячеек, поступающих на его входной порт, и направляет эти ячейки на один из выходных портов. Для определения номера выходного порта коммутатор использует динамически создаваемую таблицу коммутации.


    Первоначально стандарт D-ISDN определял для сети АТМ два интерфейса:

    l UNI (User-to-Network Interface) - интерфейс пользователь–сеть;

    l NNI (Network-to-Network Interface) - интерфейс сеть–сеть,

    Передача информации в сетях АТМ происходит после предварительного установления соединений, выполняемого высокоскоростными коммутаторами АТМ. Коммутаторы создают широкополосный физический канал, в котором динамически можно формировать более узкополосные виртуальные подканалы. Передаются по каналу не кадры, не пакеты, а ячейки (cells). Ячейка представляет собой очень короткие последовательности байтов - размер ячейки составляет 53 байта, включая заголовок (5 байтов).

    Размер ячейки выбран в результате компромисса между требованиями, предъявляемыми компьютерными сетями - больший размер ячейки, и требованиями голосового трафика - меньший размер ячейки. Время заполнения квантами голосового сигнала ячейки длиной 48 байтов составляет примерно 6 мс, что является пределом временной задержки, заметно не искажающей голосовой трафик.