Сайт о телевидении

Сайт о телевидении

» » Подключение колонок к сабвуферу 5.1. Настоящий и «виртуальный» многоканальный звук. жизненный путь колонок

Подключение колонок к сабвуферу 5.1. Настоящий и «виртуальный» многоканальный звук. жизненный путь колонок

Если кто не читал статью, настоятельно рекомендую ознакомиться, потому что тема сегодняшней статьи будет перекликаться с предыдущей. Для всех остальных еще раз повторю резюме. Существует три типа фотоаппаратов: компактные, беззеркальные и зеркальные. Компактные – самые простые, а зеркальные – самые продвинутые. Практический вывод статьи заключался в том, что для более-менее серьезного занятия фотографией следует остановить свой выбор на беззеркалках и зеркалках.

Сегодня мы поговорим об устройстве фотоаппарата. Как и в любом деле, нужно понимать принцип работы своего инструмента для уверенного управления. Не обязательно досконально знать устройство, но основные узлы и принцип действия понимать надо. Это позволит взглянуть на фотоаппарат с другой стороны – не как на черный ящик со входным сигналом в виде света и выходом в виде готового изображения, а как на устройство, в котором вы разбираетесь и понимаете, куда дальше проходит свет и как получается итоговый результат. Компактные камеры затрагивать не будем, а поговорим о зеркальных и беззеркальных аппаратах.

Устройство зеркального фотоаппарата

Глобально фотоаппарат состоит из двух частей: фотоаппарата (его еще называют body — тушка) и объектива. Тушка выглядит следующим образом:

Тушка — вид спереди

Тушка – вид сверху

А вот так выглядит фотоаппарат в комплекте с объективом:

Теперь посмотрим на схематическое изображение фотоаппарата. Схема будет отображать структуру фотоаппарата “в разрезе” с такого же ракурса, как на последнем изображении. На схеме цифрами обозначены основные узлы, которые мы и будем рассматривать.


После настройки всех параметров, кадрирования и фокусировки фотограф нажимает кнопку спуска. При этом зеркало поднимается и поток света попадает на главный элемент фотоаппарата – матрицу.

    Как видите, поднимается зеркало и открывается затвор 1. Затвор в зеркалках механический и определяет время, в течении которого свет будет поступать на матрицу 2. Это время называется выдержкой. Также его называют временем экспонирования матрицы. Основные характеристики затвора: лаг затвора и его скорость. Лаг затвора определяет, как быстро откроются шторки затвора после нажатия кнопки спуска – чем меньше лаг, тем больше вероятность, что вон та проносящаяся мимо вас машина, которую вы пытаетесь снять, получится в фокусе, не смазана и скадрирована так, как вы это сделали при помощи видоискателя. У зеркалок и беззеркалок лаг затвора небольшой и измеряется в мс (миллисекундах). Скорость затвора определяет минимальное время, в течении которого будет открыт затвор – т.е. минимальную выдержку. На бюджетных камерах и камерах среднего уровня минимальная выдержка – 1/4000 с, на дорогих (в основном полнокадровых) – 1/8000 с. Когда зеркало поднято, свет не поступает ни на систему фокусировки, ни на пентапризму через фокусировочный экран, а попадает прямо на матрицу через открытый затвор. Когда вы делаете кадр зеркальным фотоаппаратом и при этом все время смотрите в видоискатель, то после нажатия на спуск вы на время увидите черное пятно, а не изображение. Это время определяется выдержкой. Если установить выдержку 5 с, к примеру, то после нажатия на кнопку спуска вы будете наблюдать черное пятно в течении 5 секунд. После окончания экспонирования матрицы зеркало возвращается в исходное положение и свет опять поступает в видоискатель. ЭТО ВАЖНО! Как видите, существуют два основных элемента, регулирующих поток света, попадающий на сенсор. Это диафрагма 2 (см. предыдущую схему), которая определяет количество пропускаемого света и затвор, который регулирует выдержку – время, за которое свет попадает на матрицу. Эти понятия лежат в основе фотографии. Их вариациями достигаются различные эффекты и важно понять их физический смысл.

    Матрица фотоаппарата 2 представляет собой микросхему со светочувствительными элементами (фотодиодами), которые реагируют на свет. Перед матрицей стоит светофильтр, который отвечает за получение цветной картинки. Двумя важными характеристиками матрицы можно считать ее размер и соотношение сигнал/шум. Чем выше и то, и другое, тем лучше. Подробнее о фотоматрицах мы поговорим в отдельной статье, т.к. это очень обширная тема.

С матрицы изображение поступает на АЦП (аналого-цифровой преобразователь), оттуда в процессор, обрабатывается (или не обрабатывается, если ведется съемка в RAW) и сохраняется на карту памяти.

Еще к важным деталям зеркалок можно отнести репетир диафрагмы. Дело в том, что фокусировка производится при полностью открытой диафрагме (насколько это возможно, определяется конструкцией объектива). Выставляя в настройках закрытую диафрагму, фотограф не видит изменений в видоискателе. В частности, ГРИП остается постоянной. Чтобы увидеть, каким будет выходной кадр, можно нажать на кнопку, диафрагма прикроется до установленного значения и вы увидите изменения до нажатия на кнопку спуска. Репетир диафрагмы устанавливается на большинстве зеркалок, но мало кто им пользуется: новички часто о нем не знают или не понимают назначения, а опытные фотографы примерно знают, какой будет ГРИП в тех или иных условиях и им легче сделать пробный кадр и в случае необходимости поменять настройки.

Устройство беззеркального фотоаппарата

Давайте сразу посмотрим на схему и будем обсуждать предметно.

Беззеркалки не в пример проще зеркалок и по сути являются их упрощенным вариантом. В них нет зеркала и сложной системы фазовой фокусировки, а также установлен видоискатель другого типа.

    Световой поток попадает через объектив на матрицу 1. Естественно, свет проходит через диафрагму в объективе. Она не обозначена на схеме, но, думаю, по аналогии с зеркалками вы догадались, где она расположена, ведь объективы зеркалок и беззеркалок по конструкции практически не отличаются (разве что размерами, байонетом и количеством линз). Более того, большинство объективов от зеркалок через переходники можно установить на беззеркалки. В беззеркалках нет затвора (точнее, он электронный), поэтому выдержка регулируется временем, в течении которого матрица включена (принимает фотоны). Что касается размера матрицы, то он соответствует формату Micro 4/3 или APS-C. Второй используется чаще и полностью соответствует матрицам, встраиваемым в зеркалки от бюджетного до продвинутого любительского сегмента. Сейчас стали появляться полнокадровые беззеркалки. Думаю, в будущем количество FF (Full Frame — полнокадровых) беззеркалок будет увеличиваться.

    На схеме цифрой 2 обозначен процессор, на который поступает информация, полученная матрицей.

    Под цифрой 3 изображен экран, на который выводится изображение в режиме реального времени (режим Live View). В отличии от зеркалок в беззеркалках это не сложно сделать, потому что световой поток не преграждается зеркалом, а беспрепятственно поступает на матрицу.

В общем все выглядит просто замечательно – убраны сложные конструктивные механические элементы (зеркало, датчики фокусировки, фокусировочный экран, пентапризма, затвор). Это значительно облегчило и удешевило производство, уменьшило в размере и весе аппараты, но также создало массу других проблем. Надеюсь, вы помните их из раздела о беззеркалках в статье о . Если нет, то сейчас мы их обсудим, попутно разбирая, какими техническими особенностями обусловлены эти недостатки.

Первая главная проблема – видоискатель. Так как свет попадает прямо на матрицу и никуда не отражается, то мы не можем видеть изображение напрямую. Мы видим лишь то, что попадает на матрицу, потом непонятным образом преобразуется в процессоре и выводится на непонятно какой экран. Т.е. в системе существует множество погрешностей. Мало того, у каждого элемента имеются свои задержки и изображение мы видим не сразу, что неприятно при съемке динамических сцен (из-за постоянно улучшающихся характеристик процессоров, экранов видоискателей и матриц это не так критично, но все равно имеет место быть). Изображение выводится на электронный видоискатель, у которого высокое разрешение, но которое все равно не сравнится с разрешением глаза. Электронные видоискатели имеют свойство слепнуть при ярком свете из-за ограниченной яркости и контрастности. Но более чем вероятно, что в будущем эту проблему преодолеют и чистое изображение, пропущенное через ряд зеркал канет лету также, как и “правильная пленочная фотография”.

Вторая проблема возникла из-за отсутствия фазовых датчиков автофокуса. Вместо них используется контрастный метод, который по контуру определяет, что должно быть в фокусе, а что – нет. При этом линзы объектива перемещаются на определенное расстояние, определяется контрастность сцены, линзы перемещаются опять и снова определяется контрастность. И так до тех пор, пока не будет достигнута максимальная контрастность и камера не сфокусируется. Это занимает слишком много времени и такая система менее точна, чем фазовая. Но в то же время контрастный автофокус представляет собой программную функцию и не занимает дополнительного места. Сейчас в матрицы беззеркалок уже научились встраивать фазовые датчики, получив гибридный автофокус. По скорости он сопоставим с системой автофокусировки у зеркалок, но пока что устанавливается только в избранных дорогих моделях. Думаю, в будущем эта проблема также будет решена.

Третья проблема представляет собой низкую автономность из-за напичканности электроникой, которая постоянно работает. Если фотограф работает с камерой, то все это время свет поступает на матрицу, постоянно обрабатывается процессором и выводится на экран или электронный видоискатель с высокой скоростью обновления – фотограф ведь должен видеть происходящее в реальном времени, а не в записи. Кстати, последний (я про видоискатель) тоже потребляет энергию, и не мало, т.к. его разрешение высоко и яркость с контрастностью должны быть на уровне. Отмечу, что при увеличении плотности пикселей, т.е. при уменьшении их размера при одном и том же энергопотреблении неизбежно снижается яркость и контрастность. Поэтому на питание качественных экранов с высоким разрешением расходуется много энергии. В сравнении с зеркалками количество кадров, которое можно сделать от одного заряда батареи, в несколько раз меньше. Пока что эта проблема критична, потому что значительно уменьшить энергопотребление не получится, а рассчитывать на прорыв в элементах питания не приходится. По крайней мере такая проблема долгое время существует на рынке ноутбуков, планшетов и смартфонов и ее решение успехом не увенчалось.

Четвертая проблема представляет собой как преимущество, так и недостаток. Речь идет об эргономике камеры. Вследствие избавления от “ненужных элементов” зеркалочного происхождения уменьшились размеры. Но беззеркалки пытаются позиционировать как замену зеркалкам и размеры матриц это подтверждают. Соответственно, используются объективы не самого маленького размера. Небольшая беззеркалка, похожая на цифрокомпакт, просто исчезает из поля зрения при использовании телевика (объектива с большим фокусным расстоянием, сильно приближающим объекты). Также многие элементы управления спрятаны в меню. В зеркалках они вынесены на корпус в виде кнопок. Да и просто приятнее работать с аппаратом, который нормально ложится в руку, не норовит выскользнуть и в котором можно наощупь, не задумываясь оперативно менять настройки. Но размер камеры – это палка о двух концах. С одной стороны большой размер обладает выше описанными преимуществами, а с другой — малая камера помещается в любой карман, ее можно чаще брать с собой и люди обращают на нее меньше внимания.

Что касается пятой проблемы, то она связана с оптикой. Пока что существует множество байонетов (типов креплений объективов к камерам). Под них сделано на порядок меньше объективов, чем под байонеты основных систем зеркалок. Проблема решается установкой переходников, с помощью которых на беззеркалках можно использовать абсолютное большинство зеркалочных объективов. Простите за каламбур)

Устройство компактного фотоаппарата

Что касается компактов, то у них масса ограничений, основным из которых является малый размер матрицы. Это не позволяет получить картинку с низким шумом, высоким динамическим диапазоном, качественно размыть фон и накладывает еще массу ограничений. Далее идет система автофокусировки. Если в зеркалках и беззеркалках используется фазовый и контрастный виды автофокуса, которые относятся к пассивному типу фокусировки, так как ничего не излучают, то в компактах используется активный автофокус. Камерой излучается импульс инфракрасного света, который отражается от объекта и попадает обратно в камеру. По времени прохождения этого импульса определяется расстояние до объекта. Такая система работает очень медленно и не работает на значительных расстояниях.

В компактах используется несменная низкокачественная оптика. Для них недоступен широкий набор аксессуаров, как для старших собратьев. Визирование происходит в режиме Live View по дисплею или через видоискатель. Последний представляет собой обычное стекло не очень хорошего качества, не связан с оптической системой фотоаппарата, из-за чего возникает неправильное кадрирование. Особенно сильно это проявляется при съемке близлежащих объектов. Продолжительность работы компактов от одного заряда невелика, корпус маленький и его эргономичность еще намного хуже, чем у беззеркалок. Количество доступных настроек ограничено и они спрятаны в глубине меню.

Если говорить об устройстве компактов, то оно простое и представляет собой упрощенную беззеркалку. Здесь меньше и хуже матрица, другой тип автофокуса, нет нормального видоискателя, отсутствует возможность замены объективов, невысокая продолжительность работы от аккумулятора и непродуманная эргономика.

Вывод

Вкратце мы рассмотрели устройство фотоаппаратов различных типов. Думаю, теперь вы имеете общее представление о внутреннем строении камер. Эта тема очень обширна, но для понимания и управления процессами, происходящими при съемке теми или иными фотоаппаратами при различных настройках и с разной оптикой вышеизложенной информации, думаю, будет достаточно. В дальнейшем мы все-таки поговорим об отдельных важнейших элементах: матрице, системах автофокусировки и объективах. А пока давайте на этом остановимся.

Любой, достаточно сложный электронный прибор представляет собой в том или ином виде компьютер, поскольку обеспечивает или обработку информации, или какую-то реакцию в ответ на её изменение. В частности, любой плёночный фотоаппарат, обеспечивающий автоматический обсчёт экспозиции и наведение на резкость, оборудован простейшим либо сложнейшим (в зависимости от класса) микропроцессором - а зачастую и не одним. Эти устройства, анализируя информацию с датчиков, фокусируют объектив и рассчитывают диафрагму и выдержку - причём для последней операции используется специализированная база данных.

И уж тем более не обойтись без компьютера цифровой фотокамере, хранящей сами снимки в виде двоичной информации. Более того, даже набор компонентов такого фотоаппарата вполне привычен для любого пользователя, знакомого с начинкой компьютера. Среди узлов цифровой камеры можно встретить ПЗУ, ОЗУ, скромную в энергопотреблении КМОП-память, энергонезависимую флэш-память, накопители на жёстких магнитных дисках (НЖМД), чаще называемые "винчестерами", и даже такую экзотику, как флоппи-дисководы и приводы CD-RW.

Очевидно, большинству читателей знакомо назначение вышеперечисленных устройств - все они, так или иначе, служат для оперативного либо долговременного хранения данных. Однако может возникнуть вопрос, каким образом эти компоненты применяются в цифровой фототехнике - особенно с учётом того, что часть из них отличается как отменной "прожорливостью" (по части электроэнергии), так и внушительными габаритами.

Чтобы рассказ шёл от простого к сложному, желательно вести рассмотрение хронологически - как относительно развития самих камер, так и касательно процессов, происходящих в цифровом фотоаппарате.

ПЗУ, ОЗУ и КМОП-память

Итак, если вспомнить самый первый любительский цифровой фотоаппарат, который появился в 1990 году и назывался Dycam Model 1 (хотя более известен был под именем Logitech FotoMan FM-1), то его внутренняя организация будет напоминать наиболее примитивные компьютеры того времени. В ПЗУ хранятся как набор управляющих "фотографической" частью программ (то есть алгоритмов расчёта экспозиции), так и утилиты, обеспечивающие формирование изображения на основе данных, поступающих от АЦП, а также последующее сжатие информации.

Все программы, хранящиеся в ПЗУ, после включения фотоаппарата загружаются в его ОЗУ. Здесь же производится и хранение снимков - энергонезависимыми средствами хранения информации Dycam Model 1 не располагал, и при разряде пары "пальчиковых" батареек, являвшихся основным источником питания камеры, все отснятые кадры пропадали. Разумеется, такое положение вещей категорически не могло устраивать пользователей, поэтому следующие модели цифровой фототехники уже имели устройства, позволявшие хранить снимки неограниченно (или почти неограниченно) долго без каких-либо источников энергии. Впрочем, и ПЗУ, и ОЗУ в этих фотоаппаратах сохранились - первый тип памяти по-прежнему хранил программы, а вот функции второго несколько расширились.

Дело в том, что цифровые фотоаппараты обрели цвет. Однако цвет этот для каждого кадра необходимо было восстановить - интерполировать, а для такого рода операций обязательно необходима оперативная память, так что снимки по-прежнему попадали в ОЗУ, только на этот раз не для хранения, а для обработки. Данная обработка состояла из формирования снимка на основе данных АЦП, восстановления цвета, а также сжатия информации. Полученные снимки хранились во встроенной энергонезависимой флэш-памяти фотоаппарата.

В ОЗУ выполнялась не только обработка снимков. Участок этой памяти выделялся и назначался на роль сервисной памяти - в ней хранились все настройки фотоаппарата, сделанные пользователем. Первые модели цифровых камер были довольно простыми, поэтому выбранные пользователем разрешение, степень сжатия и режим работы вспышки при выключении питания фотоаппарата терялись - настроить эти параметры при последующем включении не составляло особого труда. А вот когда появились функции экспокоррекции и баланса белого, решено было сделанные пользователем настройки всё-таки сохранять в участке ОЗУ, отведённом под сервисную память - как минимум до следующей замены батареек. С ростом разрешения ПЗС-матриц стало очевидным, что хранить снимки во встроенной флэш-памяти - заведомо ограничивать пользователя по части доступного количества кадров. Поэтому камеры обзавелись сменными модулями флэш-памяти, от чего выиграли не только пользователи, но и производители. Во-первых, повысился спрос на фотоаппараты (появилась возможность брать их в отпуск), во-вторых, возник рынок модулей памяти, а в третьих, получили распространение различные устройства, позволяющие считывать данные с модуля без использования камеры. Данные устройства, именуемые считывателями, имели самые разнообразные конструкции (далее они будут рассмотрены подробнее), хотя одна черта у них была общей - они обеспечивали доступ к снимкам, организованным в виде файлов.

Соответственно, на ОЗУ фотоаппарата легла ещё одна нагрузка - в нём производилось преобразование снимка в тот или иной файловый формат. Наиболее распространёнными являются файлы формата JPEG, TIFF и RAW. Следует отметить также, что к моменту появления сменных носителей некоторые производители стали снабжать свои камеры функциями повышения/понижения яркости, контрастности и чёткости изображения, а также перевода снимка в чёрно-белый формат. Все эти преобразования осуществлялись после восстановления цвета и, откровенно говоря, заметно лучших результатов можно было бы добиться при использовании специализированного ПО для обработки изображений

Чаще всего кадры сохраняются в файлах формата JPEG. Эта аббревиатура скрывает под собой название организации (Joint Photographic Experts Group), разработавшей довольно эффективный алгоритм сжатия информации. Этот алгоритм состоит из следующих шагов:

  • перевод цветового пространства снимка из RGB (использующего для отображения всех цветов оттенки красного, синего и зеленого) в YUV (где Y - яркость пиксела, а U и V - данные о цвете). При этом в первую очередь обеспечивается сохранность информации о яркости пиксела, а для человеческого зрения это важнее, чем данные о цвете.
  • разбиение кадра на блоки 8Х8 пикселов с последующим дискретным косинус-преобразованием данных блоков, которое перевод снимок в набор гармонических колебаний с различными амплитудой и частотой.
  • анализ амплитудно-частотных характеристик на предмет повторяемости цветовых полей с последующим исключением 50 процентов яркостных и 75 процентов цветовых данных.

Именно из-за последнего шага JPEG относится к алгоритмам со сжатием с потерей данных. Иными словами, даже при минимальном коэффициенте сжатия полностью исходное изображение восстановить невозможно. А при максимальных коэффициентах сжатия теряется слишком большая часть как яркостной, так и цветовой информации и на изображении всё отчётливее видны артефакты JPEG - "расплывшиеся" границы контрастных областей, дробление кадра на блоки 8Х8 пикселов и так далее.

В отличие от JPEG-алгоритма, сжатие, используемое в формате TIFF, не приводит к потерям данных. Используемые при этом алгоритмы очень похожи на те, что применяются в программах-архиваторах и обеспечивают стопроцентное восстановление изображения. Однако TIFF-файлы занимают заметно больше места, даже по сравнению JPEG-файлами с минимальным сжатием, в то же время ошибки при расчёте экспозиции или наводке на резкость портят кадр значительно сильнее, чем JPEG-артефакты. Из этого следует вывод - следует отснять как можно больше кадров и отобрать самые достойные, а с этой точки зрения формат JPEG предпочтительнее.

Файлы формата RAW представляют собой "слепки" с ПЗС-матрицы без каких-либо преобразований - в первую очередь, не производится интерполяция цвета. При этом несжатые файлы занимают места больше, чем файлы TIFF, а для их обработки на компьютере требуется специализированное и функционально ограниченное ПО. Впрочем, на текущий момент большинство производителей обеспечивают сжатие RAW-файлов, причём зачастую они получаются компактнее, чем TIFF-файлы. А для большего удобства при дальнейшей обработке изображения выпускаются плагины для Adobe Photoshop, позволяющие при обработке RAW-изображения использовать всю мощь этого пакета.

Возникает вопрос - "а для чего вообще нужен RAW-формат?" Дело в том, что иногда и динамический диапазон матрицы, и её АЦП позволяют получить изображение с большей разрядностью цвета, чем стандартные 24 бита, используемые в JPEG и TIFF форматах. И как раз для сохранения 30, 36 или 48-битного снимка RAW подходит лучше всего - избыточные разряды всегда можно использовать для коррекции "передержки" либо "недодержки".

Наряду с разрешением ПЗС-матриц неуклонно повышалось также их быстродействие. В конечном итоге скорость считывания данных с сенсора стала такой, что появилась возможность реализовать режим непрерывной съёмки, при котором камера делает серию снимков с минимальными интервалами между ними. А поскольку при большом разрешении даже для короткой серии требуется довольно внушительный объём памяти, размеры ОЗУ заметно выросли. С тех пор данный тип памяти стал называться буферной памятью. Одновременно с режимом непрерывной съёмки модели стали оснащаться функциями эксповилки, блокировки экспозиции, многозоновым автофокусом и другими полезными вещами. При этом с ростом разрешения вырастало и энергопотребление, поэтому батарейки приходилось менять особенно часто. И каждый раз при этом приходилось полностью настраивать камеру. Такое положение дел пользователей решительно не устраивало, в результате решено было использовать в качестве сервисной КМОП-память с весьма скромным энергопотреблением - ей и в самом деле "достаточно было одной "таблетки" (имеется в виду часовая батарейка). Опытные читатели догадались, что решение было позаимствовано из мира персональных компьютеров, в которых настройки материнской платы также хранятся в подпитываемой "таблеткой" КМОП-памяти.

Однако то, что хорошо для компьютера, не всегда подходит цифровой фотокамере. Отсек для "таблетки" занимал место в корпусе, на одну из панелей требовалось вывести люк для замены батарейки, а конструкция фотоаппарата в целом усложнялась. Поэтому потребовалось иное решение, которое, в конечном итоге, было найдено.

Флэш-память

Как уже было сказано, основной отличительной чертой флэш-памяти является её энергонезависимость - она в состоянии хранить информацию в течение очень долгого срока без каких-либо источников энергии. В этом её сходство с ПЗУ, однако в отличие от последней, флэш-память допускает модификацию хранящихся в ней данных. Достигается это тем, что при считывании информации используется низкое напряжение, а при записи - высокое.

Сочетание таких свойств привело к тому, что в цифровых фотоаппаратах флэш-память стала основным устройством долговременного хранения снимков. В ранних камерах флэш-память была встроенной и после её заполнения требовалась выгрузка снимков в персональный компьютер. С возрастанием размеров файлов распространение получили сменные модули памяти, однако встроенная флэш-память в фотоаппаратах тоже сохранилась.

Как уже было сказано, использование в качестве сервисной КМОП-памяти на "таблетках" усложняло конструкцию и увеличивало габариты. Поэтому решено было использовать в качестве сервисной встроенную флэш-память камеры - при этом вопрос обеспечения питанием автоматически пропадал. Более того, возникла возможность для решения ещё двух вновь возникших проблем.

Во-первых, вследствие вполне понятной "торопливости" производителей (ведь рынок надо завоёвывать) нередко выяснялось, что часть функций работает не совсем так, как надо. Такая же проблема встречается и у материнских плат компьютеров и "лечится" она путём перепрошивки базовой системы ввода/вывода (BIOS), которая с известных пор хранится не в ПЗУ, а во флэш-памяти. Данное решение перекочевало и в цифровые фотоаппараты, и теперь для исправления "неадекватного поведения" при расчёте экспозиции или наводке на резкость достаточно обзавестись самой свежей программной "заплаткой" и "наложить" её на встроенное программное обеспечение камеры, хранящееся во флэш-памяти.

Во-вторых, рост разрешения матриц негативно сказался на объемах выпуска - всё больший процент уходил в брак по причине обилия "залипших" пикселов. В то же время спрос на цифровую фототехнику продолжал расти. Поэтому нормы браковки сделали более либеральными, а чтобы пользователи не смущались от "залипших" пикселов, фотоаппараты стали оснащаться режимом, сканирующим дефектные элементы ПЗС-матрицы и запоминающим их координаты в сервисной флэш-памяти. А при генерации полноцветного изображения занесённые в "список залипших пикселов" элементы исключались из рассмотрения.

Сменные модули флэш-памяти

Итак, к тому моменту, когда разрешение ПЗС-матриц подошло к мегапиксельному рубежу, большинство производителей любительских цифровых камер перешло на сменные модули флэш-памяти. Впрочем, следует отметить, что инициатива по переходу на сменные носители данных принадлежала разработчикам цифровых "зеркалок".

Именно в зеркальных цифровых камерах Kodak DCS-420 образца 1994 года впервые появились слоты, предназначенные для установки PCMCIA-карт. В свою очередь, данные карты, оснащённые флэш-памятью, были ещё раньше разработаны для портативных компьютеров "Международной ассоциацией карт памяти для персональных компьютеров" (Personal Computer Memory Card International Association, PCMCIA). Стандарт, рекомендованный данной организацией, описывал как форму и вольтаж разъёмов, так и габариты карт. Планировалось также, что в данном форм-факторе и с использованием этого же разъёма будут выпускаться модемы, сетевые карты, SCSI-адаптеры и другие устройства. Позднее стандарт был переименован в PC Card.

Карта стандарта PCMCIA

В конечном итоге сформировалось три типа карт PCMCIA. Все они имеют равные длину и ширину (85,6Х54 мм), а вот толщина у них разная: тип I толщиной 3,3 мм, тип II -5 мм, и тип III - 10.5 мм. Различаются карты также по напряжению питания - 3,3 либо 5 вольт. Карты с флэш-памятью были, в основном, I и II типов.

Несмотря на то, что габариты PCMCIA-слотов годились больше для внушительных по размерам "зеркалок", место для них нашлось и в корпусах некоторых любительских камер - например, Kodak DC-50. Однако значительно большего успеха добился появившийся в 1994 году стандарт CompactFlash, ставший развитием PCMCIA.

Появление карт данного типа стало возможным благодаря повышению плотности записи в микросхемах флэш-памяти. В результате размеры микросхем уменьшились, а фирма SanDisk решила создать новый тип карт памяти, сохранив при этом совместимость с форматом PCMCIA - хотя число контактов сократилось с 68 до 50, электрически модули CompactFlash были полностью совместимы с предшественниками. А для механического соответствия достаточно было переходника CompactFlash- PCMCIA в форме PCMCIA-карты, в который, благодаря своему малому размеру (43X36X3 мм), вставлялись новые модули Ну а всю конструкцию в сборе можно было поместить в слот ноутбука и считать снимки непосредственно в компьютер, не используя ни соединительных проводов, ни ПО для обмена данными с камерой.



Модуль CompactFlash

Как и карты PCMCIA, модули CompactFlash изначально различались по напряжению питания - 3,3 и 5 вольт. Потом добавилось ещё одно отличие - появились карты CompactFlash тип II, толщина которых составляла уже 5 мм. Благодаря этому появилась возможность значительно увеличить ёмкость модулей, при этом в очередной раз заслужила похвал прозорливость разработчиков стандарта.

Дело в том, что контроллер памяти располагался непосредственно в модуле CompactFlash, примерно так же, как и в винчестерах. Благодаря этому новейшие карты повышенной ёмкости могли быть установлены в относительно старую фотокамеру. Такая гибкость применения обеспечила стандарту CompactFlash непревзойдённое долголетие.

Однако размещение контроллера на карте имеет и минусы. Во-первых, при этом возрастает себестоимость устройства. Во-вторых, в результате у производителей становятся "развязанными руки" и карты они маркируют, указывая "неформатированную ёмкость" (например, "64 Мбайт"), хотя реально для размещения данных свободными остаются от 60 до 63 Мбайт.

После распространения интерфейса USB популярными стали считыватели данных CompactFlash-USB. Более того, появились модули CompactFlash, располагавшие набором микросхем, реализовывавшим USB-интерфейс. Данные модули комплектовались кабелем, имевшим два разъёма - один предназначался для подключения к USB-порту компьютера, а второй, 50-контактный, позволял прямо к кабелю присоединить карту CompactFlash и считывать с неё данные в компьютер безо всяких дополнительных устройств.

Пожалуй, в области миникомпьютеров модули CompactFlash получили распространение ничуть не меньшее, чем в цифровой фототехнике. Более того, заложенные в интерфейс резервы (по правде говоря, доставшиеся "в наследство" от PCMCIA) позволили реализовать в рамках данного формата не только модули памяти, но и модемы и сетевые карты.

В целом стандарт CompactFlash по большей части удовлетворяет всем современным требованиям и отличается высокой популярностью, хорошей скоростью обмена и большими резервами по наращиванию объёмов памяти.

В последнее время все чаще пользователи ПК предпочитают приобретать 5.1 акустику. Такая акустика хорошо подходит и для просмотра фильмов, и для игр, и для прослушивания музыки. Хотя меломаны и предпочитают стерео пару. Этому способствует и то, что в современных материнских платах встраивают качественные звуковые карты.

Когда я приобрел свою первую 5.1 акустику, мне пришлось покупать недорогую дискретную звуковую карту VIA, материнка могла обеспечить только стерео выход.
В играх, особенно в сетевых баталиях, объемный звук оказывает большую помощь в позиционировании источника звука, можно услышать подкрадывающегося со спины врага. Но к сожалению не все могут правильно настроить такую акустику.

жизненный путь колонок

Хочу рассказать как это сделать на примере моей, уже старенькой, но до сих пор актуальной, системы Sven SPS-860. Колонки были куплены еще в 2008 году, примерно за 3 тысячи.


Колонки подключил к материнке ASUS AM2, но так и не смог настроить хорошее звучание, виной тому, как сейчас понимаю не самый лучший аудиочип материнки, какие то посторонние щелчки в колонках, а использование аудио карты VIA было не возможно, драйверов под windows 7 64bit уже не выпускалось.
Потом использовал акустику для домашнего кинотеатра, подключив к DVD BBK, к спутниковому ресиверу и к мультимедийному проигрывателю. Дабы количество аудио входов позволяла, и общей мощности в 80 ватт вполне хватало для комнаты.

После того как приобрел . Данную акустику опять подключил к компьютеру, к этому времени я уже сменил материнку на , с аудио чипом Realtek ALC889 codec.

настройки

Аудио драйвер позволил более гибко настроить звучание акустики, особенно порадовал неизвестно откуда появившийся глубокий бас и хорошая объемность звука.


Для этого в настройках динамиков я убрал галочки с пунктов «широкополосные динамики». Многие считают что достаточно выполнить настройку в диспетчере Realtek, и не заходят во вкладку настроек динамиков, продублировать настройки, а потом спрашивают почему не работает объемный звук.


И отрегулировал в диспетчере Realtek, функцию поправки на помещение, прибавив децибел на сабвуфер и выставив расстояние до колонок.




Важно так же правильно расположить колонки по периметру. Особенно часто возникают сложности с установкой тыловой пары. Вешать на стену – далеко, я сделал на самодельных подставках, и установил за креслом на уровне головы, когда не нужны – убираю в угол. Еще один важный момент – правильное подключение полярности кабелей динамиков, + обычно провод красного цвета. Но если провода не маркируются можно воспользоваться батарейкой: если диффузор динамика двигается вперед, то к плюсу батарейки подсоединен провод идущий на плюс.


Кстати диаметр динамиков сабвуфера - 165 мм, мощность 30 вт, есть отверстие фазоинвертора, корпус выполнен из дерева. В целом сабвуфер выдает большой спектр нижних частот, в играх взрывы и выстрелы звучат очень реалистично. А вот сателлиты пластиковые, по 10 вт, но в отличии от других бюджетных моделей имеют два динамика – средне и высокочастотный. Отсюда небольшой прорыв в качестве звука в области высоких частот. Еще одна интересная возможность, это процессор виртуального 5.1-звука, это дает возможность выводить даже стереозвук со стерео входов на все 5 колонок. И не маловажная опция – после выключения настройки громкости сбрасываются на среднее значение, не оглохнешь при включении, если с вечера слушал на максимальной громкости и забыл выкрутить звук на минимум.

После покупки акустики с поддержкой режима 5.1-канального звука, столкнулся с рядом проблем. Попросту говоря, в Windows 10 не работал режим 5.1, из пяти колонок работали только 2, да и то в режиме совместимости. Поначалу полагал, что это всё Google Chrome (который сам управляет звуком), однако же нет, нужно было знать одну особенность при настройке. В продолжении подробная инструкция по настройке 5.1-звука на Windows 10.

Для начала нужно проверить, какая звуковая карта установлена на ПК. Для этого необходимо зайти в «Диспетчер устройств» и найти пункт «Звуковые, игровые и видеоустройства» (это можно сделать кликнув правой клавишей по кнопке «Пуск», «диспетчер» будет пятым сверху). Если звуковая карта любого другого производителя, кроме VIA Audio — следующий пункт пропускаем.

Если звуковая карта производства VIA Audio, то перед настройкой необходимо установить драйвера версии: «VIA HD Audio v 11.11.00″ (скачать можно по ссылке). Однако программисты VIA что-то напутали и прописали неправильный пусть к встроенному микшеру, поэтому после скачивания архив с драйверами просто распаковываем в любую папку. После необходимо зайти в «Диспетчер устройств», далее в «Свойствах» встроенной звуковой карты найти вкладку «Драйвер» и нажать на кнопку «обновить драйвер». Далее «выполнить поиск драйверов на этом компьютере». Затем выбрать папку с распакованными драйверами от VIA. По завершении успешной установки перезагружаем ПК.

Для настройки 5.1-звука на Windows необходимо перейти во вкладку «Устройства воспроизведения» (правый клик по иконке громкости в трее Windows). Далее выделяем нужные нам динамики и кликаем по кнопке «Настройки» в левом нижнем углу. Далее, и это очень важно, необходимо выбрать режим 7.1-звука!, после чего нажать «далее» и снять галку с «боковой пары» динамиков. Потом просто прокликиваем «далее-далее» и выходим из окна настроек. Звук 5.1 активирован, поздравляю.


Также необходимо настроить режим виртуального объемного звучания, чтобы при воспроизведении файлов со стерео звуком работали не 2 динамика, а все 5. Для этого необходимо зайти в раздел «Свойства» (кнопка в правом нижнем углу). Там есть вкладка «Enhancements», где есть список различных режимов, нас интересует режим «Enable Speaker Fill» — проставляем галочку напротив. На этом настройка звука закончена.

При поиске аудиосистемы люди не задумываются, какими характеристиками должна она обладать. Перед выбором акустики мы должны определиться, для чего она будет нам нужна, и по какой цене мы будем покупать её. Возьмем, к примеру, систему 5.1, в которую входят 5 колонок (так называемых сателлитов) и один сабвуфер. Такая система удобна для использования в акустике домашнего кинотеатра, или для любителей качественного кругового звука. Определимся с ценой, к примеру, 6.000 рублей. На такие деньги можно взять хорошую акустическую систему.
Чтобы купить хорошие колонки, нужно знать их характеристики, такие как: номинальная мощность, максимальная мощность, сопротивление и диапазон частот.
Номинальное значение мощности – это мощность, при которой звук не искажается.
Максимальное значение мощности – это мощность, при которой колонка будет работать. Многие проектировщики колонок задают максимальную мощность как мощность, которую может выдержать колонка без большого вреда.
Сопротивление – активное сопротивление динамика. Если подключить динамик на 10 Ом к усилителю на 5 Ом, то звучать такой динамик будет намного тише.

Диапазон частот – такой диапазон частот, которые может воспроизвести данный динамик. Человек слышит частоты от 20 до 20.000 Гц. Так что лучше брать динамики с частотой 20Гц - 20КГц
После того как мы определились с характеристиками, мы идем в специализированный магазин, и выбираем там подходящие нам колонки. Так же заметим, что в системе 5.1 присутствует 1 сабвуфер. Его характеристики такие же, как и у колонок, но добавляется объём корпуса. Сабвуфер служит для усиления и воспроизведения низкочастотных сигналов (так называемые “басы”). При выборе акустики в магазине обратим внимание на страну производителя, так как если акустика произведена в Китае, то параметры, указанные в техническом паспорте не соответствуют параметрам на деле. Номинальные значения гораздо меньше, чем указаны в техническом паспорте.
Система 5.1 прекрасно подходит не только для домашнего кинотеатра, но и для компьютерных игр. Вы сможете полностью насладиться игрой, правильно расставив все колонки. Две колонки должны стоять сзади (слева и справа), три спереди из которых две по бокам и одна по центру. Сабвуфер лучше расположить на полу позади вас, так вы сможете достигнуть лучшего баса.

При выборе аудио системы нужно учесть, что сателлиты имеют маленькую мощность по сравнению с сабвуфером. Чем мощнее будет сабвуфер, тем громче будут басы. Для дома хватит сабвуфера на 20 Вт, он дает хороший бас, а так же стоит дешевле по сравнению с другими более мощными.
Например, Desktop Theater 5.1 DTT2200 фирмы Creative имеют мощность сателлитов 6, а мощность сабвуфера 19 Вт. Это подойдет для использования дома, но этого недостаточно для использования вместе с домашним кинотеатром. Такая аудио система стоит около 3.500 рублей. Но можно привести примером колонки SVEN 5.1 IHOO T100 имеют мощность сателлитов 20, а мощность сабвуфера 50 Вт. Такие колонки можно использовать с домашним кинотеатром, но и стоят они около 6.000 рублей.
Прежде чем выбирать аудио систему нужно учесть всё вышесказанное, и сделать правильный выбор.