Сайт о телевидении

Сайт о телевидении

» » Построение uml диаграмм по коду c. Краткое описание методологии моделирования классов в языке uml. Использование диаграммы классов

Построение uml диаграмм по коду c. Краткое описание методологии моделирования классов в языке uml. Использование диаграммы классов

Центральное место в ООАП занимает разработка логической модели системы в виде диаграммы классов. Нотация классов в языке UML проста и интуитивно понятна всем, кто когда-либо имел опыт работы с CASE-инструментариями. Схожая нотация применяется и для объектов – экземпляров класса, с тем различием, что к имени класса добавляется имя объекта и вся надпись подчеркивается.

Нотация UML предоставляет широкие возможности для отображения дополнительной информации (абстрактные операции и классы, стереотипы, общие и частные методы, детализированные интерфейсы, параметризованные классы). При этом возможно использование графических изображений для ассоциаций и их специфических свойств, таких как отношение агрегации, когда составными частями класса могут выступать другие классы.

Диаграмма классов (class diagram) служит для представления статической структуры модели системы в терминологии классов объектно-ориентированного программирования. Диаграмма классов может отражать, в частности, различные взаимосвязи между отдельными сущностями предметной области, такими как объекты и подсистемы, а также описывает их внутреннюю структуру и типы отношений. На данной диаграмме не указывается информация о временных аспектах функционирования системы. С этой точки зрения диаграмма классов является дальнейшим развитием концептуальной модели проектируемой системы.

Диаграмма классов представляет собой некоторый граф, вершинами которого являются элементы типа «классификатор», которые связаны различными типами структурных отношений. Следует заметить, что диаграмма классов может также содержать интерфейсы, пакеты, отношения и даже отдельные экземпляры, такие как объекты и связи. Когда говорят о данной диаграмме, имеют в виду статическую структурную модель проектируемой системы. Поэтому диаграмму классов принято считать графическим представленном таких структурных взаимосвязей логической модели системы, которые не зависят или инвариантны от времени.

Диаграмма классов состоит из множества элементов, которые в совокупности отражают декларативные знания о предметной области. Эти знания интерпретируются в базовых понятиях языка UML, таких как классы, интерфейсы и отношения между ними и их составляющими компонентами. При этом отдельные компоненты этой диаграммы могут образовывать пакеты для представления более общей модели системы. Если диаграмма классов является частью некоторого пакета, то ее компоненты должны соответствовать элементам этого пакета, включая возможные ссылки на элементы из других пакетов.

В общем случае пакет статической структурной модели может быть представлен в виде одной или нескольких диаграмм классов. Декомпозиция некоторого представления на отдельные диаграммы выполняется с целью удобства и графической визуализации структурных взаимосвязей предметной области. При этом компоненты диаграммы соответствуют элементам статической семантической модели. Модель системы, в свою очередь, должна быть согласована с внутренней структурой классов, которая описывается на языке UML.

Класс (class) в языке UML служит для обозначения множества объектов, которые обладают одинаковой структурой, поведением и отношениями с объектами из других классов. Графически класс изображается в виде прямоугольника, который дополнительно может быть разделен горизонтальными линиями на разделы или секции (рис. 5.1). В этих разделах могут указываться имя класса, атрибуты (переменные) и операции (методы).

Рис. 5.1. Графическое изображение класса на диаграмме классов

Обязательным элементов обозначения класса является его имя. На начальных этапах разработки диаграммы отдельные классы могут обозначаться простым прямоугольником с указанием только имени соответствующего класса (рис. 5.1, а). По мере проработки отдельных компонентов диаграммы описания классов дополняются атрибутами (рис. 5.1, б) и операциями (рис. 5.1, в).

Предполагается, что окончательный вариант диаграммы содержит наиболее полное описание классов, которые состоят из трех разделов или секций. Иногда в обозначениях классов используется дополнительный четвертый раздел, в котором приводится семантическая информация справочного характера или явно указываются исключительные ситуации.

Даже если секция атрибутов и операций является пустой, в обозначении класса она выделяется горизонтальной линией, чтобы сразу отличить класс от других элементов языка UML. Примеры графического изображения классов на диаграмме классов приведены на рис. 5.2. В первом случае для класса «Прямоугольник» (рис. 5.2, а) указаны только его атрибуты – точки на координатной плоскости, которые определяют его расположение. Для класса «Окно» (рис. 5.2, б) указаны только его операции, секция атрибутов оставлена пустой. Для класса «Счет» (рис. 5.2, в) дополнительно изображена четвертая секция, в которой указано исключение – отказ от обработки просроченной кредитной карточки.


Рис.5.2. Примеры графического изображения классов на диаграмме

Имя класса

Имя класса должно быть уникальным в пределах пакета, который описывается некоторой совокупностью диаграмм классов (возможно, одной диаграммой). Оно указывается в первой верхней секции прямоугольника. В дополнение к общему правилу наименования элементов языка UML, имя класса записывается по центру секции имени полужирным шрифтом и должно начинаться с заглавной буквы. Рекомендуется в качестве имен классов использовать существительные, записанные по практическим соображениям без пробелов. Необходимо помнить, что именно имена классов образуют словарь предметной области при ООАП.

В первой секции обозначения класса могут находиться ссылки на стандартные шаблоны или абстрактные классы, от которых образован данный класс и, соответственно, от которых он наследует свойства и методы. В этой секции может приводиться информация о разработчике данного класса и статус состояния разработки, а также могут записываться и другие общие свойства этого класса, имеющие отношение к другим классам диаграммы или стандартным элементам языка UML.

Примерами имен классов могут быть такие существительные, как «Сотрудник», «Компания», «Руководитель», «Клиент», «Продавец», «Менеджер», «Офис» и многие другие, имеющие непосредственное отношение к моделируемой предметной области и функциональному назначению проектируемой системы.

Класс может не иметь экземпляров или объектов. В этом случае он называется абстрактным классом, а для обозначения его имени используется наклонный шрифт (курсив). В языке UML принято общее соглашение о том, что любой текст, относящийся к абстрактному элементу, записывается курсивом. Данное обстоятельство является семантическим аспектом описания соответствующих элементов языка UML.

Атрибуты класса

Во второй сверху секции прямоугольника класса записываются его атрибуты (attributes) или свойства. В языке UML принята определенная стандартизация записи атрибутов класса, которая подчиняется некоторым синтаксическим правилам. Каждому атрибуту класса соответствует отдельная строка текста, которая состоит из квантора видимости атрибута, имени атрибута, его кратности, типа значений атрибута и, возможно, его исходного значения:

<квантор видимости><имя атрибута>[кратность]:

<тип атрибута> = <исходное значение>{строка-свойство}

Квантор видимости может принимать одно из трех возможных значений и, соответственно, отображается при помощи специальных символов:

Символ "+" обозначает атрибут с областью видимости типа общедоступный (public). Атрибут с этой областью видимости доступен или виден из любого другого класса пакета, в котором определена диаграмма.

Символ "#" обозначает атрибут с областью видимости типа защищенный (protected). Атрибут с этой областью видимости недоступен или невиден для всех классов, за исключением подклассов данного класса.

И, наконец, знак "-" обозначает атрибут с областью видимости типа закрытый (private). Атрибут с этой областью видимости недоступен или невиден для всех классов без исключения.

Квантор видимости может быть опущен. В этом случае его отсутствие просто означает, что видимость атрибута не указывается. Эта ситуация отличается от принятых по умолчанию соглашений в традиционных языках программирования, когда отсутствие квантора видимости трактуется как public или private. Однако вместо условных графических обозначений можно записывать соответствующее ключевое слово: public, protected, private.

Имя атрибута представляет собой строку текста, которая используется в качестве идентификатора соответствующего атрибута и поэтому должна быть уникальной в пределах данного класса. Имя атрибута является единственным обязательным элементом синтаксического обозначения атрибута.

Кратность атрибута характеризует общее количество конкретных атрибутов данного типа, входящих в состав отдельного класса. В общем случае кратность записывается в форме строки текста в квадратных скобках после имени соответствующего атрибута:

[нижняя_граница1 .. верхняя_граница1, нижняя_граница2.. верхняя_грашца2, ..., нuжняя_гpaнuцak .. верхняя_границаk],

где нижняя_граница и верхняя_граница являются положительными целыми числами, каждая пара которых служит для обозначения отдельного замкнутого интервала целых чисел, у которого нижняя (верхняя) граница равна значению нижняя_граница (верхняя_граница). В целом данное условное обозначение кратности соответствует теоретико-множественному объединению соответствующих интервалов. В качестве верхней_границы может использоваться специальный символ "*", который означает произвольное положительное целое число. Другими словами, это означает неограниченное сверху значение кратности соответствующего атрибута.

Значения кратности из интервала следуют в монотонно возрастающем порядке без пропуска отдельных чисел, лежащих между нижней и верхней границами. При этом придерживаются следующего правила: соответствующие нижние и верхние границы интервалов включаются в значение кратности. Если в качестве кратности указывается единственное число, то кратность атрибута принимается равной данному числу. Если же указывается единственный знак "*", то это означает, что кратность атрибута может быть произвольным положительным целым числом или нулем.

В качестве примера рассмотрим следующие варианты задания кратности атрибутов.

Означает, что кратность атрибута может принимать значение О или 1. При этом 0 означает отсутствие значения для данного атрибута.

Означает, что кратность атрибута может принимать любое положительное целое значение большее или равное 0. Эта кратность может быть записана короче в виде простого символа – [*].

Означает, что кратность атрибута может принимать любое положительное целое значение большее или равное 1.

Означает, что кратность атрибута может принимать любое значение из чисел: 1, 2, 3, 4, 5.

Означает, что кратность атрибута может принимать любое значение из чисел: 1, 2, 3, 5, 7.

Означает, что кратность атрибута может принимать любое значение из чисел: 1, 2, 3, 7, 8, 9, 10.

Означает, что кратность атрибута может принимать любое значение из чисел: 1, 2, 3, а также любое положительное целое значение большее или равное 7.

Если кратность атрибута не указана, то по умолчанию принимается ее значение равное 1..1, т. е. в точности 1.

Тип атрибута представляет собой выражение, семантика которого определяется языком спецификации соответствующей модели. В нотации UML тип атрибута иногда определяется в зависимости от языка программирования, который предполагается использовать для реализации данной модели. В простейшем случае тип атрибута указывается строкой текста, имеющей осмысленное значение в пределах пакета или модели, к которым относится рассматриваемый класс.

Можно привести следующие примеры задания имен и типов атрибутов классов:

Цвет: Соlоr – здесь цвет является именем атрибута, Color – именем типа данного атрибута. Указанная запись может определять традиционно используемую RGB-модель (красный, зеленый, синий) для представления цвета. В этом случае имя типа Color как раз и характеризует семантическую конструкцию, которая применяется в большинстве языков программирования для представления цвета.

Имя_сотрудника : String – здесь имя_сотрудника является именем атрибута, который служит для представления информации об имени, а возможно, и отчестве конкретного сотрудника. Тип атрибута String (Строка) как раз и указывает на тот факт, что отдельное значение имени представляет собой строку текста из одного или двух слов (например, «Кирилл» или «Дмитрий Иванович»). Поскольку во многих языках программирования существует тип данных String, использование соответствующего англоязычного термина не вызывает недоразумения у большинства программистов. Однако, хотя в языке UML все термины даются в англоязычном представлении, использование в качестве типа атрибута Строка в данной ситуации не исключается и определяется только соображениями удобства.

Видимость:Boolean – здесь видимость есть имя абстрактного атрибута (курсив здесь не случаен), который может характеризовать наличие визуального представления соответствующего класса на экране монитора. В этом случае тип Boolean означает, что возможными значениями данного атрибута является одно из двух логических значений: истина (true) или ложь (false). При этом значение истина может соответствовать наличию графического изображения на экране монитора, а значение ложь – его отсутствию, о чем дополнительно указывается в пояснительном тексте. Поскольку кратность атрибута видимость не указана, она принимает значение 1 по умолчанию. В этой ситуации англоязычное имя типа атрибута вполне оправдано наличием соответствующего базового типа в языках программирования. Абстрактный характер данного атрибута обозначается курсивным текстом в записи данного атрибута.

Форма:Многоугольник – здесь имя атрибута форма может характеризовать такой класс, который является геометрической фигурой на плоскости. В этом случае тип атрибута Многоугольник указывает на тот факт, что отдельная геометрическая фигура может иметь форму треугольника, прямоугольника, ромба, пятиугольника и любого другого многоугольника, но не окружности или эллипса. Вполне очевидно, что в данной ситуации использование соответствующего англоязычного термина вряд ли целесообразно, поскольку тип Многоугольник не является базовым для языков программирования.

Исходное значение служит для задания некоторого начального значения для соответствующего атрибута в момент создания отдельного экземпляра класса. Здесь необходимо придерживаться правила принадлежности значения типу конкретного атрибута. Если исходное значение не указано, то значение соответствующего атрибута не определено на момент создания нового экземпляра класса. С другой стороны, конструктор соответствующего объекта может переопределять исходное значение в процессе выполнения программы, если в этом возникает необходимость.

В качестве примеров исходных значений атрибутов можно привести следующие дополненные выше варианты задания атрибутов:

Цвет:Соlоr = (255, 0, 0) – в RGB-модели цвета это соответствует чистому красному цвету в качестве исходного значения для данного атрибута.

Имя_сотрудника:String = Иван Иванович – возможно, это нетипичный случай, который, скорее, соответствует ситуации имя_руководителя:81пп§ = Иван Иванович.

Видимость:Вооlеаn = истина – может соответствовать ситуации, когда в момент создания экземпляра класса создается видимое на экране монитора окно, соответствующее данному объекту.

Форма:Многоугольник = прямоугольник – вряд ли требует комментариев, поскольку здесь речь идет о геометрической форме создаваемого объекта.

При задании атрибутов могут быть использованы две дополнительные синтаксические конструкции – это подчеркивание строки атрибута и пояснительный текст в фигурных скобках.

Подчеркивание строки атрибута означает, что соответствующий атрибут может принимать подмножество значений из некоторой области значений атрибута, определяемой его типом. Эти значения можно рассматривать как набор однотипных записей или массив, которые в совокупности характеризуют каждый объект класса.

Например, если некоторый атрибут задан в виде форма: Прямоугольник. то это будет означать, что все объекты данного класса могут иметь несколько различных форм, каждая из которых является прямоугольником. Другим примером может служить задание атрибута в виде номер_счета:Integer. что может означать для объекта Сотрудник наличие некоторого подмножества счетов, общее количество которых заранее не фиксируется.

Строка-свойство служит для указания значений атрибута, которые не могут быть изменены в программе при работе с данным типом объектов. Фигурные скобки как раз и обозначают фиксированное значение соответствующего атрибута для класса в целом, которое должны принимать все вновь создаваемые экземпляры класса без исключения. Это значение принимается за исходное значение атрибута, которое не может быть переопределено в последующем. Отсутствие строки-свойства по умолчанию трактуется так, что значение соответствующего атрибута может быть изменено в программе. Например, строка-свойство в записи атрибута заработная_плата:Currency = = {$500} может служить для обозначения фиксированной заработной платы для каждого объекта класса «Сотрудник» определенной должности в некоторой организации. С другой стороны, запись данного атрибута в виде зара-ботная_плата: Currency = $500 означает уже нечто иное, а именно – при создании нового экземпляра Сотрудник (аналогия – прием на работу нового сотрудника) для него устанавливается по умолчанию заработная плата в $500. Однако для отдельных сотрудников могут быть сделаны исключения как в большую, так и в меньшую сторону, о чем необходимо позаботиться дополнительно в программе.

Операция

В третьей сверху секции прямоугольника записываются операции или методы класса. Операция (operation) представляет собой некоторый сервис, предоставляющий каждый экземпляр класса по определенному требованию. Совокупность операций характеризует функциональный аспект поведения класса. Запись операций класса в языке UML также стандартизована и подчиняется определенным синтаксическим правилам. При этом каждой операции класса соответствует отдельная строка, которая состоит из квантора видимости операции, имени операции, выражения типа возвращаемого операцией значения и, возможно, строка-свойство данной операции:

<квантор видимости><имя операции>(список параметров):

<выражение типа возвращаемого значения>{строка-свойство}

Квантор видимости, как и в случае атрибутов класса, может принимать одно из трех возможных значений и, соответственно, отображается при помощи специального символа. Символ "+" обозначает операцию с областью видимости типа общедоступный (public). Символ "#" обозначает операцию с областью видимости типа защищенный (protected). И, наконец, символ "-" используется для обозначения операции с областью видимости типа закрытый (private).

Квантор видимости для операции может быть опущен. В этом случае его отсутствие просто означает, что видимость операции не указывается. Вместо условных графических обозначений также можно записывать соответствующее ключевое слово: public, protected, private.

Имя операции представляет собой строку текста, которая используется в качестве идентификатора соответствующей операции и поэтому должна быть уникальной в пределах данного класса. Имя атрибута является единственным обязательным элементом синтаксического обозначения операции.

Список параметров является перечнем разделенных запятой формальных параметров, каждый из которых может быть представлен в следующем виде:

<вид параметра><имя параметра>:<выражение типа>=<значение параметра по умолчанию>.

Здесь вид параметра – есть одно из ключевых слов in, out или inout со значением in по умолчанию, в случае если вид параметра не указывается. Имя параметра есть идентификатор соответствующего формального параметра. Выражение типа является зависимой от конкретного языка программирования спецификацией типа возвращаемого значения для соответствующего формального параметра. Наконец, значение по умолчанию в общем случае представляет собой выражение для значения формального параметра, синтаксис которого зависит от конкретного языка программирования и подчиняется принятым в нем ограничениям.

Выражение типа возвращаемого значения также является зависимой от языка реализации спецификацией типа или типов значений параметров, которые возвращаются объектом после выполнения соответствующей операции. Двоеточие и выражение типа возвращаемого значения могут быть опущены, если операция не возвращает никакого значения. Для указания кратности возвращаемого значения данная спецификация может быть записана в виде списка отдельных выражений.

Строка-свойство служит для указания значений свойств, которые могут быть применены к данному элементу. Строка-свойство не является обязательной, она может отсутствовать, если никакие свойства не специфицированы.

Операция с областью действия на весь класс показывается подчеркиванием имени и строки выражения типа. По умолчанию под областью операции понимается объект класса. В этом случае имя и строка выражения типа операции не подчеркиваются.

Операция, которая не может изменять состояние системы и, соответственно, не имеет никакого побочного эффекта, обозначается строкой-свойством «{запрос}» («{query}»). В противном случае операция может изменять состояние системы, хотя нет никаких гарантий, что она будет это делать.

Для повышения производительности системы одни операции могут выполняться параллельно или одновременно, а другие – только последовательно. В этом случае для указания параллельности выполнения операции используется строка-свойство вида «{concurrency = имя}», где имя может принимать одно из следующих значений: последовательная (sequential), параллельная (concurrent), охраняемая (guarded). При этом придерживаются следующей семантики для данных значений:

Последовательная (sequential) – для данной операции необходимо обеспечить ее единственное выполнение в системе, одновременное выполнение других операций может привести к ошибкам или нарушениям целостности объектов класса.

Параллельная (concurrent) – данная операция в силу своих особенностей может выполняться параллельно с другими операциями в системе, при этом параллельность должна поддерживаться на уровне реализации модели.

Охраняемая (guarded) – все обращения к данной операции должны быть строго упорядочены во времени с целью сохранения целостности объектов данного класса, при этом могут быть приняты дополнительные меры по контролю исключительных ситуаций на этапе ее выполнения.

С целью сокращения обозначений допускается использование одного имени в качестве строки-свойства для указания соответствующего значения параллельности. Отсутствие данной строки-свойства означает, что семантика параллельности для операции не определена. Поэтому следует предположить худший с точки зрения производительности случай, когда данная операция требует последовательного выполнения.

Появление сигнатуры операции на самом верхнем уровне объявляет эту операцию на весь класс, при этом данная операция наследуется всеми потомками данного класса. Если в некотором классе операция не выполняется (т. е. некоторый метод не применяется), то такая операция может быть помечена как абстрактная «{abstract}». Другой способ показать абстрактный характер операции – записать ее сигнатуру курсивом. Подчиненное появление записи данной операции без свойства {абстрактная} указывает на тот факт, что соответствующий класс-потомок может выполнять данную операцию в качестве своего "метода.

Если для некоторой операции необходимо дополнительно указать особенности ее реализации (например, алгоритм), то это может быть сделано в форме примечания, записанного в виде текста, который присоединяется к записи операции в соответствующей секции класса. Если объекты класса принимают и реагируют на некоторый сигнал, то запись данной операции помечается ключевым словом «сигнал» («signal»). Это обозначение равнозначно обозначению некоторой операции. Реакция объекта на прием сигнала может быть показана в виде некоторого автомата. Кроме других случаев эта нотация может быть использована, чтобы показать реакцию объектов класса на ошибочные ситуации или исключения, которые могут моделироваться как сигналы или сообщения.

Поведение операции может быть указано дополнительно в форме присоединенного к операции примечания. В этом случае текст примечания заключается в скобки, если он представляет собой формальную спецификацию на некотором языке программирования и соответствует элементу «семантическое ограничение языка UML». В противном случае текст примечания является простым описанием на естественном языке и обозначается прямоугольником с «загнутым» верхним правым уголком (см. главу 4).

Список формальных параметров и тип возвращаемого значения могут не указываться. Квантор видимости атрибутов и операций может быть указан в виде специального значка или символа, которые используются для графического представления моделей в некотором инструментальном средстве. Имена операций, так же как и атрибутов, записываются со строчной (малой) буквы, а их типы – с заглавной (большой) буквы. При этом обязательной частью строки записи операции является наличие имени операции и круглых скобок.

В качестве примеров записи операций можно привести следующие обозначения отдельных операций:

Создать() – может обозначать абстрактную операцию по созданию отдельного объекта класса, которая является общедоступной и не содержит формальных параметров. Эта операция не возвращает никакого значения после своего выполнения.

Нарисовать(форма: Многоугольник = прямоугольник, цвет_заливки: Color = (О, О, 255)) – может обозначать операцию по изображению на экране монитора прямоугольной области синего цвета, если не указываются другие значения в качестве аргументов данной операции.

Запросить_счет_клиента(номер_счета:1п1е§ег):Сиггепсу – обозначает операцию по установлению наличия средств на текущем счете клиента банка. При этом аргументом данной операции является номер счета клиента, который записывается в виде целого числа (например, «123456»). Результатом выполнения этой операции является некоторое число, записанное в принятом денежном формате (например, $1,500.00).

Выдать_сообщение():{"Ошибка деления на ноль"} – смысл данной операции не требует пояснения, поскольку содержится в строке-свойстве операции. Данное сообщение может появиться на экране монитора в случае попытки деления некоторого числа на ноль, что недопустимо.

5.2. Отношения между классами

Кроме внутреннего устройства или структуры классов на соответствующей диаграмме указываются различные отношения между классами. При этом совокупность типов таких отношений фиксирована в языке UML и предопределена семантикой этих типов отношений. Базовыми отношениями или связями в языке UML являются:

Отношение зависимости (dependency relationship)

Отношение ассоциации (association relationship)

Отношение обобщения (generalization relationship)

Отношение реализации (realization relationship)

Каждое из этих отношений имеет собственное графическое представление на диаграмме, которое отражает взаимосвязи между объектами соответствующих классов.

Отношение зависимости

Отношение зависимости в общем случае указывает некоторое семантическое отношение между двумя элементами модели или двумя множествами таких элементов, которое не является отношением ассоциации, обобщения или реализации. Оно касается только самих элементов модели и не требует множества отдельных примеров для пояснения своего смысла. Отношение зависимости используется в такой ситуации, когда некоторое изменение одного элемента модели может потребовать изменения другого зависимого от него элемента модели.

Отношение зависимости графически изображается пунктирной линией между соответствующими элементами со стрелкой на одном из ее концов («->» или «<-»). На диаграмме классов данное отношение связывает отдельные классы между собой, при этом стрелка направлена от класса-клиента зависимости к независимому классу или классу-источнику (рис. 5.3). На данном рисунке изображены два класса: Класс_А и Кяасс_Б, при этом Класс_Б является источником некоторой зависимости, а Класс_А – клиентом этой зависимости.

Рис. 5.3. Графическое изображение отношения зависимости на диаграмме классов

В качестве класса-клиента и класса-источника зависимости могут выступать целые множества элементов модели. В этом случае одна линия со стрелкой, выходящая от источника зависимости, расщепляется в некоторой точке на несколько отдельных линий, каждая из которых имеет отдельную стрелку для класса-клиента. Например, если функционирование Класса_С зависит от особенностей реализации Класса_А и Класса_/>, то данная зависимость может быть изображена следующим образом (рис. 5.4).

Рис. 5.4. Графическое представление зависимости между классом-клиентом (Класс_С) и классами-источниками (Класс_Л и Класс_Б)

Стрелка может помечаться необязательным, но стандартным ключевым словом в кавычках и необязательным индивидуальным именем. Для отношения зависимости предопределены ключевые слова, которые обозначают некоторые специальные виды зависимостей. Эти ключевые слова (стереотипы) записываются в кавычках рядом со стрелкой, которая соответствует данной зависимости. Примеры стереотипов для отношения зависимости представлены ниже:

«access» – служит для обозначения доступности открытых атрибутов и операций класса-источника для классов-клиентов;

«bind» – класс-клиент может использовать некоторый шаблон для своей последующей параметризации;

«derive» – атрибуты класса-клиента могут быть вычислены по атрибутам класса-источника;

«import» – открытые атрибуты и операции класса-источника становятся частью класса-клиента, как если бы они были объявлены непосредственно в нем;

«refine» – указывает, что класс-клиент служит уточнением класса-источника в силу причин исторического характера, когда появляется дополнительная информация в ходе работы над проектом.

Отношение ассоциации

Отношение ассоциации соответствует наличию некоторого отношения между классами. Данное отношение обозначается сплошной линией с дополнительными специальными символами, которые характеризуют отдельные свойства конкретной ассоциации. В качестве дополнительных специальных символов могут использоваться имя ассоциации, а также имена и кратность классов-ролей ассоциации. Имя ассоциации является необязательным элементом ее обозначения. Если оно задано, то записывается с заглавной (большой) буквы рядом с линией соответствующей ассоциации.

Наиболее простой случай данного отношения – бинарная ассоциация. Она связывает в точности два класса и, как исключение, может связывать класс с самим собой. Для бинарной ассоциации на диаграмме может быть указан порядок следования классов с использованием треугольника в форме стрелки рядом с именем данной ассоциации. Направление этой стрелки указывает на порядок классов, один из которых является первым (со стороны треугольника), а другой – вторым (со стороны вершины треугольника). Отсутствие данной стрелки рядом с именем ассоциации означает, что порядок следования классов в рассматриваемом отношении не определен.

В качестве простого примера отношения бинарной ассоциации рассмотрим отношение между двумя классами – классом «Компания» и классом «Сотрудник» (рис. 5.5). Они связаны между собой бинарной ассоциацией Работа, имя которой указано на рисунке рядом с линией ассоциации. Для данного отношения определен порядок следования классов, первым из которых является класс «Сотрудник», а вторым – класс «Компания». Отдельным примером или экземпляром данного отношения может являться пара значений (Петров И. И., «Рога&Копыта»). Это означает, что сотрудник Петров И. И. работает в компании «Рога&Копыта».


Рис. 5.5. Графическое изображение отношения бинарной ассоциации между классами

Тернарная ассоциация и ассоциации более высокой арности в общем случае называются N-арной ассоциацией (читается – «эн арная ассоциация»). Такая ассоциация связывает некоторым отношением 3 и более классов, при этом один класс может участвовать в ассоциации более чем один раз. Класс ассоциации имеет определенную роль в соответствующем отношении, что может быть явно указано на диаграмме. Каждый экземпляр N-арной ассоциации представляет собой N-арный кортеж значений объектов из соответствующих классов. Бинарная ассоциация является частным случаем N-арной ассоциации, когда значение N=2, и имеет свое собственное обозначение.

N-арная ассоциация графически обозначается ромбом, от которого ведут линии к символам классов данной ассоциации. В этом случае ромб соединяется с символами соответствующих классов сплошными линиями. Обычно линии проводятся от вершин ромба или от середины его сторон. Имя N-арной ассоциации записывается рядом с ромбом соответствующей ассоциации.

Порядок классов в N-арной ассоциации, в отличие от порядка множеств в отношении, на диаграмме не фиксируется. Некоторый класс может быть присоединен к ромбу пунктирной линией. Это означает, что данный класс обеспечивает поддержку свойств соответствующей N-арной ассоциации, а сама N-арная ассоциация имеет атрибуты, операции и/или ассоциации. Другими словами, такая ассоциация, в свою очередь, является классом с соответствующим обозначением в виде прямоугольника и является самостоятельным элементом языка UML – ассоциацией-классом (Association Class). N-арная ассоциация не может содержать символ агрегации ни для какой из своих ролей.

В качестве примера конкретной тернарной ассоциации рассмотрим отношение между тремя классами: «Футбольная команда», «Год» и «Игра». Данная ассоциация указывает на наличие отношения между этими тремя классами, которое может представлять информацию об играх футбольных команд в национальном чемпионате в течение нескольких последних лет (рис. 5.6).

Как уже упоминалось, отдельный класс ассоциации имеет собственную роль в отношении. Эта роль может быть изображена графически на диаграмме классов. С этой целью в языке UML вводится в рассмотрение специальный элемент – конец ассоциации (Association End), который графически соответствует точке соединения линии ассоциации с отдельным классом. Конец ассоциации является частью ассоциации, но не класса. Каждая ассоциация имеет два или больше концов ассоциации. Наиболее важные свойства ассоциации указываются на диаграмме рядом с этими элементами ассоциации и должны перемешаться вместе с ними.

Рис. 5.6. Графическое изображение тернарной ассоциации между тремя классами

Одним из таких дополнительных обозначений является имя роли отдельного класса, входящего в ассоциацию. Имя роли представляет собой строку текста рядом с концом ассоциации для соответствующего класса. Она указывает специфическую роль, которую играет класс, являющийся концом рассматриваемой ассоциации. Имя роли не является обязательным элементом обозначений и может отсутствовать на диаграмме.

Следующий элемент обозначений – кратность отдельных классов, являющихся концами ассоциации. Кратность отдельного класса обозначается в виде интервала целых чисел, аналогично кратности атрибутов и операций классов. Интервал записывается рядом с концом ассоциации и для N-арной ассоциации означает потенциальное число отдельных экземпляров или значений кортежей этой ассоциации, которые могут иметь место, когда остальные N-1 экземпляров или значений классов фиксированы.

Так, для рассмотренного ранее примера (см. рис. 5.5) кратность "1" для класса «Компания» означает, что каждый сотрудник может работать только в одной компании. Кратность «1..*» для класса «Сотрудник» означает, что в каждой компании могут работать несколько сотрудников, общее число которых заранее неизвестно и ничем не ограничено. Заметим, что вместо кратности «1..*» записать только символ "*" нельзя, поскольку последний означает кратность «0..*». Для данного примера это означало бы, что отдельные компании могут совсем не иметь сотрудников в своем штате. Но такая кратность вполне приемлема в других ситуациях, как это видно из рассмотренного выше примера (рис. 5.6).

Что касается других свойств отношения, ассоциации, то в случае их наличия, они могут рассматриваться в качестве атрибутов класса ассоциации и могут быть указаны на диаграмме обычным для класса способом в соответствующей секции прямоугольника класса.

Частным случаем отношения ассоциации является так называемая исключающая ассоциация (Xor-association). Семантика данной ассоциации указывает на тот факт, что из нескольких потенциально возможных вариантов данной ассоциации в каждый момент времени может использоваться только один ее экземпляр. На диаграмме классов исключающая ассоциация изображается пунктирной линией, соединяющей две и более ассоциации, рядом с которой записывается строка-ограничение «{хог}».

Например, счет в банке может быть открыт для клиента, в качестве которого может выступать физическое лицо (индивидум) или компания, что изображается с помощью исключающей ассоциации (рис. 5.7).

Рис. 5.7. Графическое изображение исключающей ассоциации между тремя классами

Специальной формой или частным случаем отношения ассоциации является отношение агрегации, которое, в свою очередь, тоже имеет специальную форму – отношение композиции. Поскольку эти отношения имеют свои специальные обозначения и относятся к базовым понятиям языка UML, рассмотрим их последовательно.

Отношение агрегации

Отношение агрегации имеет место между несколькими классами в том случае, если один из классов представляет собой некоторую сущность, включающую в себя в качестве составных частей другие сущности.

Данное отношение имеет фундаментальное значение для описания структуры сложных систем, поскольку применяется для представления системных взаимосвязей типа «часть-целое». Раскрывая внутреннюю структуру системы, отношение агрегации показывает, из каких компонентов состоит система и как они связаны между собой. С точки зрения модели отдельные части системы могут выступать как в виде элементов, так и в виде подсистем, которые, в свою очередь, тоже могут образовывать составные компоненты или подсистемы. Это отношение по своей сути описывает декомпозицию или разбиение сложной системы на более простые составные части, которые также могут быть подвергнуты декомпозиции, если в этом возникнет необходимость в последующем.

Очевидно, что рассматриваемое в таком аспекте деление системы на составные части представляет собой некоторую иерархию ее компонентов, однако данная иерархия принципиально отличается от иерархии, порождаемой отношением обобщения. Отличие заключается в том, что части системы никак не обязаны наследовать ее свойства и поведение, поскольку являются вполне самостоятельными сущностями. Более того, части целого обладают своими собственными атрибутами и операциями, которые существенно отличаются от атрибутов и операций целого.

В качестве примера отношения агрегации рассмотрим взаимосвязь типа «часть-целое», которая имеет место между сущностью «Грузовой автомобиль» и такими компонентами, как «Двигатель», «Шасси», «Кабина», «Кузов». Не претендуя на точное соответствие терминологии данной предметной области, нетрудно представить себе, что грузовой автомобиль состоит из двигателя, шасси, кабины и кузова. Именно это отношение между классом «Грузовой_автомобиль» и классами «Двигатель», «Шасси», «Кабина», «Кузов» описывает отношение агрегации.

Графически отношение агрегации изображается сплошной линией, один из концов которой представляет собой незакрашенный внутри ромб. Этот ромб указывает на тот из классов, который представляет собой «целое». Остальные классы являются его «частями» (рис. 5.8).

Рис. 5.8. Графическое изображение отношения агрегации в языке UML

Еще одним примером отношения агрегации может служить известное каждому из читателей деление персонального компьютера на составные части: системный блок, монитор, клавиатуру и мышь. Используя обозначения языка UML, компонентный состав ПК можно представить в виде соответствующей диаграммы классов (рис. 5.9), которая в данном случае иллюстрирует отношение агрегации.


Рис. 5.9. Диаграмма классов для иллюстрации отношения агрегации на примере ПК

Отношение композиции

Отношение композиции, как уже упоминалось ранее, является частным случаем отношения агрегации. Это отношение служит для выделения специальной формы отношения «часть-целое», при которой составляющие части в некотором смысле находятся внутри целого. Специфика взаимосвязи между ними заключается в том, что части не могут выступать в отрыве от целого, т. е. с уничтожением целого уничтожаются и все его составные части.

Возможно, не самый лучший, но наверняка понятный всем пример этого отношения представляет собой живая клетка в биологии. Другой пример – окно интерфейса программы, которое может состоять из строки заголовка, кнопок управления размером, полос прокрутки, главного меню, рабочей области и строки состояния. Нетрудно понять, что подобное окно представляет собой класс, а его компоненты являются как классами, так и атрибутами или свойствами окна. Последнее обстоятельство весьма характерно для отношения композиции, поскольку отражает различные способы представления данного отношения.

Графически отношение композиции изображается сплошной линией, один из концов которой представляет собой закрашенный внутри ромб. Этот ромб указывает на тот из классов, который представляет собой класс-композицию или «целое». Остальные классы являются его «частями» (рис. 5.10).

Рис. 5.10. Графическое изображение отношения композиции в языке UML

В качестве дополнительных обозначений для отношений композиции и агрегации могут использоваться дополнительные обозначения, применяемые для отношения ассоциации. А именно, указание кратности класса ассоциации и имени данной ассоциации, которые не являются обязательными. Применительно к описанному выше примеру класса «Окно_программы» его диаграмма классов может иметь следующий вид (рис. 5.11).


Рис. 5.11. Диаграмма классов для иллюстрации отношения композиции на примере класса окна программы

Данный пример может иллюстрировать и другие особенности разрабатываемой компьютерной программы, которые не указывались в явном виде при описании этого примера Так, в частности, указание кратности 1 рядом с классом «Рабочая_область» характерно для однодокументных приложений.

Отношение обобщения

Отношение обобщения является обычным таксономическим отношением между более общим элементом (родителем или предком) и более частным или специальным элементом (дочерним или потомком). Данное отношение может использоваться для представления взаимосвязей между пакетами, классами, вариантами использования и другими элементами языка UML.

Применительно к диаграмме классов данное отношение описывает иерархическое строение классов и наследование их свойств и поведения. При этом предполагается, что класс-потомок обладает всеми свойствами и поведением класса-предка, а также имеет свои собственные свойства и поведение, которые отсутствуют у класса-предка. На диаграммах отношение обобщения обозначается сплошной линией с треугольной стрелкой на одном из концов (рис. 5.12). Стрелка указывает на более общий класс (класс-предок или суперкласс), а ее отсутствие – на более специальный класс (класс-потомок или подкласс).

Рис. 5.12. Графическое изображение отношения обобщения в языке UML

Как правило, на диаграмме может указываться несколько линий для одного отношения обобщения, что отражает его таксономический характер. В этом случае более общий класс разбивается на подклассы одним отношением Обобщения. Например, класс Геометрическая_фигура_на_плоскости (курсив обозначает абстрактный класс) может выступать в качестве суперкласса для подклассов, соответствующих конкретным геометрическим фигурам, таким как,Прямоугольник, Окружность, Эллипс и др. Данный факт может быть представлен графически в форме диаграммы классов следующего вида (рис. 5.13).


Рис. 5.13. Пример графического изображения отношения обобщения классов

С целью упрощения обозначений на диаграмме классов совокупность линий, обозначающих одно и то же отношение обобщения, может быть объединена в одну линию. В этом случае данные отдельные линии изображаются сходящимися к единственной.стрелке, имеющей с ними общую точку пересечения (рис. 5.14).


Рис. 5.14. Вариант графического изображения отношения обобщения классов для случая объединения отдельных линий

Это обозначение по форме соответствует графу специального вида, который рассматривался в главе 2, а именно – иерархическому дереву. В этом случае класс-предок является корнем этого дерева, а классы-потомки – его листьями. Отличие заключается в возможности указания на диаграмме классов потенциальной возможности наличия других классов-потомков, которые не включены в обозначения представленных на диаграмме классов (многоточие вместо прямоугольника).

Рядом со стрелкой обобщения может размещаться строка текста, указывающая на некоторые дополнительные свойства этого отношения. Данный текст будет относиться ко всем линиям обобщения, которые идут к классам-потомкам. Другими словами, отмеченное свойство касается всех подклассов данного отношения. При этом текст следует рассматривать как ограничение, и тогда он записывается в фигурных скобках.

В качестве ограничений могут быть использованы следующие ключевые слова языка UML:

{complete} – означает, что в данном отношении обобщения специфицированы все классы-потомки, и других классов-потомков у данного класса-предка быть не может. Пример – класс Клиент_банка является предком для двух классов: Физическое_лицо и Компания, и других классов-потомков он не имеет. На соответствующей диаграмме классов это можно указать явно, записав рядом с линией обобщения данную строку-ограничение;

{disjoint} – означает, что классы-потомки не могут содержать объектов, одновременно являющихся экземплярами двух или более классов. В приведенном выше примере это условие также выполняется, поскольку предполагается, что никакое конкретное физическое лицо не может являться одновременно и конкретной компанией. В этом случае рядом с линией обобщения можно записать данную строку-ограничение;

{incomplete} – означает случай, противоположный первому. А именно, предполагается, что на диаграмме указаны не все классы-потомки. В последующем возможно восполнить их перечень не изменяя уже построенную диаграмму. Пример – диаграмма класса «Автомобиль», для которой указание всех без исключения моделей автомобилей соизмеримо с созданием соответствующего каталога. С другой стороны, для отдельной задачи, такой как разработка системы продажи автомобилей конкретных моделей, в этом нет необходимости. Но указать неполноту структуры классов-потомков все же следует;

{overlapping} – означает, что отдельные экземпляры классов-потомков могут принадлежать одновременно нескольким классам. Пример – класс «Многоугольник» является классом-предком для класса «Прямоугольник» и класса «Ромб». Однако существует отдельный класс «Квадрат», экземпляры которого одновременно являются объектами первых двух классов. Вполне естественно такую ситуацию указать явно с помощью данной строки-ограничения.

С учетом возможности использования строк-ограничений диаграмма классов (рис. 5.14) может быть изображена без многоточий и без потери информации (рис. 5.15).


Рис. 5.15. Вариант графического изображения отношения обобщения классов с использованием строки-ограничения

Чтобы проиллюстрировать особенности использования отношения обобщения, преобразуем один из рассмотренных ранее примеров изображения классов в графическую нотацию языка UML. В качестве такого примера рассмотрим иерархию вложенности классов для абстрактного класса «Автомобиль» (см. рис. 1,2, 2.7). Как нетрудно заметить, отношение между отдельными классами на этих рисунках есть именно отношение обобщения, которое в языке UML имеет специальное графическое обозначение. С учетом этой графической нотации, фрагмент семантической сети для представления иерархии класса «Автомобиль» (см. рис. 2.7) может быть представлен в виде следующей диаграммы классов (рис. 5.16).

Заметим, что в данном примере все классы верхних уровней являются абстрактными, т. е. не могут быть представлены своими экземплярами. Именно поэтому их имена записаны курсивом. В отличие от них классы нижнего уровня являются конкретными, поскольку могут быть представлены своими экземплярами, в качестве которых выступают изготовленные автомобили соответствующей модели с уникальным заводским номером.


Рис. 5.16. Фрагмент диаграммы классов с отношением обобщения для представления иерархии классов «Автомобиль» из рассмотренного ранее примера (см. рис. 2.7)

5.3. Интерфейсы.

Интерфейсы являются элементами диаграммы вариантов использования и были рассмотрены в главе 4. Однако при построении диаграммы классов отдельные интерфейсы могут уточняться и в этом случае для их изображения используется специальный графический символ – прямоугольник класса с ключевым словом или стереотипом «interface» (рис. 5.17). При этом секция атрибутов у прямоугольника отсутствует, а указывается только секция операций.

Рис. 5.17. Пример графического изображения интерфейса на диаграмме классов

5.4. Объекты

Объект (object) является отдельным экземпляром класса, который создается на этапе выполнения программы. Он имеет свое собственное имя и конкретные значения атрибутов. В силу самых различных причин может возникнуть необходимость показать взаимосвязи не только между классами модели, но и между отдельными объектами, реализующими эти классы. В данном случае может быть разработана диаграмма объектов, которая, хотя и не является канонической в метамодели языка UML, но имеет самостоятельное назначение.

Для графического изображения объектов используется такой же символ прямоугольника, что и для классов. Отличия проявляются при указании имен объектов, которые в случае объектов обязательно подчеркиваются (рис. 5.18). При этом запись имени объекта представляет собой строку текста «имя объекта:имя класса», разделенную двоеточием (рис. 5.18 а, б). Имя объекта может отсутствовать, в этом случае предполагается, что объект является анонимным, и двоеточие указывает на данное обстоятельство (рис. 5.18, г). Отсутствовать может и имя класса. Тогда указывается просто имя объекта (рис. 5.18, в). Атрибуты объектов принимают конкретные значения.

При изображении диаграммы объектов нужно помнить, что каждый объект представляет собой экземпляр соответствующего класса, а отношения между объектами описываются с помощью связей (links), которые являются экземплярами соответствующих отношений. При этом все связи изображаются сплошными линиями. Более подробно особенности представления объектов будут рассмотрены в главе 9 при изучении диаграмм кооперации.

Рис. 5.18. Пример графического изображения объектов на диаграммах языка UML

5.5. Шаблоны или параметризованные классы

Шаблон (template) или параметризованный класс (parametrized class) предназначен для обозначения такого класса, который имеет один (или более) нефиксированный формальный параметр. Он определяет целое семейство или множество классов, каждый из которых может быть получен связыванием этих параметров с действительными значениями. Обычно параметрами шаблонов служат типы атрибутов классов, такие как целые числа, перечисление, массив строк и др. В более сложном случае формальные параметры могут представлять и операции класса.

Графически шаблон изображается прямоугольником, к верхнему правому углу которого присоединен маленький прямоугольник из пунктирных линий (рис. 5.19), большой прямоугольник может быть разделен на секции, аналогично обозначению для класса. В верхнем прямоугольнике указывается список формальных параметров для тех классов, которые могут быть получены на основе данного шаблона. В верхней секции шаблона записывается его имя по правилам записи имен для классов.

Рис. 5.19. Графическое изображение шаблона на диаграмме классов

Шаблон не может быть непосредственно использован в качестве класса, поскольку содержит неопределенные параметры. Чаще всего в качестве шаблона выступает некоторый суперкласс, параметры которого уточняются в его классах-потомках. Очевидно, в этом случае между ними существует отношение зависимости с ключевым словом «bind», когда класс-клиент может использовать некоторый шаблон для своей последующей параметризации. В более частном случае между шаблоном и формируемым от него классом имеет место отношение обобщения с наследованием свойств шаблона (рис. 5.20). В данном примере отмечен тот факт, что класс «Адрес» может быть получен из шаблона Связный_список на основе актуализации формальных параметров «S, k, l» фактическими атрибутами «улица, дом, квартира».

Этот же шаблон может использоваться для задания (инстанцирования) другого класса, скажем, класса «Точки_на_плоскости». В этом случае класс «Точки_на_плоскости» актуализирует те же формальные параметры, но с другими значениями, например, "ЬтсГ<координаты_точки, х, у>. Концепция шаблонов является достаточно мощным средством в ООП, и поэтому ее использование в языке UML позволяет не только сократить размеры диаграмм, но и наиболее корректно управлять наследованием свойств и поведения отдельных элементов модели.

Рис. 5.20. Пример использования шаблона на диаграмме классов

Процесс разработки диаграммы классов занимает центральное место в ООАП сложных систем. От умения правильно выбрать классы и установить между ними взаимосвязи часто зависит не только успех процесса проектирования, но и производительность выполнения программы. Как показывает практика ООП, каждый программист в своей работе стремится в той или иной степени использовать уже накопленный личный опыт при разработке новых проектов. Это обусловлено желанием свести новую задачу к уже решенным, чтобы иметь возможность использовать не только проверенные фрагменты программного кода, но и отдельные компоненты в целом (библиотеки компонентов).

Такой стереотипный подход позволяет существенно сократить сроки реализации проекта, однако приемлем лишь в том случае, когда новый проект концептуально и технологически не слишком отличается от предыдущих. В противном случае платой за сокращение сроков проекта может стать его реализация на устаревшей технологической базе. Что касается собственно объектной структуризации предметной области, то здесь уместно придерживаться тех рекомендаций, которые накоплены в ООП. Они широко освещены в литературе и поэтому здесь не рассматриваются.

При определении классов, атрибутов и операций и задании их имен и типов перед отечественными разработчиками всегда встает невольный вопрос: какой из языков использовать в качестве естественного, русский или английский? С одной стороны, использование родного языка для описания модели является наиболее естественным способом ее представления и в наибольшей степени отражает коммуникативную функцию модели системы. С другой стороны, разработка модели является лишь одним из этапов разработки соответствующей системы, а применение инструментальных средств для ее реализации в абсолютном большинстве случаев требует использования англоязычных терминов. Именно поэтому возникает характерная неоднозначность, с которой, по-видимому, совершенно незнакома англоязычная аудитория.

Отвечая на поставленный выше вопрос, следует отметить, что наиболее целесообразно придерживаться следующих рекомендаций. При построении диаграммы вариантов использования, являющейся наиболее общей концептуальной моделью проектируемой системы, применение русскоязычных терминов является не только оправданным с точки зрения описания структуры предметной области, но и эффективным с точки зрения коммуникативного взаимодействия с заказчиком и пользователями. При построении остальных типов диаграмм следует придерживаться разумного компромисса.

В частности, на начальных этапах разработки диаграмм целесообразность использования русскоязычных терминов вполне очевидна и оправдана. Однако, по мере готовности графической модели для реализации в виде программной системы и передачи ее для дальнейшей работы программистам, акцент может смещаться в сторону использования англоязычных терминов, которые в той или иной степени отражают особенности языка программирования, на котором предполагается реализация данной модели.

Более того, использование CASE-инструментариев для автоматизации ООАП, чаще всего, накладывает свои собственные требования на язык спецификации моделей. Именно по этой причине большинство примеров в литературе даются в англоязычном представлении, а при их переводе на русский может быть утрачена не только точность формулировок, но и семантика соответствующих понятий.

После разработки диаграммы классов процесс ООАП может быть продолжен в двух направлениях. С одной стороны, если поведение системы тривиально, то можно приступить к разработке диаграмм кооперации и компонентов. Однако для сложных динамических систем поведение представляет важнейший аспект их функционирования. Детализация поведения осуществляется последовательно при разработке диаграмм состояний, последовательности и деятельности. К изучению первой из них мы и приступим в главе 6.

Примечания:

Примечание 4

Приведенное выше определение класса является достаточно общим. В последующих главах по мере изучения материала этот термин будет уточняться на основе установления семантических связей с другими понятиями объектно-ориентированного анализа и проектирования.

Примечание 44

В некоторых случаях необходимо явно указать, к какому пакету относится тот или иной класс. Для этой цели используется специальный символ разделитель – двойное двоеточие «::». Синтаксис строки имени класса в этом случае будет следующий <Имя_пакета>::<Имя_класса>. Другими словами, перед именем класса должно быть явно указано имя пакета, к которому его следует отнести. Например, если определен пакет с именем «Банк», то класс «Счет» в этом банке может быть записан в виде: «Банк::Счет».

Примечание 45

Поскольку язык UML инвариантен относительно реализации своих конструкций в конкретных языках программирования, семантика отдельных кванторов видимости не является строго фиксированной. Значения этих кванторов должны дополнительно уточняться пояснительным текстом на естественном языке или соглашением по использованию соответствующих программно-зависимых синтаксических конструкций.

Примечание 46

Применительно к конкретным языкам программирования могут быть определены дополнительные кванторы видимости. В этом случае подобные дополнения являются расширением базовой нотации и требуют соответствующих пояснений в форме текста на естественном языке или в виде строки-свойства.

Примечание 47

Отношение зависимости является наиболее общей формой отношения в языке UML. Все другие типы рассматриваемых отношений можно считать частным случаем данного отношения. Однако важность выделения специфических семантических свойств и дополнительных характеристик для других типов отношений обусловливают их самостоятельное рассмотрение при построении диаграмм.

Примечание 48

В связи с рассмотрением данного отношения вполне уместно вспомнить о специальном термине «агрегат», которое служит для обозначения технической системы, состоящей из взаимодействующих составных частей или подсистем. Эта аналогия не случайна и может служить для более наглядного понимания сути рассматриваемого отношения.

Примечание 49

В качестве упражнения для закрепления рассмотренного материала можно попытаться построить диаграммы классов или хотя бы их фрагменты для библиотек стандартных классов MFC (Microsoft) и VCL (Borland/Inprise) с использованием графической нотации языка UML. Можно предположить, что в недалеком будущем справочные руководства по соответствующим средам программирования будут содержать именно такие диаграммы классов, а возможно, и некоторые другие.

Диаграмма классов занимает центральное место в проектировании объектно-ориентированной системы. Нотация классов используется на разных этапах проектирования и строится с различной степенью детализации. Язык UML применяется не только для проектирования, но и с целью документирования, а также эскизирования проекта. Я (в отличии от Гради Буча) не являюсь сторонником разработки проекта с использованием всех видов UML диаграмм, а также детального проектирования. Чаще всего я применяю UML для эскизирования, а также для проектирования по процессу ICONIX . В статье описана часть нотации классов UML, применение которой достаточно в большинстве случаев. Тут не будет информации о кратности ассоциаций и атрибутов, особенностях изображения параллельных операций, шаблонах (параметризованных классах) и ограничениях. При необходимости всю эту информации можно посмотреть в других книгах . Мы же ограничимся базовой частью нотации и больше внимания уделим применению диаграммы классов.

1 Элементы диаграммы классов

На диаграмме классов с помощью специальных символов изображаются типы данных программы и отношения между ними, хотя в некоторых случаях могут использоваться и некоторые другие элементы — пакеты и даже экземпляры классов (объекты) .

1.1 Символ класса

Символ класса на диаграмме может выглядеть различным образом в зависимости от детализации диаграммы:

Вопросы детализации будут рассмотрены в следующих разделах, а сейчас надо обратить внимание, что символ класса содержит имя (Player), набор операций (move , get_gealth) и атрибутов (pos , state). Для элементов класса могут задаваться тип, кратность, видимость и т.д.:

Формат спецификации атрибута:
видимость имя: тип [кратность] = значение_по_умолчанию

Формат спецификации операции:
видимость имя(аргумент: тип) = тип_возвращаемого_значения

В зависимости от параметра видимости элемент может быть:

  • приватным (private , доступен только внутри класса) — задается символом «минус» (-), может отображаться в виде квадрата;
  • защищенным (protected , доступен внутри класса, а также внутри классов-наследников) — задается символом «решетка» (#), может отображаться в виде ромба;
  • открытым (public , доступен всем) — задается символом «плюс» (+), может отображаться в виде круга.

Виртуальная функция и имя абстрактного класса выделяются курсивом, а статическая функция — подчеркивается.

1.2 Отношения классов

Диаграмма классов допускает различные виды отношений, рассмотрим их на части диаграммы модели некоторой игры:

В игре есть различные виды элементов (стены, сундуки, персонажи). Все эти элементы являются наследниками абстрактного класса AbstractItem , при этом часть из них умеет двигаться (такие элементы должны быть унаследованы от MovingItem). Наследование (отношение «является») изображается с помощью сплошной линии с закрытой стрелки, направленной в сторону суперкласса — на диаграмме класс MovingItem унаследован от AbstractItem , класс Player — от MovingItem и т.д. Штриховая линия с закрытой стрелкой задает отношение реализации (закрытое наследование).

Другой вид отношений между классами — включение, в объектно-ориентированном программировании различают два вида этого отношения — композицию и агрегацию. Напомню, что композиция — это разновидность включения, когда объекты неразрывно связаны друг с другом (время их жизни совпадает), в случае агрегации, время жизни различно (например, когда объект вложенного класса может быть заменен другим объектом во время выполнения программы).

Отношение композиции обозначается закрашенным ромбом, который рисуется со стороны включающего класса — так, класс MovingItem включает в себя класс Position , т.к. перемещающийся объект всегда имеет позицию. Отношение агрегации изображается незакрашенным ромбом — игрок (Player) агрегирует состояние (IPlayerState).

Если вы знакомы с паттернами State, Strategy или Delegation — секцию можно пропустить.
На приведенной выше диаграмме используется шаблон проектирования Состояние (State), являющийся разновидностью шаблона Делегирование (Delegation) и близкой к паттерну Стратегия (Strategy). Суть делегирования заключается в том, что для упрощения логики работы класса, часть его работы может быть передана (делегирована) вспомогательному классу. В свою очередь, паттерн State может быть добавлен, например, на этапе рефакторинга если в нескольких функциях класса встречается разлапистая проверка состояния объекта для выполнения тех или иных действий. В нашем случае персонаж может взаимодействовать с ежом, предположим, что если персонаж движется сидя и контактирует с ежом — у него должно уменьшится здоровье, а если стоя — увеличится счет (points). Кроме ежа могла быть еда, противники, патроны и т.д. Для демонстрации такого паттерна создан абстрактный класс IPlayerState и два наследника StayState и SeatState . В классе Player , при нажатии кнопки Ctrl состояние могло бы меняться на SeatState , а при отпускании — на StayState . Таким образом, при выполнении state->process_hedgehog(this) наш игрок каким-то образом, определенным объектом state , проконтактирует с ежиком.

Шаблон проектирования Delegation (и все его разновидности) — хороший пример для демонстрации агрегации. В нашем случае состояние игрока может меняться за счет изменения объекта по указателю, т.е. время жизни объектов различается.

Наиболее общий вид отношений между классами — ассоциация, обозначается сплошной линией (иногда со стрелкой). Вообще, и композиция, и агрегация, и обобщение (наследование) — являются частными случаями ассоциации. В нашей диаграмме с помощью ассоциации показано, что класс IPlayerState изменяет stats (health и points) объекта Player . Ассоциация может иметь название связи, поясняющую суть отношения. В качестве названия связей композиции и агрегации часто используется имя соответствующей переменной. Кроме того, ассоциация может иметь кратность, она задается на концах линии:

  • 1 — одна связь (на нашей диаграмме показано, что один игрок включает в себя один экземпляр класса IPlayerState);
  • * любое число связей (если бы на диаграмме был класс игрового поля, то с помощью звездочки можно было бы показать, что оно может содержать произвольное число игровых элементов);
  • [от..до] — может задаваться диапазоном. Так диапазон эквивалентен звездочке, но если мы захотим показать, что должно присутствовать более одного объекта — можем записать

Последний вид отношений, который мы рассмотрим — зависимость, изображается штриховой (прерывистой) линией. Если есть стрелка — то направлена от зависимого к независимому классу, если стрелки нет — то классы зависят друг от друга. Под зависимостью понимается зависимость от интерфейса, т.е. если интерфейс независимого класса изменится — то придется вносить изменения в зависимый класс. В нашей диаграмме SeatState и StayState зависят от класса Player , т.к. обращаются к его методам для изменения характеристик игрока. Для изображения отношения дружбы между классами используется отношение зависимости с подписью friend .

Очевидно, что не все виды отношений стоит отображать на диаграмме и одни отношения могут быть заменены другими. Так, я убрал бы из нашего примера отношения зависимости, однако при некоторых обстоятельствах (например при эскизировании на маркерной доске) они были бы вполне уместны. Расстановка кратности и имен связей тоже выполняется далеко не во всех случаях. Вообще, не стоит помещать на диаграмму лишнюю информацию. Главное — диаграмма должна быть наглядной.

2 Использование диаграммы классов

Мы рассмотрели основные обозначения, используемые на диаграммах классов — их должно быть достаточно в подавляющем большинстве случаев. По крайней мере, владея этим материалом вы легко сможете разобраться в диаграммах шаблонов проектирования и понять эскиз любого проекта. Однако, как правильно строить такие диаграммы? В каком порядке и с какой степенью детализации? — ответ зависит от целей построения диаграммы, поэтому приведенный материал будет разбит на подразделы в соответствии с целями моделирования.

Стоит отметить, что у Гради Буча советы по использованию UML даны в книге «Руководство пользователя» , но в его «Объектно-ориементированном анализе» можно найти хорошие примеры и критерии качества проекта. Леоненков и вовсе избегает этой темы, оставляя лишь ссылки на литературу, конкретные рекомендации я нашел у Лармана и Розенберга , часть материала основана на моем личном опыте. Фаулер рассматривает UML как средство эскизирования, поэтому у него свой (сильно отличающийся от Буча и Розенберга) взгляд на диаграмму классов .

2.1 Диаграмма классов как словарь системы, концептуальная модель

Словарь системы формируется параллельно с разработкой диаграммы прецедентов, т.е. технического задания. Выглядит это следующим образом — вы задаете заказчику вопросы типа «что еще может сделать пользователь?», «что произойдет (должна выдать система) если пользователь сделает нажмет на <эту> кнопку?», а ответы на них записываете в виде описания прецедентов. Однако, заказчик, давая ответы может называть одни и те же вещи разными именами — из личного опыта: говоря «клетка», «пересечение», «узел» и «ячейка» заказчик может иметь ввиду одно и тоже. В вашей же системе все эти понятия должны быть представлены одной абстракцией (классом/функцией/…). Для этого при общении с заказчиком стоит фиксировать терминологию в виде словаря системы — очень хорошо с этим справляется диаграмма классов.

Гради Буч для построения словаря системы предлагает выполнять в следующем порядке :

  1. анализируя прецеденты, определить какие элементы пользователи и разработчики применяют для описания задачи или ее решения;
  2. выявить для каждой абстракции соответствующее ей множество обязанностей (ответственности). Проследите правильность распределения обязанностей (в том числе, соблюдение );
  3. разработайте процедуры и операции для выполнения классами своих обязанностей.

В качестве примера рассмотрим словарь системы для игры «Сапер». На приведенной ниже диаграмме показан вариант, который получился в результате обсуждения задачи у моего студента. Видно, что на диаграмме изображены сущности и их атрибуты, понятные для заказчика, эту диаграмму стоит иметь перед глазами при составлении прецедентов чтобы не называть «Клетку» — «Полем», вводя всех в заблуждение. При построении словаря системы следует избегать нанесения на диаграмму функций классов, т.к. настолько детализированное распределение обязанностей лучше выполнять после построения диаграмм взаимодействия.

В процессе проектирования словарь системы может дополняться, Розенберг очень хорошо демонстрирует это в своей книге описывая итеративный процесс проектирования ICONIX . Например, после рассмотрения нескольких прецедентов может оказаться, что несколько классов реализуют один и тот же функционал — для решения проблемы надо более четко прописать обязанности каждого класса, возможно, добавить новый класс и перенести часть этих обязанностей ему.

Ларман предлагает строить концептуальную модель системы — это примерно то, что мы описали как словарь системы, но помимо терминов предметной области в ней фиксируются некоторые отношения, понятные заказчику. Например, заказчик понимает (и фиксирует в техническом задании), что <покупку> оформляет <продавец> — следовательно, между продавцом и покупкой существует отношение ассоциации "оформляет" . Я рекомендую строить концептуальную модель, дорабатывая словарь системы, хотя Ларман рекомендует сначала добавлять ассоциации, а затем — атрибуты.

2.2 Диаграмма классов уровня проектирования

В любом объектно-ориентированном процессе проектирования диаграмма классов является результатом, т.к. является моделью, наиболее близкой к реализации (коду). Существуют инструменты, способные преобразовать диаграмму классов в код — такой процесс называется кодогенерацией и поддерживается множеством IDE и средств проектирования. Например, кодогенерацию выполняет Visual Paradigm (доступно в виде плагинов для множества IDE), новые версии Microsoft Visual Studio, такие средств UML-моделирования как StarUML, ArgoUML и др. Чтобы построить по диаграмме хороший код, она должна быть достаточно подробной. Именно о такой диаграмме идет речь в этом разделе.

До Ларману до начала построения диаграммы классов уровня проектирования должны быть построены диаграммы взаимодействия и концептуальная модель системы. При этом порядок построения диаграммы следующий:

  1. перенести классы с диаграммы последовательности;
  2. добавить атрибуты концептуальной модели;
  3. добавить имена методов по анализу диаграмм взаимодействия (например, );
  4. добавить типы атрибутов и методов;
  5. добавить ассоциации (на основании атрибутов — отношения композиции и агрегации);
  6. добавить стрелки (направление ассоциаций)
  7. добавить ассоциации, определяющие другие виды отношений (в первую очередь, наследование).

Отношения, добавляемые на диаграмму классов уровня проектирования отличаются от тех, что были в концептуальной модели тем, что они могут быть не очевидны для заказчика (эту диаграмму он вообще смотреть не должен — она разрабатывается для программистов). Если на этапе анализа технического задания мы могли выделить основные сущности, не задумываясь о том, как это будет реализовано, то теперь обязанности между нашими классами должны быть окончательно распределены.

Например, при анализе задания на игру «Сапер» мы выделили классы и, но будут ли эти классы в окончательном проекте или останутся только в воображении? — решение можно принять только проанализировав диаграммы взаимодействия. Ведь возможен и такой код:

Enum class CellType { EmptyOpened, EmptyClose, EmptyCloseFlagged, MineOpened, MineClose, MineCloseFlagged }; class PlayingGround { // ... CellType **m_ground; }

Поясню (для тех, кто не пишет на С++) — тут создается перечисление, которое задает тип ячейки. Ячейка может принимать одно из этих шести значений (пустая открытая, пустая закрытая, пустая закрытая с флажком и т.п.). В таком случае, ячейка никак не сможет сама реагировать на нажатия мыши и отвечать за свое отображение (например пустая открытая должна выводить число мин вокруг себя) — все эти обязанности, видимо, лягут на класс PlayingGround .

Пример выше утрированный и однозначно не является образцом хорошего проектирования — на класс PlayingGround возложено слишком много обязанностей, но могли ли мы учесть это при анализе технического задания? Сможем ли мы это сделать до разработки диаграмм взаимодействия для проекта любой сложности? — именно поэтому построение диаграммы классов является последним этапом проектирования.

2.3 Диаграмма классов для эскизирования, документирования

Под эскизированием понимают моделирование некоторой (интересной нам в данный момент) части системы. Например, эскизирование может выполняться на маркерной доске когда в вашу компанию попадет новый сотрудник и вы будете помогать ему «влиться» в существующий проект. Очевидно, что если если дать человеку диаграмму классов уровня проектирования — разбираться он будет долго. Суть эскизирования в избирательности — вы выносите на диаграмму только те элементы, которые важны для пояснения того или иного механизма.

Сторонником применения UML для эскизирования является Фаулер , который считает, что целостный процесс проектирования с использованием UML слишком сложен. Эскизирование применяется очень часто (не только при объяснении проекта на маркерной доске):

  • в любой книге, посвященной паттернам проектирования, вы найдете массу UML диаграмм, выполненных в этом стиле;
  • при моделировании прецедента выбираются классы, за счет которых этот прецедент реализуется. Моделирование прецедента выполняется при рефакторинге;
  • в документацию для разработчиков нет смысла вставлять диаграмму классов уровня проектирования — гораздо полезнее описать наиболее важные (ключевые) моменты системы. Для этого строятся эскизные диаграммы классов и диаграммы взаимодействия. Также существуют специальные инструменты построения документацию по готовому коду — такие как JavaDoc или , в частности они строят диаграмму классов, но чтобы документация была понятной, в исходный код программы требуется вносить комментарии специального вида.

Каких-либо конкретных рекомендаций к эскизам диаграмм классов предложить невозможно, кроме того, обычно это достаточно простая задача. Важно понимать суть — избирательность представления элементов снижает сложность восприятия диаграммы.

2.4 Диаграмма классов для моделирования БД

Частным случаем диаграммы классов является диаграмма «сущность-связь» (E-R диаграмма), используемая для моделирования логической схемы базы данных. В отличии от классических E-R диаграмм, диаграмма классов позволяет моделировать поведение (триггеры и хранимые процедуры).

Обычно ситуация выглядит следующим образом — вы разработали систему, состояние которой нужно сохранять между запусками, например:

  • в вашей игре надо хранить информацию о достижениях пользователя — пройденные уровни, набранные очки и т.п.;
  • если игра сетевая — то может существовать сервер, на котором хранятся достижения разных игроков;
  • ваше приложение для телефона записывает координаты пользователя и позволяет ему оставлять пометки на карте. Вся эта информация тоже не должна уничтожаться после закрытия приложения.

Хранимые между запусками данные должны каким-то образом загружаться по запросу пользователя, т.е. должны задаваться параметры соответствующих классов. Например, приложение должно получить из базы данных список треков (маршрутов) и отобразить его в виде списка в меню программы. При выборе элемента списка — запросить в БД параметры трека, создать объект трека и отобразить его на карте. В любом случае, данные с базы используются при инициализации объектов программы — это важно понимать.

Для моделирования схемы БД с помощью диаграммы классов нужно :

  1. идентифицировать классы, данные которых должны храниться между запусками приложения (или обращениями пользователя) и нанести эти классы на отдельную диаграмму;
  2. детально специфицировать атрибуты классов, ассоциации и кратности. В E-R модели кратности имеют огромное значение — так например, при наличии кратности «многие-ко-многим» придется создавать вспомогательную таблицу. Используйте специфические стереотипы классов и пометки атрибутов (для задания первичных и вторичных ключей, например) ;
  3. решить проблемы использования полученной диаграммы в качестве физической модели базы данных — циклические ассоциации, n-арные ассоциации и т.д. При необходимости создать промежуточные абстракции;
  4. раскрыть операции, важные для доступа к данным и поддержания целостности;

Заключение и список литературы

В статье я постарался описать наиболее существенные элементы диаграммы классов, а также аспекты их применения. Просматривается, что диаграмма строится на начальном этапе проектирования (концептуальная модель) и является его результатом. На всех этапах проектирования созданная в начале диаграмма классов дорабатывается, т.е. я рассматриваю итеративный процесс (такой как RUP или ICONIX). Кроме того, показано, использование диаграммы классов в других целях — эскизирования, документирования, моделирования логической схемы БД. На других страницах этого блога вы можете найти множество примеров использования диаграммы классов.

  • диаграмма ;
  • множество диаграмм, демонстрирующих шаги рефакторинга для приведения проекта в соответствие ;
  • диаграммы классов для .
  • Буч Градди Объектно-ориентированный анализ и проектирование с примерами приложений, 3-е изд. / Буч Градди, Максимчук Роберт А., Энгл Майкл У., Янг Бобби Дж., Коналлен Джим, Хьюстон Келли А.: Пер с англ. - М.: ООО «И.Д. Вильямс», 2010. - 720 с.
  • Леоненков, А.В. Самоучитель UML 2 / А.В. Леоненков. – СПб.: БХВ — Петербург, 2007. – 576с.
  • Ларман, К. Применение UML и шаблонов проектирования: Уч. Пос / К. Ларман. — М.: Издательский дом «Вильямс», 2001. — 496 с.
  • Розенберг Д., Скотт К. Применение объектного моделирования с использованием UML и анализ прецедентов.: Пер. с англ. М.: ДМК Пресс, 2002
  • Бадд Т. Объектно-ориентированное программирование в действии: Пер с англ. — СПб: «Питер», 1997. — 464 с. 2002
  • Буч Г., Рамбо Д., Джекобсон А. Язык UML. Руководство пользователя: Пер. с англ. — М.: ДМК, 2000. — 432 с.
  • Фаулер, М. UML. Основы / М. Фаулер, К. Скотт; пер. с англ. – СПб.: Символ – Плюс, 2002. – 192 с.
  • — URL: https://сайт/archives/1914
  • — URL: https://сайт/archives/2769
  • UML data modeling — URL: http://www.agiledata.org/essays/umlDataModelingProfile.html
  • — URL: https://сайт/archives/887
  • — URL: https://сайт/archives/2400
  • — URL: https://сайт/archives/1372

Цель работы. Ознакомление с методологией и инструментальными средствами моделирования классов на основе языка UML.

Задание. Ознакомиться с методологией моделирования классов на основе языка UML, используя методические указания и . Ознакомиться со средствами построения диаграмм классов программного продукта StarUML 5.0, используя . Разработать диаграмму классов автоматизированной системы согласно варианту индивидуального задания, используя инструментальное средство StarUML 5.0. Продемонстрировать проект и защитить работу преподавателю.

Краткое описание методологии моделирования классов в языке uml

Подумайте о вещах в окружающем вас мире. Вероятно, большинство из них имеют атрибуты (свойства) и действуют определенным образом. Мы будем считать эти действия набором операций.

Также можно увидеть, что все вещи естественным образом разделяются по категориям (автомобили, мебель, стиральные машины и т.д.). Мы об­ращаемся к этим категориям как к классам. Класс – это категория или группа вещей, которая имеет сходные атрибуты и общие свойства. На­пример, любая вещь в классе стиральных машин имеет такие атрибуты, как производитель, номер изделия и емкость. Свойства вещей в этом классе включают операции «загрузить белье», «загрузить стиральный по­рошок», «включить» и «выгрузить белье».

На рис. 16 представлен пример обозначения UML, где показаны атрибуты и свой­ства стиральной машины. Класс представляется прямоугольником, разделенным на три области. Самая верхняя область содержит имя, в средней располагаются атрибуты, а в самой нижней – операции. Диаграмма классов состоит из определенного количе­ства таких прямоугольников, соединенных линиями, которые показывают, как классы связаны между собой.

Рис. 16. Изображение класса в UML

Зачем размышлять о классах вещей, их атрибутах и операциях? Для взаимодейст­вия с нашим сложным миром наиболее современное программное обеспечение моде­лирует некоторые его аспекты. Десятилетний опыт подсказывает, что проще разраба­тывать программное обеспечение, которое работает таким образом и представляет классы реально существующих вещей. Диаграммы классов представляют собой отпра­вную точку процесса разработки.

Диаграммы классов помогают также при анализе. Они позволяют аналитику об­щаться с клиентом в его терминологии и стимулируют процесс выявления важных де­талей в проблеме, которую требуется решить.

Диаграмма объектов

Объект представляет собой экземпляр класса – особую сущность, кото­рая имеет заданные значения атрибутов и операций. Ваша стиральная машина, например, может иметь атрибуты: компания-производитель – Laundatorium, наименование модели – Washmeister, серийный номер из­делия – GL57774 и емкость – 16 фунтов.

На рис. 17 показано, как объект представляется в обозначениях UML. Отметим, что объект изображается прямоугольником, как в случае представления класса, но его имя подчеркнуто. Наименование экземпляра размещено слева от двоеточия, а наиме­нование класса – с правой стороны.


Рис. 17. Представление объекта в UML

Прямоугольник – это условное обозначение класса в UML. Именем класса обычно является слово, начинающееся с прописной буквы. Оно располагается вверху прямоугольника. Если имя класса состоит из двух слов, объеди­ните их и второе слово тоже напишите с прописной буквы (например, Стиральная Машина, рис. 18).

Рис. 18. Обозначение класса в UML

Атрибуты

Атрибут – это свойство класса. Атрибуты описывают перечень значе­ний, в рамках которых указываются свойства объектов (т.е. экземпляров) этого класса. Класс может не иметь атрибутов или содержать любое их количество. Имена атрибутов, состоящие из одного слова, принято обо­значать строчными буквами. Если имя состоит из нескольких слов, то эти слова объединяются, и каждое слово, за исключением первого, начи­нается с прописной буквы. Список имен атрибутов начинается ниже ли­нии, отделяющей их от имени класса (рис. 19, 20).

UML позволяет отображать дополнительную информацию об атрибутах. В изобра­жении класса можно указать тип для каждого значения атрибута. Перечень возмож­ных типов включает строку, число с плавающей точкой, целое число, логическое зна­чение и другие перечислимые типы. Для отображения типа используется двоеточие, которое отделяет имя атрибута от его типа. Здесь же можно указать значение атрибута по умолчанию. На рис. 21 показан этот способ задания атрибутов.

Рис. 20. Значения атрибутов класса

brandName: String = "Laundatorium"

modelName: String

serialNumber: String

capacity: Integer

Рис. 21. Типы атрибутов и значения по умолчанию

Перечислимый тип представляет собой информацию, заданную списком именованных значений. Логический тип также является перечислимым, по­тому что он состоит из значений «истина» и «ложь». Можно определить свои собственные перечислимые типы (например, Состояние), образованные из значений «твердое», «жидкое» и «газообразное».

Операции

Операция – это то, что может выполнять класс, либо то, что вы (или другой класс) можете выполнять над данным классом. Подобно имени атрибута, имя операции записывается строчными буквами, если это одно слово. Если имя состоит из нескольких слов, они соединяются, и все слова, кроме первого, пишутся с прописной буквы. Список операций на­чинается ниже линии, отделяющей операции от атрибутов (рис. 22).

Помимо дополнительной информации об атрибутах, можно отобразить дополнительную информацию об операциях. В скобках, следующих за именем операции, можно указать параметр операции и его тип. Один из типов операций, функция, по окончании работы возвращает значение. В этом случае можно указать возвращаемое значение и его тип.

Перечисленные фрагменты информации об операции носят название сигнатуры операции. На рис. 23 представлены операции класса и ее сигнатура .

Рис. 22. Операции класса и их сигнатуры

addClothes(C:String)

removeClothes(С:String)

addDetergent(D:Integer)

turnOn():Boolean

Рис. 23. Сигнатуры операций класса

Если имеющийся список атрибутов и операций слишком велик, можно уточнить информацию с помощью стереотипа. Стереотип – это механизм расширения UML, позволяющий создавать новые элементы с учетом особенностей решаемой задачи. Имя стереотипа заключается в две пары угловых скобок. В списке атрибутов стереотип можно использовать в качестве заголовка определенного подмножества атрибутов (рис. 24).

Стереотип является гибкой конструкцией, которую можно использовать по-разному. Например, если разместить его над именем класса, то можно ука­зать дополнительную информацию о роли этого класса.

Рис. 24. Задание стереотипов

Обязанности и ограничения

На изображении класса можно указать и другую информацию о нем. В об­ласти, расположенной ниже списка операций, можно привести обязанно­сти класса. Обязанность – это описание выполняемой классом функции, для которой и предназначены его атрибуты и операции. Стиральная маши­на должна принять на входе грязное белье и выдать чистое на выходе.

На изображении класса его обязанности перечисляются ниже области операций (рис. 25).

«идентификационные данные»

«данные о машине»

«для белья»

«для машины»

Обязанность:

взять грязное белье на входе

и выдать чистое

на выходе

Рис. 25. Обязанности класса

Главное заключается в том, чтобы наиболее точно описать класс, поэтому включение обязанностей является неформальным способом исключить двусмысленность описания.

Более формальным путем решения задачи является добавление ограниче­ний в виде произвольного текста, заключенного в фигурные скобки. Этот текст задает одно или несколько правил класса, к которому он относится. Предположим, для класса WashingMachine нужно указать, что емкость барабана может составлять только 16, 18 или 20 фунтов (и таким образом «ограничить» атрибут емкости). Тогда рядом с изображением класса нужно написать (capacity = 16 или 18 или 20 фунтов). На рис. 26 показано, как это сделать.

Рис. 26. Ограничения классов

Комментарии

Помимо атрибутов, операций, обязанностей и ограничений, дополнительную ин­формацию о классе можно представить в виде комментариев, присоединенных к классу.

Комментарии обычно связаны с атрибутами и операциями. На рис. 27 приведен комментарий, ссылающийся на правительственный Стандарт по формированию номеров изделий для объектов класса WashingMachine.

Рис. 27. Типы атрибутов и значения по умолчанию

Комментарий наряду с текстом может содержать также и графические объекты.

Недостающая информация – это взаимодействие классов между собой. Если взглянуть на модель (рис. 28), то можно заметить отсутствие связи игрока с мячом. Из самой модели не понятно, как игроки образуют команду или как происходит игра. Сконструи­рован лишь список терминов, но не «снимок» предметной области.

Рассмотрим связи между классами, позволяющие дополнить карти­ну предметной области.

Ассоциации

Если классы концептуально взаимодействуют друг с другом, то такое взаимодействие называется ассоциацией. Исходная модель игры в баскетбол содержит несколько подобных примеров. Рассмотрим одну ассоциацию – между игроком и командой. Ее можно охарактеризовать фразой «игрок играет в ко­манде» и отобразить в виде соединяющей два класса линии, указав имя ассо­циации (играет в) прямо над этой линией. Для наглядности с помощью за­крашенного треугольника указывается направление взаимосвязи. На рис. 28 показано, как изобразить ассоциацию «Играет в» между игроком и командой.

Рис. 28. Ассоциация между классами

Когда один класс ассоциируется с другим, каждый из них играет свою роль в этой ассоциации. Такие роли можно показать на диаграмме под линией ассоциации возле обозначения класса, выполняющего соответствующую роль. В ассоциации между профессиональным игроком и командой эти роли носят названия «наемный работник» и «наниматель». На рис. 29 показано, как изображать эти роли.

Рис. 29. Роль класса в ассоциации

Ассоциация может работать в другом направлении: команда нанимает игроков. Обе ассоциации можно показать на одной диаграмме, сопровождая их закрашенным треугольником соответствующей ориентации (рис. 30).

Рис. 30. Две ассоциации между классами

Ассоциации могут быть более сложными, чем просто связь одного класса с другим. Если рассмотреть таких игроков команды, как защитники, нападающие и центровые, то при построении их ассоциаций с классом Команда получим диаграмму, изобра­женную на рис. 31.

Рис. 31. Ассоциации нескольких классов с одним

Ограничения ассоциаций

Иногда ассоциация между двумя классами должна удовлетворять некоторому пра­вилу. Это правило заключается в размещении ограничения возле линии ассоциации. Например, Банковский Служащий обслуживает клиентов по очереди. Этот факт отра­жается в модели с помощью фразы {по очереди} в фигурных скобках возле класса Клиент – для отражения ограничения (рис. 32).

Рис. 32. Ограничения на ассоциацию

Другой тип ограничения представляется отношением ИЛИ, которое обозначается с помощью пунктирной линии, соединяющей две линии ассоциаций с надписью {или}. Модель на рис. 33 показывает студента, выбирающего бюджетную или ком­мерческую форму обучения.

Рис. 33. Отношение ИЛИ между двумя ассоциациями

Связи

Ассоциация (как и класс) характеризуется наличием экземпляров. Если предста­вить себе конкретного игрока, играющего в конкретной команде, отношение «Играет в» называется связью , которую изображают в виде линии, соединяющей два объекта. Имя этой связи, как и имя объекта, подчеркивается (рис. 34).

Рис. 34. Связь как элемент ассоциации

Кратность

Ассоциация между объектами Игрок и Команда предполагает, что два класса находятся в отношении «один к одному». Здравый смысл подсказывает, что это не единственный ва­риант взаимосвязи. В баскетбольной команде пять человек, не считая запасных игроков. Ассоциация «Включает» должна учитывать этот факт. С другой стороны, игрок может играть только в одной команде, что должно учитываться в ассоциации «Играет в».

Рис. 35. Кратность связи

Приведенные отношения являются примерами разной кратности, кото­рая означает количество объектов одного класса, связанных с одним объек­том другого. Чтобы представить это количество на диаграмме, опреде­ленное число можно поместить над линией ассоциации возле соответст­вующего класса, как это сделано на рис. 35.

Рис. 36. Возможные значения кратности

В этом примере приведен только один из вариантов кратности. Возможны также и другие значения кратности. Один класс может быть связан с другим различными спосо­бами: «один к одному», «один ко многим», «один к нескольким», «один к ограниченному интервалу» (например, «один к 5..10»), «один к заданному количеству» (как в рассматриваемом примере) или «один к набору» (например, «один к 9 или 10»).

Для представления понятия «много» в UML используется символ звездочки (*). Логическое ИЛИ передается двумя обозначениями: с помощью двух точек (1. . *), что означает «один или более», или запятой (5,10), что означает «5 или 10». На рис. 36 показаны изображения возможных значений кратности.

Если класс А находится в отношении «один к 0 или 1» с классом Б, то по­следний называется необязательным для класса А.

Квалификатор ассоциации

Если кратность ассоциации описывается отношением «один ко многим», возника­ет проблема поиска. Если объект одного класса для выполнения отведенной ему роли в ассоциации должен выбрать конкретный объект другого класса, то он может сделать это на основе некоторого заданного атрибута. Этот атрибут обычно представляет со­бой идентификатор, а точнее, числовой идентификатор. Когда вы резервируете место в гостинице, вам присваивается номер заказа. Если нужно узнать о наличии зарезерви­рованного места, необходимо сообщить номер заказа.

В UML идентифицирующая информация называется квалификатором. Он обозначается небольшим прямоугольником, который прилегает к обозначе­нию класса, выполняющего поиск (рис. 37). Такое изображение позволяет эффективно свести кратность «один ко многим» к случаю «один к одному».

Рис. 37. Квалификатор ассоциации

Рефлексивные ассоциации

Иногда класс находится в ассоциации с самим собой. Этот вариант отношения, названный рефлексивной ассоциацией, может возникнуть в том случае, если объекты класса выполняют несколько ролей. Человек в машине может быть пассажиром или водителем. В роли водителя он везет одного или нескольких пассажиров (или не везет никого). На диаграмме этот случай отображается с помощью линии ассоциации, ве­дущей от прямоугольника класса к этому же прямоугольнику. На линии ассоциации, как и ранее, обозначаются роли, имя ассоциации, ее направление и кратность. При­мер такой ассоциации представлен на рис. 38.

Рис. 38. Рефлексивная ассоциация

Наследование и обобщение

Одним из признаков объектно-ориентированного подхода является выполнение од­ного из общеизвестных аспектов повседневной жизни: если вы знаете что-либо о неко­торой категории, то автоматически можете перенести эти знания на другие категории. Если известно, что объект относится к бытовой технике, то уже известно, что он имеет выключатель, имя производителя и номер изделия. Если известно, что объект является животным, то заранее ясно, что оно ест, спит, рождается, перемещается в пространстве. При более детальном анализе можно составить список других атрибутов и операций.

В рамках объектно-ориентированного подхода такое положение вещей называется наследованием. В UML для наследования используется термин обобщение. Один класс (дочерний или подкласс) может наследовать атри­буты и операции другого (родительского класса или суперкласса). Роди­тельский класс является более общим по отношению к дочернему.

В отношении обобщения можно сказать, что ребенок способен заменить ро­дителя. Другими словами, везде, где появляется родитель, может появить­ся и ребенок, а обратное утверждение неверно.

Иерархия наследования не ограничивается двумя уровнями: дочерний класс может вы­ступать в роли родительского класса для другого дочернего класса. Класс Млекопитающее является дочерним классом для класса Животное и родительским – для класса Лошадь.

В UML наследование отображается с помощью линии, которая соединяет родительский класс с дочерним. Конец линии, связанный с родительским классом, поме­чается не закрашенным треугольником, указывающим на родительский класс. Такая связь соответствует отношению – «является видом». Млекопитающее «является видом» жи­вотного, лошадь «является видом» млекопитающего. На рис. 39 представлены ранее описан­ная иерархия наследования и дополнительные классы. Обратите внимание на графи­ческое представление ситуации, когда родительский класс имеет несколько дочерних классов. Такая конструкция позволяет разгрузить диаграмму. Нужно отметить, что UML не за­прещает изображать все без исключения линии и треугольники и не требует указы­вать наследуемые атрибуты и операции в прямоугольниках подклассов, т.к. они уже представлены в обозначении суперкласса.

При моделировании наследования нужно убедиться, что дочерний класс удовлетворяет требованию «является видом» по отношению к родительско­му классу. Если связь классов описывается по-другому, нужно использовать другую ассоциацию.

Дочерний класс часто отличается наличием дополнительных атрибутов и опера­ций. Например, млекопитающее имеет шерсть и дает молоко, а такого атрибута и операции нет в классе Животное.

Класс может не иметь родителя. В этом случае он называется базовым или корневым классом. Класс также может не иметь дочернего класса, и тогда он называется листовым классом. Если класс имеет только одного родителя, то говорят об одиночном наследовании , а если несколько – о множественном наследовании.

Рис. 39. Иерархия наследования

Зависимости

Другой тип взаимосвязи характеризуется тем, что один класс использу­ет другой. Это называется зависимостью. Наиболее общим случаем за­висимости является использование одного класса в сигнатуре операции другого класса.

Предположим, нужно спроектировать систему, отображающую на экране монитора формы, заполняемые служащими. Для выбора заполняемой формы используется меню. В системе будут два класса: Система и Форма. В числе операций класса Система имеется операция отобразитьФорму (f: Форма). Отображаемая системой форма, вероятно, зависит от того, какой экземпляр класса Форма выбрал пользователь. В UML это отношение изо­бражается пунктирной линией, направленной от зависимого класса (рис. 40).

Рис. 40. Изображение зависимости

UML-диаграмма - это специализированный язык графического описания, предназначенный для объектного моделирования в сфере разработки различного программного обеспечения. Данный язык имеет широкий профиль и представляет собой открытый стандарт, в котором используются различные графические обозначения, чтобы создать абстрактную модель системы. UML создавался для того, чтобы обеспечить определение, визуализацию, документирование, а также проектирование всевозможных программных систем. Стоит отметить, что сама по себе UML-диаграмма не представляет собой язык программирования, но при этом предусматривается возможность генерации на ее основе отдельного кода.

Зачем она нужна?

Применение UML не заканчивается на моделировании всевозможного ПО. Также данный язык активно сегодня используется для моделирования различных бизнес-процессов, ведения системного проектирования, а также отображения организационных структур.

С помощью UML разработчики программного обеспечения могут обеспечить полное соглашение в используемых графических обозначениях, чтобы представить общие понятия, такие как: компонент, обобщение, класс, поведение и агрегация. За счет этого достигается большая степень концентрации на архитектуре и проектировании.

Также стоит отметить, что есть несколько видов таких диаграмм.

Диаграмма классов

Диаграмма классов UML представляет собой статическую структурную диаграмму, предназначенную для описания структуры системы, а также демонстрации атрибутов, методов и зависимостей между несколькими различными классами.

Стоит отметить тот факт, что есть несколько точек зрения на построение таких диаграмм в зависимости от того, каким образом они будут использоваться:

  • Концептуальная. В данном случае диаграмма классов UML осуществляет описание модели определенной предметной области, и в ней предусматриваются только классы прикладных объектов.
  • Специфическая. Диаграмма используется в процессе проектирования различных информационных систем.
  • Реализационная. Диаграмма классов включает в себя всевозможные классы, которые непосредственно используются в программном коде.

Диаграмма компонентов

Диаграмма компонентов UML представляет собой полностью статическую структурную диаграмму. Предназначается она для того, чтобы продемонстрировать разбиение определенной программной системы на разнообразные структурные компоненты, а также связи между ними. Диаграмма компонентов UML в качестве таковых может использовать всевозможные модели, библиотеки, файлы, пакеты, исполняемые файлы и еще множество других элементов.

Диаграмма композитной/составной структуры

UML диаграмма композитной/составной структуры также является статической структурной диаграммой, но используется она для того, чтобы показать внутреннюю структуру классов. По возможности данная диаграмма может продемонстрировать также взаимодействие элементов, находящихся во внутренней структуре класса.

Подвидом их является UML-диаграмма кооперации, которая используется для демонстрации ролей, а также взаимодействия различных классов в границах кооперации. Они являются достаточно удобными в том случае, если нужно моделировать шаблоны проектирования.

Стоит отметить, что одновременно могут использоваться виды диаграмм UML классов и композитной структуры.

Диаграмма развертывания

Данная диаграмма используется для того, чтобы моделировать работающие узлы, а также всевозможные артефакты, которые на них были развернуты. В UML 2 на различных узлах осуществляется разворачивание артефактов, в то время как в первой версии разворачивались исключительно компоненты. Таким образом, диаграмма развертывания UML используется преимущественно ко второй версии.

Между артефактом и тем компонентом, который он реализует, формируется зависимость манифестации.

Диаграмма объектов

Данный вид позволяет увидеть полноценный или же частичный снимок создаваемой системы в определенный момент времени. На ней полностью отображаются все экземпляры классов конкретной системы с указанием текущих значений их параметров, а также связей между ними.

Диаграмма пакетов

Эта диаграмма носит структурный характер, и основным ее содержанием являются всевозможные пакеты, а также отношения между ними. В данном случае нет никакого жесткого разделения между несколькими структурными диаграммами, вследствие чего их использование чаще всего встречается исключительно для удобства, и никакого семантического значения в себе не несет. Стоит отметить, что различные элементы могут предоставлять другие UML диаграммы (примеры: пакеты и сами диаграммы пакетов).

Их использование осуществляется для того, чтобы обеспечить организацию нескольких элементов в группы по определенному признаку, чтобы упростить структуру, а также организовать работу с моделью данной системы.

Диаграмма деятельности

Диаграмма деятельности UML отображает разложение определенной деятельности на несколько составных частей. В данном случае понятием «деятельность» называется спецификация определенного исполняемого поведения в виде параллельного, а также координированного последовательного выполнения различных подчиненных элементов - вложенных типов деятельности и различных действий, объединенных потоками, идущими от выходов определенного узла к входам другого.

Диаграмма деятельности UML достаточно часто используются для того, чтобы моделировать различные бизнес-процессы, параллельные и последовательные вычисления. Помимо всего прочего ими моделируются всевозможные технологические процедуры.

Диаграмма автомата

Этот вид называется и несколько иначе - диаграмма состояний UML. Имеет представленный конечный автомат с простыми и композитными состояниями, а также переходами.

Конечный автомат представляет собой спецификацию последовательности различных состояний, через которые проходит определенный объект, или же взаимодействие в ответ на некоторые события своей жизни, а также ответные действия объекта на такие события. Конечный автомат, который использует диаграмма состояний UML, закрепляется за исходным элементом и используется для того, чтобы определить поведение его экземпляров.

В качестве аналогов таких диаграмм могут использоваться так называемые дракон-схемы.

Диаграммы сценариев использования

Диаграмма вариантов использования UML отображает на себе все отношения, которые возникают между актерами, а также различными вариантами использования. Главная ее задача - осуществлять собой полноценное средство, при помощи которого заказчик, конечный пользователь или же какой-нибудь разработчик сможет совместно обсуждать поведение и функциональность определенной системы.

Если диаграмма вариантов использования UML используется в процессе моделирования системы, то аналитик собирается:

  • Четко отделить моделируемую систему от ее окружения.
  • Выявить действующих лиц, пути их взаимодействия с данной системой, а также ожидаемый ее функционал.
  • Установить в глоссарии в качестве предметной области различные понятия, которые относятся к подробному описанию функционала данной системы.

Если разрабатывается в UML диаграмма использования, процедура начинается с текстового описания, которое получается при работе с заказчиком. При этом стоит отметить тот факт, что различные нефункциональные требования в процессе составления модели прецедентов полностью опускаются, и для них уже будет формироваться отдельный документ.

Коммуникации

Диаграмма коммуникации точно так же, как и диаграмма последовательности UML, является транзитивной, то есть выражает в себе взаимодействие, но при этом демонстрирует его разными способами, и при необходимости с нужной степенью точности можно преобразовать одну в другую.

Диаграмма коммуникации отображает в себе взаимодействия, которые происходят между различными элементами композитной структуры, а также ролями кооперации. Главным отличием ее от диаграммы последовательности является то, что на ней достаточно явно указываются отношения между несколькими элементами, а время не используется в качестве отдельного измерения.

Данный тип отличается абсолютно свободным форматом упорядочивания нескольких объектов и связей точно так же, как это осуществляется в диаграмме объектов. Если есть необходимость в том, чтобы поддерживать порядок сообщений при этом свободном формате, осуществляется их хронологическая нумерация. Чтение данной диаграммы начинается с изначального сообщения 1.0, и впоследствии продолжается по тому направлению, по которому осуществляется передача сообщений от одного объекта к другому.

В большинстве своем такие диаграммы демонстрируют точно такую же информацию, которую предоставляет нам диаграмма последовательности, однако из-за того, что здесь используется другой способ представления информации, определенные вещи на одной диаграмме становится гораздо проще определить, чем на другой. Также стоит отметить, что диаграмма коммуникаций более наглядно показывает, с какими элементами вступает во взаимодействие каждый отдельный элемент, в то время как диаграмма последовательности более ясно показывает, в каком порядке осуществляются взаимодействия.

Диаграмма последовательности

Диаграмма последовательности UML демонстрирует взаимодействия между несколькими объектами, которые упорядочиваются в соответствии с временем их проявления. На такой диаграмме отображается упорядоченное во времени взаимодействие между несколькими объектами. В частности, на ней отображаются все объекты, которые принимают участие во взаимодействии, а также полная последовательность обмениваемых ими сообщений.

Главными элементами в данном случае выступают обозначения различных объектов, а также вертикальные линии, отображающие течение времени и прямоугольники, предоставляющие деятельность определенного объекта или же выполнение им какой-либо функции.

Диаграмма сотрудничества

Данный тип диаграмм позволяет продемонстрировать взаимодействия между несколькими объектами, абстрагируясь от последовательности трансляции сообщений. Данный тип диаграмм в компактном виде отображает в себе абсолютно все передаваемые и принимаемые сообщения определенного объекта, а также форматы этих сообщений.

По причине того, что диаграммы последовательности и коммуникации представляют собой просто-напросто разный взгляд на одни и те же процедуры, Rational Rose предоставляет возможность создавать из диаграммы последовательности коммуникационную или же наоборот, а также осуществляет полностью автоматическую их синхронизацию.

Диаграммы обзора взаимодействия

Это диаграммы языка UML, которые относятся к разновидности диаграмм деятельности и включают в себя одновременно элементы Sequence и конструкции потока управления.

Стоит отметить тот факт, что данный формат объединяет в себе Collaboration и Sequence diagram, которые предоставляют возможность с разных точек зрения рассматривать взаимодействие между несколькими объектами в формируемой системе.

Диаграмма синхронизации

Представляет собой альтернативный вариант диаграммы последовательности, который явным образом демонстрирует изменение состояния на линии жизни с определенной шкалой времени. Может быть достаточно полезной в различных приложениях реального времени.

В чем преимущества?

Стоит отметить несколько преимуществ, которыми отличается UML диаграмма пользования и другие:

  • Язык является объектно-ориентированным, вследствие чего технологии описания результатов проведенного анализа и проектирования являются семантически близкими к методам программирования на всевозможных объектно-ориентированных языках современного типа.
  • При помощи данного языка система может быть описана практически с любых возможных точек зрения, и точно так же описываются различные аспекты ее поведения.
  • Все диаграммы являются сравнительно простыми для чтения даже после относительно быстрого ознакомления с его синтаксисом.
  • UML позволяет расширить, а также вводить собственные графические и текстовые стереотипы, что способствует его использованию не только в программной инженерии.
  • Язык получил достаточно широкое распространение, а также довольно активно развивается.

Недостатки

Несмотря на то что построение UML-диаграмм отличается массой своих плюсов, довольно часто их и критикуют за следующие недостатки:

  • Избыточность. В преимущественном большинстве случаев критики говорят о том, что UML является слишком большим и сложным, и зачастую это неоправданно. В него входит достаточно много избыточных или же практически бесполезных конструкций и диаграмм, причем наиболее часто подобная критика идет в адрес второй версии, а не первой, потому что в более новых ревизиях присутствует большее количество компромиссов «разработанных комитетом».
  • Различные неточности в семантике. По той причине, что UML определяется комбинацией себя, английского и OCL, у него отсутствует скованность, которая является присущей для языков, точно определенных техникой формального описания. В определенных ситуациях абстрактный синтаксис OCL, UML и английский начинают друг другу противоречить, в то время как в других случаях они являются неполными. Неточность описания самого языка одинаково отражается как на пользователях, так и на поставщиках инструментов, что в конечном итоге приводит к несовместимости инструментов из-за уникального способа трактовки различных спецификаций.
  • Проблемы в процессе внедрения и изучения. Все указанные выше проблемы создают определенные сложности в процессе внедрения и изучения UML, и в особенности это касается тех случаев, когда руководство заставляет инженеров насильно его использовать, в то время как у них отсутствуют предварительные навыки.
  • Код отражает код. Еще одним мнением является то, что важность имеют не красивые и привлекательные модели, а непосредственно рабочие системы, то есть код и есть проект. В соответствии с данным мнением есть потребность в том, чтобы разработать более эффективный способ написания программного обеспечения. UML принято ценить при подходах, компилирующих модели для регенерирования выполнимого или же исходного кода. Но на самом деле этого может быть недостаточно, потому что в данном языке отсутствуют свойства полноты по Тьюрингу, и каждый сгенерированный код в конечном итоге будет ограничиваться тем, что может предположить или же определить интерпретирующий UML инструмент.
  • Рассогласование нагрузки. Данный термин происходит из теории системного анализа для определения неспособности входа определенной системы воспринять выход иной. Как в любых стандартных системах обозначений, UML может представлять одни системы в более эффективном и кратком виде по сравнению с другими. Таким образом, разработчик больше склоняется к тем решениям, которые являются более комфортными для переплетения всех сильных сторон UML, а также других языков программирования. Данная проблема является более очевидной в том случае, если язык разработки не соответствует основным принципам объектно-ориентированной ортодоксальной доктрины, то есть не старается работать в соответствии с принципами ООП.
  • Пытается быть универсальным. UML представляет собой язык моделирования общего назначения, который старается обеспечить совместимость с любым существующим на сегодняшний день языком обработки. В контексте определенного проекта, для того, чтобы команда проектировщиков смогла добиться конечной цели, нужно выбирать применимые возможности этого языка. Помимо этого возможные пути ограничения сферы использования UML в какой-то определенной области проходят через формализм, который является не полностью сформулированным, а который сам представляет собой объект критики.

Таким образом, использование данного языка является актуальным далеко не во всех ситуациях.