Сайт о телевидении

Сайт о телевидении

» » Определение переменной состояния. Переменные состояния динамической системы

Определение переменной состояния. Переменные состояния динамической системы

Изучите теоретический материал по учебной литературе: ; и ответьте на следующие вопросы:

1. Какие переменные в электрической цепи обычно принимают за переменные состояния?

2. Сколько систем уравнений составляют при решении задачи методом переменных состояния?

3. Какие зависимости устанавливаются в первой и во второй системах уравнений при решении задачи методом переменных состояния?

4. Какая из двух систем является системой дифференциальных уравнений, алгебраических?

5. Какие способы используются для получения уравнений состояния и уравнений выходных параметров?

При расчете переходного процесса методом переменных состояния рекомендуется следующий порядок:

1. Выбрать переменные состояния. В предложенных для расчета схемах это напряжения на емкостных элементах и токи в индуктивных катушках .

2. Составить систему дифференциальных уравнений для первых производных от переменных состояния.

Для этого описать послекоммутационную схему с помощью законов Кирхгофа и решить ее относительно первых производных от переменных состояния и в зависимости от переменных , и источников э.д.с. (в предлагаемых схемах источник э.д.с. – единственный).

В матричной форме эта система дифференциальных уравнений 1-го порядка будет иметь вид:

, (8.1)

где – столбец производных , ;

Х – вектор - столбец переменных состояния.

В цепях второго порядка:

квадратная матрица порядка n , определяемая топологией электрической цепи и параметрами ее элементов. В цепях второго порядка эта матрица имеет порядок 2´2.

Матрица – прямоугольная матрица порядка , где n – порядок цепи.

Матрица – столбец – определяется источниками э.д.с. и источниками токов схемы и называется вектором входных величин .

3. Составить систему алгебраических уравнений для искомых переменных, которые называются выходными . Это токи в любых ветвях схемы (кроме тока ) и напряжения на любых элементах схемы (кроме напряжения ). Полученные алгебраические уравнения устанавливают связи между выходными переменными, с одной стороны, и переменными состояния и источниками напряжения и тока схемы – с другой. В матричной форме эта система алгебраических уравнений имеет вид

,

где – вектор выходных величин;

– матрицы, определяемые топологией электрической цепи, параметрами ее элементов и количеством искомых переменных.

Уравнениями состояния можно назвать любую систему уравнений, определяющих режим цепи. В более узком смысле - это система дифференциальных уравнений первого порядка, разрешенная относительно производных.

Методом переменных состояния назовем анализ цепи, основанный на решении уравнений состояния (первого порядка), записанных в форме Коши. Таким образом, метод переменных состояния - один из методов расчета прежде всего переходных процессов. Далее предполагается, что цепь имеет только независимые источники и не содержит индуктивных сечений и емкостных контуров. В противном случае составление уравнений становится намного сложнее.

Для линейной цепи с постоянными сосредоточенными параметрами ток каждой ветви, напряжение между выбранными выводами, заряд на обкладках конденсатора и т. д. всегда можно найти как решение составленного для этого тока, напряжения, заряда и т. д. дифференциального уравнения (например, исключением других токов и напряжений из системы уравнений Кирхгофа):

Введением переменных это уравнение сводится к эквивалентной системе дифференциальных уравнений первого порядка:

Здесь переменными, которые называются переменными состояния, служат переменная х и ее производные.

Как известно, переходный процесс в любой цепи, кроме ее параметров (значений r, L, С, М) и действующих источников , определяется независимыми начальными (t = 0) условиями - токами в индуктивных элементах и напряжениями на емкостных элементах , которые должны быть известны или рассчитаны. Через них выражаются искомые величины во время переходного процесса. Они же определяют энергетическое состояние цепи. Поэтому в качестве переменных состояния целесообразно выбирать токи и напряжения . Действующие источники можно назвать входными величинами , искомые величины - выходными . Для цепи с n независимыми токами и напряжениями должны быть заданы еще n независимых начальных условий.

Сокращенно дифференциальные уравнения состояния запишем в матричной форме так:

или короче

где X матрица-столбец (размера n x 1) переменных состояния (вектор переменных состояния); F - матрица-столбец (размера m x 1) ЭДС и токов источников (внешних возмущений); А - квадратная матрица порядка n (основная); В - матрица размера п х m (матрица связи). Элементы этих матриц определяются топологией и параметрами цепи.

Для выходных величин (если определяются не токи в индуктивных и напряжения на емкостных элементах) в матричной форме система алгебраических уравнений имеет вид

или короче

где W - матрица-столбец (размера l x 1); M - матрица связи (размера l x n); N - матрица связи (размера l x m).

Элементы матриц зависят от топологии и параметров цепи. Для уравнений состояния разработаны и машинные алгоритмы формирования на основе топологии и значений параметров.

Уравнения в матричной форме (14.91) можно составить, например, с применением метода наложения. Для получения зависимостей между производными переменных состояния, т. е. и переменными состояния , а также ЭДС и токами источников, действующими в цепи, будем считать, что переменные состояния заданы. Рассматриваемую цепь, например на рис. 14.41, а, заменим после коммутации эквивалентной (рис. 14.41,6), у которой каждый заданный ток представлен источником тока , а каждое заданное напряжение - источником напряжения (ЭДС) . Применив метод наложения (положительные направления выбраны), запишем напряжения и токи (сначала учитываем действие источников затем и далее источников, действующих в цепи):


Так как , то

Конечно, уравнения (14.93) можно получить и из уравнений Кирхгофа исключением токов и напряжений ре-зистивных элементов. Однако совместное решение уравнений Кирхгофа с увеличением числа ветвей цепи становится все более громоздким.

Уравнения состояния можно формировать и сразу в матричной форме.

Если источников тока и ЭДС нет, т. е. F = 0, то уравнения (14.91) упрощаются

и характеризуют свободные процессы в цепи. Решение запишем в виде

где X (0) - матрица-столбец начальных значений переменных состояния; - матричная экспоненциальная функция.

Подставив (14.94) в (14.91в), убедимся, что получается тождество.

При решение уравнения (14.91) представим в виде

где Ф(t) - некоторая матричная функция цепи. После дифференцирования (14.95) получим

Сравним (14.96) с (14.91а)

и, умножив на , после интегрирования найдем, что

где q - переменная интегрирования, или

Подставим это выражение в (14.95):

В частности, при t = 0 имеем

Следовательно, решение для переменных состояния записывается в виде

(реакция цепи равна сумме реакций при нулевом входе и при нулевом начальном состоянии).

Это решение можно получить и применив операторный метод расчета переходных процессов, рассматриваемый в разделе .

Выходные величины можно найти по (14.92).

Если состояние цепи задано не при t = 0, а при , то в (14.97) первое слагаемое записывается так: , а нижний предел интеграла не 0, а t.

Главная трудность расчета заключается в вычислении матричной экспоненциальной функции. Один из путей такой: сначала находим собственные значения l матрицы А, т. е. корни уравнения

где 1 - единичная матрица порядка n, которые определяются из уравнения

где - элементы матрицы А.

Собственные значения совпадают с корнями характеристического уравнения цепи.

Матричная экспонента, аргумент которой - матрица Аt, имеющая порядок n, представима конечным числом n слагаемых. Если собственные значения различны, то

где - функции времени; и т. д.

Наконец, определив из (14.100), по (14.99) находим и затем X (t) по (14.97).

Пример 14.6. Определить ток в цепи на рис. 14.42 после коммутации при .

Решение. Выбираем положительные направления токов в индуктивных элементах, т. е. переменных состояния, и тока . Независимые начальные условия: . Дифференциальные уравнения цепи

Исключив ток , получим уравнения относительно производных переменных состояния:

т. е. согласно (14.91)

и матрица-столбец начальных значений

Вычислим собственные значения; по (14.98)

откуда . Если приравнять нулю главный определитель уравнений с переменными состояния, то получим те же значения .

Находим коэффициенты ак по (14.100), т. е. из системы уравнений

Значения тока вычисленные в моменты секунд для интервала времени 0 - 0,1 с, в конце которого ток отличается от установившегося менее чем на 1,5%, приведены в табл. 14.1. При вычислениях цифры записывались с 8 разрядами, а во всех приведенных в примере формулах и в табл. 14.1 указаны с округлением.

Таблица 14.1

Если среди n собственных значений матрицы А есть q кратных , то для n - q разных корней составляется система (14.100), а для q кратных уравнения получаются после вычисления первых q - 1 производных по от обеих частей уравнения с корнем , т. е.

Метод переменных состояния (называемый иначе методом пространства состояний) основывается на двух уравнениях, записываемых в матричной форме.

Структура первого уравнения определяется тем, что оно связывает матрицу первых производных по времени переменных состояния с матрицами самих переменных состояния и внешних воздействий и, в качестве которых рассматриваются э. д. с. и токи источников.

Второе уравнение по своей структуре является алгебраическим и связывает матрицу выходных величин у с матрицами переменных состояния и внешних воздействий и.

Определяя переменные состояния, отметим следующие их свойства

1. В качестве переменных состояния в электрических цепях следует выбирать токи в индуктивностях и напряжения на емкостях, причем не во всех индуктивностях и не на всех емкостях, а только для независимых, т. е. таких, которые определяют общий порядок системы дифференциальных уравнений цепи.

2. Дифференциальные уравнения цепи относительно переменных состояния записываются в канонической форме, т. е. представляются решенными относительно первых производных переменных состояния по времени.

Отметим, что только при выборе в качестве переменных состояния токов к в независимых индуктивностях и напряжений на независимых емкостях первое уравнение метода переменных состояния будет иметь указанную выше структуру.

Если в качестве переменных состояния выбрать токи в ветвях с емкостями или токи в ветвях с сопротивлениями, а также напряжения на индуктивностях или напряжения на сопротивлениях то первое уравнение метода переменных состояния также можно представить в канонической форме, т. е. решенным относительно первых производных по времени этих величин. Однако структура их правых частей не будет соответствовать данному выше определению, так как в них будет еще входить матрица первых производных от внешних воздействий

3. Число переменных состояния равно порядку системы дифференциальных уравнений исследуемой электрической цепи.

4. Выбор в качестве переменных состояния токов и напряжений удобен еще и потому, что именно эти величины согласно законам коммутации (§ 13-1) в момент коммутации не изменяются скачком, т. е. одинаковы для моментов времени

5. Переменные состояния потому так и называются, что в каждый момент времени задают энергетическое состояние электрической цепи, так как последнее определяется суммой выражений

6. Представление уравнений в канонической форме очень удобно при их решении на аналоговых вычислительных машинах и для программирования при их решении на цифровых вычислительных машинах. Поэтому такое представление имеет очень важное значение при решении этих уравнений с помощью средств современной вычислительной техники.

Покажем на примере цепи рис. 14-14, как составляются уравнения по методу переменных состояния.

Сначала получим систему дифференциальных уравнений, соответствующую первому матричному уравнению метода, а затем запишем ее в матричной форме. Алгоритм составления этих уравнений для любой электрической цепи следующий. Сначала записываются урэвнения по законам Кирхгофа или по методу контурных токов; затем выбираются переменные состояния и путем дифференцирования исходных уравнений и исключения других переменных получаются

чаются уравнения метода переменных состояния. Этот алгоритм очень напоминает применяемый в классическом методе расчета пере ходных процессов для получения одного результирующего дифференциального уравнения относительно одного из переменных

В частных случаях, когда в цепи нет емкостных контуров т. е. контуров, все ветви которых содержат емкости, и нет узлов с присоединенными ветвями, в каждой из которых включены индуктивности, может быть указан и другой алгоритм. Не останавливая на нем, отметим лишь, что он основан на замене емкостей источниками э. д. с., индуктивностей - источниками тока и применении метода наложения.

Для цепи рис. 14-14 по законам Кирхгофа

(14-36)

Определяя из первого уравнения, подставляя в третье, заменяя и представляя полученное дифференциальное уравнение в канонической форме относительно получаем:

Решая второе уравнение (14-36) относительно , заменяя согласно первому уравнению (14-36) и подставляя , получаем:

Складывая почленно (14-38) с умноженным на уравнением (14-37) и определяя из полученного результата , получаем:

Перепишем уравнения (14-39) и (14-37) в матричной форме:

(14-4°)

где для рассматриваемой цепи имеем:

(14-42а)

В общем случае первое уравнение метода переменных состояния в матричной форме запишется в виде

(14-43)

Матрицы А и В в линейных цепях зависят только от параметров цепи , т. е. являются постоянными величинами. При этом А - квадратная матрица порядка и называется основной матрицей цепи, матрица В - в общем случае прямоугольная, размера называется матрицей связи между входом цепи и переменными состояния, матрицы - матрицы столбцы или векторы переменных состояния (размера и внешних возмущений (размера )

В рассматриваемом примере матрица В получилась квадратной второго порядка, так как число переменных состояния равно числу внешних возмущении

Перейдем к составлению второго уравнения метода В качестве выходных можно выбрать любые из величин. Возьмем, например, в качестве выходных три величины

Значения их запишутся через переменные состояния и внешние возмущения непосредственно из уравнений (14 36)

(14-44)

или в матричнои форме

или сокращенно

(14-46)

где для рассматриваемой цепи

а в общем случае второе уравнение метода переменных состояния

Матрицы С и D зависят только от параметров цепи . В общем случае - это прямоугольные матрицы соответственно размеров , причем С называется матрицей связи переменных состояния с выходом цепи, матрицей непосредственной связи входа и выхода цепи (или системы).

Для ряда физических систем D является нулевой матрицей и второй член в (14-48) обращается в нуль, так как нет непосред. ственной связи между входом и выходом системы.

Если в качестве переменных состояния взять, например, ток i и напряжение и представить дифференциальные уравнения относительно них в канонической форме, то (опуская все промежуточные преобразования) первое из уравнений метода в матричной форме будет иметь вид:

Таким образом, действительно, первое уравнение метода переменных состояния будет в матричной форме иметь вид (14-43) только при выборе в качестве переменных состояния тока и напряжения

Переходя к решению матричного дифференциального уравнения (14-43), прежде всего отметим, что оно особенно упрощается, если квадратная основная матрица А порядка является диагональной. Тогда все линейных дифференциальных уравнений (14-43) развязаны, т. е. производные переменных состояния зависят каждая только от своей переменной состояния.

Рассмотрим сначала решение линейного неоднородного матричного дифференциального уравнения (14-43) операторным методом Для этого преобразуем его по Лапласу:

причем матрица-столбец начальных значений переменных состояния, т. е.

(14-53)

которые в момент коммутации не изменяются скачком, заданы и равны их значениям в момент

Перепишем (14-51):

где - единичная матрица порядка .

Для получения матрицы изображений переменных состояния умножим слева обе части (14-54) на обратную матрицу

Переходя обратно к оригиналам при помощи обратного преобразования Лапласа, получаем:

Из операторного метода известно, что

По аналогии, записывая обратное преобразование Лапласа в матричной форме, будем иметь:

где - переходная матрица состояния системы, называемая иначе фундаментальной.

Таким образом, находим оригинал первого слагаемого правой части (14-56)

Обратная матрица определяется делением присоединенной или взаимной матрицы на определитель основной матрицы:

где уравнение

(14-61)

представляет собой характеристическое уравнение исследуемой цепи.

Оригинал второго слагаемого правой части (14-56) находится при помощи теоремы свертки в матричной форме

если положить

Тогда на основании (14-62)-(14-64)

и общее решение дифференциального неоднородного матричного уравнения (14-43) на основании (14-56), (14-59) и (14-65) будет иметь вид:

(14-66)

Первое слагаемое правой части (14-66) представляет собой значения переменных состояния или реакцию цепи при нулевом входе, т. е. Иначе говоря, оно представляет первую составляющую свободных процессов в цепи обусловленную ненулевыми начальными значениями переменных состояния цепи, и поэтому является решением уравнения . Второе слагаемое представляет собой составляющую реакции цепи при т. е. при нулевом состоянии цепи.

Нулевым состоянием цепи назовем такое ее состояние, когда начальные значения всех переменных состояния равны нулю. Иначе говоря, второе слагаемое (14-66) представляет собой сумму при принужденной реакции цепи возникающей под влиянием внешних воздействий и второй составляющей свободных процессов

Равенство (14-66) означает, что реакция цепи равна сумме реакций при нулевом входе и нулевом состоянии.

На основании (14-48) и (14-66) для выходных величин имеем.

Если состояние цепи задано не в момент , а в момент , то равенства (14-66) и (14-67) обобщаются:

(14-68)

Пример 14-5. Для разветвленной цепи второго порядка составлены уравнения состояния

при ненулевых начальных условиях и при единственном имеющем вней источнике э. д. с.

Найти переменные состояния .

Решение. Перепишем уравнения состояния в матричной форме

Найдем сначала первые свободные составляющие переменных состояния при нулевом входе Для этого составим матрицу

Для нахождения присоединенной или взаимной матрицы заменим в предыдущей матрице каждый элемент его алгебраическим дополнением Получим матрицу

Транспонируем ее, найдя присоединенную или взаимную матрицу:

Найдем определитель матрицы

На основании (14-60) обратная матрица будет равна:

Подвергнем ее обратному преобразованию Лапласа с учетом того, что для этого нужно подвергнуть обратному преобразованию Лапласа каждый ее элемент. На основании (14-73) получим переходную матрицу состояния цепи

Например,

Для переходной матрицы состояния системы получим:

Для первых свободных составляющих переменных состояния будем иметь

Суммируя полученные результаты, находим искомые значения переменных состояния:

Так как решение уравнения (14-43) было получено выше и дано формулой (14-66), то для проверки правильности решения (14-66) и вычисления с его помощью матрицы переменных состояния можно сначала непосредственной подстановкой (14-66) в (14-43) убедиться, что последнее при этом обращается в тождество. Для этого нужно только сначала вычислить дифференцируя (14-66). При этом получаем:

Теперь нетрудно непосредственно убедиться, что (14-66) действительно является решенпем матричного дифференциального уравненения

Отметим, что переходная матрица состояния системы ем позволяет найти в пространстве состояний, т. е. в пространстве, число измерений которого равно числу компонент вектора переменных состояния перемещение, начинающееся из некоторого начального положения (при или при ) причем вектор содержит значительную информацию, так как одновременно описывает все переменные состояния, т. е. функции времени .

Анализ и синтез систем управления во временной области основан на понятии состояния системы. Состояние системы-это совокупность таких переменных, знание которых, наряду со входными функциями и уравнениями, описывающими динамику системы, позволяет определить ее будущее состояние и выходную переменную. Для динамиче­ской системы ее состояние описывается набором переменных состояния [ЛГ[(?), X2(t) Х„(0]- Это такие переменные, которые определяют будущее поведение систе­мы, если известно ее текущее состояние и все внешние воздействия. Рассмотрим систему, изображенную на рис. 3.1, где^,^) иy2(t) есть выходные переменные, a ux(t) и u2(t)- вход­ные переменные. Для ЭТОЙ системы переменные (*[, х2,..., хп) имеют следующий смысл: если в момент времени t0 известны начальные значения [^(fo), x2(t0), ...,xn(tQ)] и входные сигналы щ(і) и u2(f) для t > t0, то этой информации достаточно, чтобы определить будущие значения всех переменных состояния и выходных переменных.

Переменные состояния описывают поведение системы в будущем, если извест­ны текущее состояние, внешние воздействия и уравнения динамики системы.

Общий вид динамической системы приведен на рис. 3.2.

Простым примером переменной состояния может служить положение выключателя электролампочки. Выключатель может быть в одном из двух положений - «включено» или «выключено», поэтому его состоянию соответствует одно из двух возможных значе­ний. Если мы знаем, в каком состоянии (положении) находится выключатель в момент времени t0, и если мы прикладываем к нему воздействие, то мы всегда можем определить будущее состояние элемента.

xx(t)=y(i) И x2(t) = -

Дифференциальное уравнение, описывающее поведение системы, обычно записывается в виде

Эти уравнения по сути описывают поведение системы в терминах скорости изменения каждой переменной состояния.

Другим примером системы, которую можно описать переменными состояния, яв­ляется ТЛС-цепь, изображенная на рис. 3.4.

Состояние системы характеризуется двумя переменными (Х[, х2) где хх есть напряжение на конденсаторе vc(/), и х2 - ток через ин­дуктивность //(/). Выбор этих переменных интуитивно понятен, т. к. общая энергия, за­пасенная в цепи, непосредственно зависит от них, как

E=(l/2)Z,/£ +(1/2)Cvc2. (3.5)

Таким образом, Х](/0) и x2(t0) несут информацию о полной начальной энергии в цепи и, сле­довательно, о состоянии системы в момент t = /0. Для описания пассивной ЛіС-цепи число необходимых переменных состояния равно числу независимых элементов, накапливаю­щих энергию. Используя закон Кирхгофа для токов, запишем дифференциальное уравне­ние первого порядка, определяющее скорость изменения напряжения на конденсаторе:

іс ~С - у - = u(t)~ і і (3.6)

Источник4^ тока

Рис. 3.4. RLC-цепь

Закон Кирхгофа для напряжений, примененный к правому контуру, дает уравнение, опре­деляющее скорость изменения тока через индуктивность:

L^=-Ri, + vc. (3.7)

Выход системы определяется линейным алгебраическим уравнением:

Уравнения (3.6) и (3.7) мы можем переписать в виде системы двух дифференциальных уравнений относительно переменных состояния хх и х2:

*L-lx --Х Г3 9Ї

Тогда выходной сигнал будет равен

^i(0 = v0(0 = R х2. (3.10)

Используя уравнения (3.8) и (3.9), а также начальные условия , мы сможем определить будущее поведение системы и ее выходную переменную.

Переменные состояния, описывающие систему, не являются единственными, и все­гда можно выбрать альтернативную комбинацию таких переменных. Например, для сис­темы второго порядка, такой как масса-пружина или RLC-цепь, в качестве переменных состояния можно выбрать любые две линейно независимые комбинации xx{t) и x2(t). Так, для RLC-цепи мы могли бы принять за переменные состояния два напряжения, vc(/) и v; (/), где vL - напряжение на индуктивности. Тогда новые переменные состояния, х, их"2, будут связаны со старыми переменными хх и х2 соотношениями:

х =vc =х, (3.11)

х* = Vj =vc - RiL =х, - Rx2. (3.12)

Уравнение (3.12) связывает напряжение на индуктивности со старыми переменными состояния vc и iL. В реальной системе всегда можно образовать несколько комбинаций пе­ременных состояния, которые определяют энергию, запасенную в системе, и, следовате­льно, адекватно описывают ее динамику. На практике в качестве переменных состояния часто выбирают такие физические переменные, которые легко могут быть измерены.

Альтернативный метод получения модели в переменных состояния основан на испо­льзовании графа связей. Такие графы могут быть построены для электрических, механи­ческих, гидравлических и тепловых элементов или систем, а также для комбинаций эле­ментов различных типов. Графы связей позволяют получить систему уравнений относи­

тельно переменных состояния.

Переменные состояния характеризуют динамику системы. Инженера в первую оче­редь интересуют физические системы, в которых переменными являются напряжения, токи, скорости, перемещения, давления, температуры и другие аналогичные физические величины. Однако понятие состояния применимо к анализу не только физических, но так­же биологических, социальных и экономических систем. Для этих систем понятие состоя­ния не ограничивается рамками представлений об энергии и подходит к переменным со­стояния в более широком смысле, трактуя их как переменные любой природы, описываю­щие будущее поведение системы.

Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости или (и) переходную функцию по напряжению , можно найти реакцию цепи на воздействие произвольной формы. В основе метода – метода расчета с помощью интеграла Дюамеля – лежит принцип наложения.

При использовании интеграла Дюамеля для разделения переменной, по которой производится интегрирование, и переменной, определяющей момент времени, в который определяется ток в цепи, первую принято обозначать как , а вторую - как t.

Пусть в момент времени к цепи с нулевыми начальными условиями (пассивному двухполюснику ПД на рис. 1) подключается источник с напряжением произвольной формы. Для нахождения тока в цепи заменим исходную кривую ступенчатой (см. рис. 2), после чего с учетом, что цепь линейна, просуммируем токи от начального скачка напряжения и всех ступенек напряжения до момента t, вступающих в действие с запаздыванием по времени.

В момент времени t составляющая общего тока, определяемая начальным скачком напряжения , равна .

В момент времени имеет место скачок напряжения , который с учетом временного интервала от начала скачка до интересующего момента времени t обусловит составляющую тока .

Полный ток в момент времени t равен, очевидно, сумме всех составляющих тока от отдельных скачков напряжения с учетом , т.е.

Заменяя конечный интервал приращения времени на бесконечно малый, т.е. переходя от суммы к интегралу, запишем

. (1)

Соотношение (1) называется интегралом Дюамеля.

Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости будет входить переходная функция по напряжению.

Последовательность расчета с использованием
интеграла Дюамеля

В качестве примера использования интеграла Дюамеля определим ток в цепи рис. 3, рассчитанный в предыдущей лекции с использованием формулы включения.

Исходные данные для расчета: , , .

Полученный результат аналогичен выражению тока, определенному в предыдущей лекции на основе формулы включения.

Метод переменных состояния

Уравнения элекромагнитного состояния – это система уравнений, определяющих режим работы (состояние) электрической цепи.

Метод переменных состояния основывается на упорядоченном составлении и решении системы дифференциальных уравнений первого порядка, которые разрешены относительно производных, т.е. записаны в виде, наиболее удобном для применения численных методов интегрирования, реализуемых средствами вычислительной техники.

Количество переменных состояния, а следовательно, число уравнений состояния равно числу независимых накопителей энергии.

К уравнениям состояния выдвигаются два основных требования:

Независимость уравнений;

Возможность восстановления на основе переменных состояния (переменных, относительно которых записаны уравнения состояния) любых других переменных.

Первое требование удовлетворяется специальной методикой составления уравнений состояния, которая будет рассмотрена далее.

Для выполнения второго требования в качестве переменных состояния следует принять потокосцепления (токи в ветвях с индуктивными элементами) и заряды (напряжения) на конденсаторах. Действительно, зная закон изменения этих переменных во времени их всегда можно заменить источниками ЭДС и тока с известными параметрами. Остальная цепь оказывается резистивной, а следовательно, всегда рассчитывается при известных параметрах источников. Кроме того, начальные значения этих переменных относятся к независимым, т.е. в общем случае рассчитываются проще других.

При расчете методом переменных состояния, кроме самих уравнений состояния, связывающих первые производные и с самими переменными и и источниками внешних воздействий – ЭДС и тока, необходимо составить систему алгебраических уравнений, связывающих искомые величины с переменными состояния и источниками внешних воздействий.

Таким образом, полная система уравнений в матричной форме записи имеет вид

; (2)
. (3)

Здесь и - столбцовые матрицы соответственно переменных состояния и их первых производных по времени; - матрица-столбец источников внешних воздействий; - столбцовая матрица выходных (искомых) величин; - квадратная размерностью n x n (где n – число переменных состояния) матрица параметров, называемая матрицей Якоби; - прямоугольная матрица связи между источниками и переменными состояния (количество строк равно n, а столбцов – числу источников m); - прямоугольная матрица связи переменных состояния с искомыми величинами (количество строк равно числу искомых величин к, а столбцов – n); - прямоугольная размерностью к x m матрица связи входа с выходом.

Начальные условия для уравнения (2) задаются вектором начальных значений (0).

В качестве примера составления уравнений состояния рассмотрим цепь на рис. 4,а, в которой требуется определить токи и .

По законам Кирхгофа для данной цепи запишем

; (4)
; (5)

Матричное уравнение вида (3) вытекает из соотношений (4) и (6):

С D

Вектор начальных значений (0)= .

Непосредственное использование законов Кирхгофа при составлении уравнений состояния для сложных цепей может оказаться затруднительным. В этой связи используют специальную методику упорядоченного составления уравнений состояния.

Методика составления уравнений состояния

Эта методика включает в себя следующие основные этапы:

1. Составляется ориентированный граф схемы (см. рис. 4,б), на котором выделяется дерево, охватывающее все конденсаторы и источники напряжения (ЭДС). Резисторы включаются в дерево по необходимости: для охвата деревом всех узлов. В ветви связи включаются катушки индуктивности, источники тока и оставшиеся резисторы.

2. Осуществляется нумерация ветвей графа (и элементов в схеме), проводимая в следующей последовательности: первыми нумеруются участки графа (схемы) с конденсаторами, затем резисторами, включенными в дерево, следующими нумеруются ветви связи с резисторами и, наконец, ветви с индуктивными элементами (см. рис. 4,б).

3. Составляется таблица, описывающая соединение элементов в цепи. В первой строке таблицы (см. табл. 1) перечисляются емкостные и резистивные элементы дерева, а также источники напряжения (ЭДС). В первом столбце перечисляются резистивные и индуктивные элементы ветвей связи, а также источники тока.

Таблица 1 . Таблица соединений

Процедура заполнения таблицы заключается в поочередном мысленном замыкании ветвей дерева с помощью ветвей связи до получения контура с последующим обходом последнего согласно ориентации соответствующей ветви связи. Со знаком «+» записываются ветви графа, ориентация которых совпадает с направлением обхода контура, и со знаком «-» ветви, имеющие противоположную ориентацию.

Осуществляется расписывание таблицы по столбцам и по строкам. В первом случае получаются уравнения по первому закону Кирхгофа, во втором – по второму.

В рассматриваемом случае (равенство тривиально)

,

откуда в соответствии с нумерацией токов в исходной цепи

.

При расписывании таблицы соединений по строкам напряжения на пассивных элементах необходимо брать со знаками, противоположными табличным:

(7)

Эти уравнения совпадают соответственно с соотношениями (6) и (5).

Из (7) непосредственно вытекает

.

Таким образом, формализованным способом получены уравнения, аналогичные составленным выше с использованием законов Кирхгофа.

Литература

  1. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  2. Матханов П.Н. Основы анализа электрических цепей. Линейные цепи.: Учеб. для электротехн. радиотехн. спец. вузов. 3-е изд., перераб. и доп. –М.: Высш. шк., 1990. –400с.

Контрольные вопросы и задачи

А
В