Сайт о телевидении

Сайт о телевидении

» » Основные свойства моделей. Цп автоматизированные системы управления и промышленная безопасность Что является общим требованием свойством всех моделей

Основные свойства моделей. Цп автоматизированные системы управления и промышленная безопасность Что является общим требованием свойством всех моделей

2. Общие признаки и свойства моделей.

Общие признаки моделей

1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.

2. Каждому материальному объекту соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.

3. Паре задача-объект соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.

4. Модель всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего.

5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.

6. В частном случае роль объекта моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некая идеальная конструкция, т.е. по сути дела другая модель, созданная ранее и практически достоверная.

СВОЙСТВА МОДЕЛЕЙ

1) конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

2) упрощенность: модель отображает только существенные стороны объекта;

3) приблизительность: действительность отображается моделью приблизительно;

4)·адекватность: степень успешности описания моделью объекта моделирования;

5) информативность: модель должна содержать достаточную информацию о системе – в рамках гипотез, принятых при построении модели.


- целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;
- конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
- упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
приблизительность - действительность отображается моделью грубо или приблизительно;
- адекватность - модель должна успешно описывать моделируемую систему;
- наглядность, обозримость основных ее свойств и отношений;
- доступность и технологичность для исследования или воспроизведения;
- информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получить новую информацию;
сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
- полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
- устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
- целостность - модель реализует некоторую систему (т.е. целое);
- замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
- адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
- управляемость (имитационность) - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
- эволюционируемость – возможность развития моделей (предыдущего уровня).

  • Основные свойства моделей . - целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель; - конечность...


  • Основные свойства моделей . - целенаправленность - модель


  • Основные свойства моделей . - целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель; - конечность - м.


  • Основные свойства средней арифметической. Для снижения трудоемкости расчетов используются основные свойства ср.арифм-кой


  • Основные свойства живых организмов. А) Единство химического состава.
    Оно связано с приобретением организмами новых признаков и свойств .


  • Два свойства общ. благ: 1)неконкурентность, т.е. увеличение числа потребителей блага не влечет за собой снижение полезности, доставляемой каждому из них.


  • Модель скользящих нитей Хаксли и ее основные положения.
    Вода является средой с большим количеством водородных связей, именно они определяют особые свойства воды

Каждый современный человек ежедневно сталкивается с понятиями «объект» и «модель». Примерами объектов являются как предметы, доступные для осязания (книга, земля, стол, ручка, карандаш), так и недоступные (звезды, небо, метеориты), предметы художественного творчества и умственной деятельности (сочинение, стихотворение, решение задачи, картина, музыка и другие). Причем каждый объект человеком воспринимается только как единое целое.

Объект. Виды. Характеристики

Исходя из вышесказанного, можно сделать вывод, что объект является частью внешнего мира, которая может быть воспринята в качестве единого целого. Каждый предмет восприятия имеет свои индивидуальные характеристики, отличающие его от других (форма, сфера использования, цвет, запах, размер и так далее). Важнейшей характеристикой объекта является название, но для полного качественного его описания одного названия недостаточно. Чем более полно и подробно описан объект, тем легче процесс его распознавания.

Модели. Определение. Классификация

В своей деятельности (образовательной, научной, художественной, технологической) человек ежедневно использует уже существующие и создает новые модели внешнего мира. Они позволяют сформировать впечатление о процессах и объектах, недоступных для непосредственного восприятия (очень маленькие или, наоборот, очень большие, очень медленные или очень быстрые, очень далекие и так далее).

Итак, модель - это некоторый объект, отражающий важнейшие особенности изучаемого явления, объекта либо процесса. Может существовать несколько вариаций моделей одного и того же объекта, также как несколько объектов могут быть описаны одной единственной моделью. Например, подобная ситуация возникает в механике, когда различные тела с материальной оболочкой могут быть выражены то есть одинаковой моделью (человек, автомобиль, поезд, самолет).

Важно помнить, что ни одна модель не способна полноценно заменить изображаемый объект, так как она отображает только некоторые из его свойств. Но порой при решении определенных задач различных научных и промышленных течений описание внешнего вида модели может быть не просто полезным, но единственной возможностью представить и изучить особенности характеристик объекта.

Сфера применения предметов моделирования

Модели играют важную роль в различных сферах жизни человека: в науке, образовании, торговле, проектировании и других. Например, без их применения невозможны проектирование и сборка технических устройств, механизмов, электрических цепей, машин, зданий и так далее, так как без предварительных расчетов и создания чертежа выпуск даже простейшей детали невозможен.

Часто используются модели в образовательных целях. Они носят названия наглядных. Например, из географии представление о Земле как о планете человек получает, изучая глобус. Также актуальными наглядные модели являются и в других науках (химии, физике, математике, биологии и других).

В свою очередь, теоретические модели востребованы при изучении естественных и (биологии, химии, физики, геометрии). Они отражают свойства, поведение и строение объектов, подвергающихся изучению.

Моделирование как процесс

Моделирование - метод познавания, включающий в себя исследование существующих и создание новых моделей. Предметом познания данной науки является модель. ранжируются в зависимости от различных свойств. Как известно, любой объект имеет множество характеристик. При создании определенной модели выделяются лишь наиболее важные для решения поставленной задачи.

Процессом создания моделей является художественное творчество во всем своем разнообразии. В связи с этим фактически каждое художественное или литературное произведение можно рассматривать в качестве модели реального объекта. Например, картины являются моделями реальных пейзажей, натюрмортов, людей, литературные произведения - моделями человеческих жизней и так далее. Например, при создании модели самолета с целью изучения его важно отразить в ней геометрические свойства оригинала, но абсолютно неважен его цвет.

Одни и те же объекты различными науками изучаются с разных точек зрения, а соответственно, их виды моделей для изучения будут также отличаться. Например, физика изучает процессы и результаты взаимодействия объектов, химия - химический состав, биология - поведение и строение организмов.

Модель относительно временного фактора

Относительно времени модели делятся на два вида: статические и динамические. Примером первого вида является единоразовое обследование человека в клинике. Оно отображает картину его состояния здоровья на данный момент, в то время как его медицинская карта будет моделью динамической, отражающей изменения, происходящие в организме на протяжении определенного периода времени.

Модель. Виды моделей относительно формы

Как уже понятно, модели могут различаться по разным характеристикам. Так, все ныне известные виды моделей данных можно условно разделить на два основных класса: материальные (предметные) и информационные.

Первый вид передает физические, геометрические и иные свойства объектов в материальной форме (анатомический муляж, глобус, макет здания и так далее).

Виды разнятся по форме реализации: знаковая и образная. Образные модели (фотографии, рисунки и другое) являются зрительными реализациями объектов, зафиксированными на определенном носителе (фото-, кинопленке, бумажном или цифровом).

Они широко применяются в образовательном процессе (плакаты), при изучении различных наук (ботаника, биология, палеонтология и других). Знаковые модели - это реализации объектов в виде символов одной из известных языковых систем. Они могут быть представлены в виде формул, текста, таблиц, схем и так далее. Существуют случаи, когда, создавая знаковую модель (виды моделей передают конкретно то содержание, которое требуется для изучения определенных характеристик объекта), используют сразу несколько известных языков. Примером в данном случае выступают различные графики, диаграммы, карты и подобное, где используются как графические символы, так и символы одной из языковых систем.

С целью отражения сведений из различных сфер жизни применяются три основных вида информационных моделей: сетевые, иерархические и табличные. Из них наиболее популярным является последний, применяемый для фиксации различных состояний объектов и характерных для них данных.

Табличная реализация модели

Данный вид информационной модели, как уже было сказано выше, является наиболее известным. Выглядит он следующим образом: это обычная, состоящая из строк и столбцов таблица прямоугольной формы, графы которой заполнены символами одного из известных знаковых языков мира. Применяются табличные модели с целью характеристики объектов, обладающих одинаковыми свойствами.

С их помощью в различных научных сферах могут быть созданы как динамические, так и статические модели. Например, таблицы, содержащие математические функции, различные статистические данные, расписания поездов и так далее.

Математическая модель. Виды моделей

Отдельной разновидностью информационных моделей являются математические. Все виды обычно состоят из уравнений, написанных на языке алгебры. Решение данных задач, как правило, основывается на процессе поиска равнозначных преобразований, которые способствуют выражению переменной величины в виде формулы. Существуют также для некоторых уравнений и точные решения (квадратные, линейные, тригонометрические и так далее). Как следствие, для их решения приходится применять методы решения с приближенной заданной точностью, иначе говоря, такие виды математических данных, как числовой (метод половинного деления), графический (построение графиков) и другие. Метод половинного деления целесообразно использовать лишь при условии, что известен отрезок, где функция при определенных значениях принимает полярные значения.

А метод построения графика является унифицированным. Его можно использовать как в вышеописанном случае, так и в ситуации, когда решение может быть только приближенным, а не точным, в случае так называемого "грубого" решения уравнений.

Цели моделирования

Цели моделирования (слайд ):

· исследование оригинала - изучение сущности объекта или явления,

· научиться управлять оригиналом, оказывая на него воздействия - синтез («как сделать, чтобы …» );

· научиться прогнозировать последствия различных воздействий на оригинал - анализ («что будет, если …» );

· выбор наилучшего решения в заданных условиях -оптимизация («как сделать лучше» ).

Разные науки исследуют объекты и процессы под разными углами зрения и строят различные типы моделей. Тип модели определяется целями моделирования (слайд ). В физике изучаются процессы взаимодействия и изменения объектов, в химии - их химический состав, в биологии ­ строение и поведение живых организмов и так далее.

Таким образом, можно сказать, что основная цель моделирования - это изучение и исследование объекта или явления, для которого модель построена.

Один и тот же объект может иметь множество моделей, а разные объекты могут описываться одной моделью (слайд ).Возьмем в качестве примера человека: в разных науках он исследуется в рамках различных моделей. В рамках механики его можно рассматривать как материальную точку, в химии - как объект, состоящий из различных химических веществ, в биологии - как систему, стремящуюся к самосохранению, и так далее.

Многие исследователи выделяют следующие свойства моделей: адекватность, сложность, конечность, наглядность, истинность, приближенность.

1. Главное свойство модели - адекватность, то есть соответствие ее реальному объекту (процессу, системе и т.д.) относительно выбранного множества его характеристик и свойств.

От модели не требуется достоверности - в этом случае получится не модель, а копия. Степень соответствия определяется целями моделирования. Излишнее сходство с оригиналом столь же бесполезно, как и недостаточное.

Адекватность теоретических моделей законам реального мира проверяется с помощью опытов и экспериментов и называется верификацией модели.

2. Простота и сложность. Хотя сложные модели и более точно отражают моделируемые свойства оригинала, но они более громоздки, труднообозримы и неудобны в обращении. Поэтому исследователь стремится к упрощению модели, так как с простыми моделями легче оперировать.

При стремлении к построению простой модели должен соблюдаться основной принцип упрощения модели : упрощать модель можно до тех пор, пока сохраняются основные свойства, характеристики и закономерности, присущие оригиналу.

Этот принцип указывает на предел упрощения. При этом понятие простоты (или сложности) модели является понятием относительным.

Более простые (грубые) модели используются при решении задачи синтеза, а более сложные точные модели – при решении задачи анализа.



3.Конечность моделей - заключается, во-первых, в том, что они отображают оригинал в конечном числе отношений, т.е. с конечным числом связей с другими объектами, с конечной структурой и конечным количеством свойств на данном уровне изучения, исследования, описания, располагаемых ресурсов. Во-вторых, в том, что ресурсы (информационные, финансовые, энергетические, временные, технические и т.д.) моделирования и наши знания как интеллектуальные ресурсы конечны, а потому объективно ограничивают возможности моделирования и сам процесс познания мира через модели на данном этапе развития человечества.

4.Приближенность моделей . Конечность и простота (упрощенность) модели характеризуют качественное различие (на структурном уровне) между оригиналом и моделью. Приближенность модели будет характеризовать количественную сторону этого различия. Приближенность модели к оригиналу неизбежна, существует объективно, так как модель как другой объект отражает лишь отдельные свойства оригинала. Поэтому степень приближенности (близости, точности) модели к оригиналу определяется постановкой задачи, целью моделирования.

5.Истинность моделей . В каждой модели есть доля истины, т.е. любая модель в чем-то правильно отражает оригинал. Степень истинности модели выявляется только при практическом сравнении её с оригиналом, ибо только практика является критерием истинности.

Классификация моделей

Для моделей можно составить различные виды классификаций в зависимости от одного или нескольких признаков, общих для той или иной группы моделей.

Рассмотрим, как отражаются в записи (2.1) основные общие свойства системы.

Первое такое свойство – линейность или нелинейность. Оно обычно расшифровывается как линейная (нелинейная) зависимость от входов операторов S (линейность или нелинейность параметров состояния) или (линейность или нелинейность модели в целом). Линейность может являться как естественным, хорошо соответствующим природе, так и искусственным (вводимым для целей упрощения) свойством модели.

Второе общее свойство модели – непрерывность или дискретность. Оно выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и выходы системы. Таким образом, дискретность множеств Y, Т, Х - ведет к модели, называемой дискретной, а их непрерывность – к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего – замена непрерывной математической функции на набор ее значений в фиксированных точках.

Следующее свойство модели – детерминированность или стохастичность. Если в модели среди величин х + , а , у , х - имеются случайные, т. е. определяемые лишь некоторыми вероятностные характеристиками, то модель называется стохастической (вероятностной, случайной). В этом случае и все результаты, полученные при рассмотрении модели, имеют стохастический характер и должны быть соответственно интерпретированы. С точки зрения практики, граница между детерминированными и стохастическими моделями выглядит расплывчатой. Так, в технике о любом размере или массе можно сказать, что это не точное значение, а усредненная величина типа математического ожидания, в связи с чем и результаты вычислений будут представлять собой лишь математические ожидания исследуемых величин. Однако такой взгляд представляется крайним. Удобный практический прием состоит в том, что при малых отклонениях от фиксированных значений модель считается детерминированной, а отклонение результата исследуется методами оценок или анализа ее чувствительности.


При значительных же отклонениях применяется методика стохастического исследования.

Четвертое общее свойство модели – ее стационарность или нестационарность. Сначала поясним понятие стационарности некоторого правила (процесса). Пусть в

рассматриваемом правиле присутствует параметр процесса, которым для удобства понимания будем считать время. Возьмем все внешние условия применения данного правила одинаковыми, но в первом случае мы применяем правило в момент t 0 , а во втором – в момент t 0 +Q . Спрашивается, будет ли результат применения правила одинаковым? Ответ на этот вопрос и определяет стационарность: если результат одинаков, то правило (процесс) считается стационарным, а если различен – нестационарным. Если все правила в модели стационарны, то стационарной называется и сама модель. Чаще всего стационарность выражается в неизменности во времени некоторых физических величин: стационарным является поток жидкости с постоянной скоростью, стационарна механическая система, в которой силы зависят только от координат и не зависят от времени.

Для отражения стационарности в формальной записи рассмотрим расширенный вид правила S , в которое введена его зависимость от начальных условий процесса t 0 , y 0 и зависимость входов от параметра t :

y = S (x + (t ), a , t , t 0 , у 0).

Тогда для стационарного процесса имеет место равенство

S(x + (t+Q), а,t+Q, t 0 +Q, y 0) = S (x + (t), а, t, t 0 , y 0).

Аналогично можно определить стационарность правил V и .

Другим общим свойством модели является вид составляющих кортежа (2.1). Простейшим будет случай, когда входы, выходы и параметры а в системе – это числа, а правило – математическая функция. Широко распространена ситуация, когда входы и выходы есть функции параметра процесса. Правила S , V , тогда являются либо функциями, либо операторами и функционалами. Функциями, скажем, от параметров состояния могут быть и те параметры системы, которые мы ранее называли постоянными. Описанная выше ситуация еще достаточно удобна для исследования модели на ЭВМ.

Последним упомянем свойство модели (2.1), состоящее в конечности или бесконечности числа входов, выходов, параметров состояния, постоянных параметров системы. Теория рассматривает и тот, и другой тип модели, однако на практике работают лишь с моделями с конечномерностью всех перечисленных составляющих.