Сайт о телевидении

Сайт о телевидении

» » 3d сканирование для производства. Подготовка каркаса для лица. d-моделирование для контроля методом фазированной решетки

3d сканирование для производства. Подготовка каркаса для лица. d-моделирование для контроля методом фазированной решетки

Или любую другую модель, наверное, уже слышал о том, что на рынке высокотехнологичных устройств есть и такие приборы как 3D сканеры. Для тех, кто не знает что это за аппараты, наша статья.

Определение 3D сканера

3D сканеры представляют устройства, предназначенные для сканирования физических объектов и их точного последующего воспроизведения. Простыми словами, трехмерный сканер делает с объектом то же самое, что 2D сканер, который сканирует изображение на листе бумаги и переносит его на компьютер. Только в случае с 3D принтерами сканируется реальный объект, а на монитор передается объемная модель. Современные модели пространственных сканеров могут иметь вид небольших портативных устройств или серьезных стационарных аппаратов, которые имеют специальные лампы или лазеры для осуществления подсветки. Разброс качества передачи изображения в них может существенно отличаться. Это то же самое, если сравнивать возможности построения моделей двух печатающих трехмерных аппаратов - 3D принтера makerbot replicator и маленького дешевого бытового принтера.

При сканировании точность передачи изображения двух приборов может отличаться на порядок и изменяться от 10 до 100 микрон, эта величина зависит от типа прибора и его возможностей. Кроме этого, сканеры могут передавать изображение с полной цветовой гаммой или переносить только формы поверхности. Кроме различия в качестве получаемого изображения и в функционале, сканеры можно разделить на контактные и бесконтактные, то есть те, которые контактируют непосредственно с объектом или сканируют его на некотором, иногда до нескольких километров, расстоянии.

Преимущества

Если анализировать общие преимущества всех сканеров, то необходимо отметить:

  • Максимальную точность сканирования объектов. Воспроизводятся даже самые мелкие его детали.
  • Скорость сканирования максимальная- от нескольких секунд до нескольких минут.
  • Сканер можно размещать в разных пространственных положениях. Это особенно важно для получения объемных моделей больших предметов (домов, памятников и т.д.).

Если анализировать преимущества контактных и бесконтактных моделей, то первые:

  • Качественно сканируют вне зависимости от освещения.
  • Максимально точны в работе.
  • Просты в управлении.

Бесконтактные приборы могут снимать на больших расстояниях, не контактируя с предметом, и более энергоэкономичные в использовании.

Из недостатков всех сканеров отметим невозможность качественного сканирования движущихся объектов, а также плохое качество изображения объектов, имеющих блестящую или прозрачную поверхность.

Область применения

Возможности сканеров запечатлеть с максимальной точностью форму практически любого объекта, обеспечили им применение в разных сферах жизни человека. Они используются в медицине для сканирования мозга, опорно-двигательного аппарата, сердца, а также для поиска опухолей. В производстве 3D сканирование незаменимо в реверс-инжениринге, а в строительстве для контроля качества, реконструкции автотрасс и в определении пустот под землей.

Чтобы напечатать объемный предмет на 3D принтере, предварительно необходимо сделать его трехмерную модель – визуальный графический образ объекта. Раньше моделирование осуществлялось вручную с помощью специального ПО. Просчеты в чертежах неминуемо сказывались на конечном результате. Чтобы нивелировать человеческий фактор, ускорить и упростить процесс моделирования изобрели 3D сканер.

Трехмерное сканирование дает возможность получить сложнопрофильную объемную модель исследуемого объекта – 3D сканер оцифровывает предмет, что позволяет быстро сделать его математическую модель для последующей печати на принтере.

Прибор создает облако точек, соединенных линиями, которые формируют геометрию объекта из множества пересекающихся плоскостей. Полученные координаты обрабатываются и сохраняются в виде параметрической модели, – с ней можно работать в любой CAD-системе для снятия чертежей отдельных элементов объекта, его доработки, корректировки размеров и прочих параметров, нужных для программирования принтера.

Где используется 3D сканер

Сфера применения сканирующего оборудования неограниченна. Применение аддитивных технологий позволяет сократить расходы на производство, снизить количество отходов, уменьшить вес деталей, сделанных традиционным путем. 3D сканирование используется в следующих направлениях:

  • авиастроение;
  • кораблестроение;
  • производство промышленного оборудования;
  • автоиндустрия;
  • военно-промышленный комплекс;
  • музееведение и культурология (оцифровка изделий с целью сохранения исторического наследия);
  • строительство и проектирование инженерных систем;
  • медицина и протезирование;
  • легкая промышленность.

Производители одежды и обуви уже объявили о том, что в примерочных кабинках вскоре появятся 3D сканеры. Такой подход позволит покупателям заказывать кастомизированные наряды и оригинальную обувь, а производителям – быстро и точно воспроизвести модели без использования лекал и очной ставки с клиентом. Ожидается, что люди смогут использовать свои отсканированные и оцифрованные силуэты для виртуальной примерки нарядов, без надобности в переодевании.

Методы 3D сканирования

Различают два метода объемного сканирования – контактный и бесконтактный.

Контактный 3D сканер работает «на ощупь». Прибором обводят предмет, при этом специальным щупом исследуют каждую грань. Раньше на исследуемый объект наносили точки-маркеры, формирующие систему координат. На участках с большим изгибом расстояние между точками делалось минимальным, на ровных плоскостях – максимальным. Сканер снимал координаты точек – из них формировал 3D модель. Современные приборы обходятся без нанесения физической сетки.

Контактное сканирование не зависит от условий освещения. Работе с устройством легко научиться. Но есть ряд недостатков: сканер не различает текстуры, а для обработки большого предмета придется изрядно попотеть с прибором в руках.

Бесконтактный метод трехмерного сканирования делится на два подвида: активный и пассивный. Приборы для активного 3D сканирования используют ультразвук, направленный источник света, лазер или рентгеновские лучи для облучения исследуемого объекта – прибор высчитывает время возврата «сигнала», формируя систему координат из точек соприкосновения с предметом и расстоянием до сканера. Оператор под разными углами сканирует объект, а ПО склеивает части воедино.

Преимущество 3D сканер активного типа:

  • прост в использовании;
  • процесс осуществляется без физического контакта с объектом;
  • работает внутри и снаружи помещения;
  • не зависит от освещения;
  • доступная цена;
  • ненужно наносить сетку и маркеры.

В то же время есть весомые упущения:

  • сканер неспособен работать с зеркальными поверхностями и прозрачными предметами;
  • для работы с маленькими изделиями нужна мощная оптика.

Пассивный 3D сканер – это всё та же цифровая видеокамера, которая снимает исследуемый предмет под разными углами, улавливая его силуэт. Работает только на высококонтрастном фоне и при хорошем освещении. Отснятый материал обрабатывается ПО и сводится в 3D модель для печати на принтере или обработке в CAD-системах.

На что обратить внимание при выборе сканера

Устройство, которое одинаково хорошо справляется со сканированием в инженерных и развлекательных целях, при этом делает высокоточные модели, может стоить десятки тысяч долларов. При покупке 3D сканера следует обратить внимание на следующие параметры:

  • зона сканирования;
  • продолжительность сканирования рабочей зоны;
  • точность;
  • разрешение.

И очень меня эта тема заинтересовала, хотя быстро пришло понимание того, что ни о каких 30$ для качественного сканирования не может быть и речи.

Но основной плюс, который я вынес из статьи – программа для сканирования David-3D, к которой действительно есть хорошее руководство на русском языке и, что немаловажно, покупка лицензии - это последнее, что требуется, так как ограничение у бесплатной версии только на сохранение результата сканирования. Все остальное работает в полной мере, а значит вполне можно тестировать программу, настройки и свое железо сколько угодно. А если вам и результат не требуется с высокой точностью – то и вовсе без покупки лицензии можно обойтись.

Мне точность требовалась, так как основное, что мне хотелось сканировать это были миниатюры из настольной игры Warhammer (дабы потом их изменять, как хочется и печатать:)). В высота этих «солдатиков» всего 3 см, однако это не мешает им быть очень детализированными.


Если вам не требуется снимать настолько мелкие объекты – то требования к оборудованию у вас будут ниже, а значит и намного проще будет собрать себе подобный сканер.

Принцип работы программы, и соответственно сканирования, хорошо описан в статье, на которую была ссылка выше (дублировать это, думаю, не обязательно). Желательно прочесть ту статью первой, так как эта будет в некотором роде её логичным продолжением.

Но начнем по порядку. Что понадобится для того, чтобы опробовать 3д сканирование в домашних условиях:
1 – проектор.
2 – веб камера.

Собственно все, короткий список на удивление получился. Тем не менее, если вы хотите получать очень точные и качественные сканы, то придется кое что доработать ручками. Без дополнительных затрат тут конечно не обойтись, но в итоге это все все равно обойдется дешевле, чем покупка любого из имеющихся в продаже 3д сканеров, да и качество результата получить можно намного лучше.

Теперь по порядку и подробно.

ПРОЕКТОР.

Свои первые опыты по сканированию я, как и автор предыдущей статьи, начинал с лазерной указки, но они сразу же показали, насколько это неудобный способ. Недостатков тут сразу несколько:
– невозможность получения луча с достаточно тонкой линией. Тем более, что при повороте указки меняется расстояние от линзы до объекта, а значит сбивается фокусировка.
– если требуется регулярно сканировать, поворачивать лазерную указку с достаточной точностью и плавностью вручную очень сложно, да и утомительно просто – руки не такой уж стабильный инструмент когда речь идет о длительном времени.
– сканировать приходится в темноте, дабы была видна только линия лазера и ничего более.

И если со вторым недостатком еще можно бороться путем создания специального поворотного механизма (хотя это уже получается не такая уж и простая задача, во всяком случае, за 5 минут на коленке такое не сделать), то избавление от первого недостатка дороже.

Когда я все это осознал, то решил попробовать сканирование с помощью проектора, для чего взял на время какую-то простую модель у знакомого.

Тут следует сделать небольшое уточнение – в прошлой статье автор упоминал о возможности сканирования с помощью проектора, хотя предложение было, на мой взгляд, весьма странное -

Подойдет проектор с мощной лампой, свет которой нужно направить сквозь узкую щель на сканируемый объект

Возможно, в ранних версиях программы это был единственный вариант, но в версии 3 с которой я экспериментировал, проектор использовался намного лучше, т.к. там есть возможность называемая Structured Light Scanning (SLS). В отличие от лазерного сканирования, проектор сразу проецирует на объект сетки из вертикальных и горизонтальных линий различной толщины, что на порядок уменьшает время сканирования и позволяет в автоматическом режиме снимать цветную текстуру объекта. Ну и при хорошей фокусировке, линия в 1 пиксель шириной намного тоньше, чем возможно получить от недорогой лазерной указки.

К сожалению, фотографии с тех первых опытов я не делал, да и фотографировать особенно было нечего – проектор на столе, рядом с ним веб-камера, все это смотрит в одну сторону:) Однако даже такая простейшая конструкция показала, что этот вариант намного предпочтительней как по скорости сканирования, так и по качеству. Тогда я и решил купить для этих целей себе проектор.

Критерии для выбора проектора были простые – разрешение больше, цена и размеры меньше:)
Выбор остановился на IconBit Tbright x100 - ультракомпактный DLP LED проектор, разрешение 1080 – на тот момент мне казалось, что лучше и не придумаешь, но как выяснилось позже – я ошибался, хотя занимаясь с ним, я получил много интересного опыта.


Первая проблема, которая возникает при сканировании маленького объекта с помощью проектора, заключается в том, что для лучшего результата, размер проецируемой сетки должен примерно соответствовать размеру сканируемого объекта. Данный проектор позволял получить наименьшую диагональ экрана при самом близком фокусе - примерно в 22 см. Согласитесь, что на таком фоне миниатюра в 3 см высотой далека от понятия «примерно равные размеры». Ответ нашелся на официальном форуме – люди в таких случаях устанавливают на проектор фотоаппаратные линзы для макросъемки. Учитывая небольшие размеры объектива проектора, я остановил свой выбор на линзах marumi с диаметром резьбы 34 мм.

Используя два таких комплекта, удалось получить экран проектора с диагональю всего около 3 см. Чего оказалось вполне достаточно, чтоб сделать свой первый микроскан –

Это единичный скан, поэтому и есть «дырки» на модели, рваные края и т.д. Поворачивая монету и сканируя с разных ракурсов, можно получить несколько таких сканов, которые впоследствии объединяются в один объект (сама программа сканирования позволяет правильно совмещать разные сканы, сшивать их и сохранять как единый объект). В процессе сшивания заодно уточняется форма объекта. Но сохранять результаты такого сшивания – возможно только после покупки лицензии.

И вот настал момент первой вещи, которая для сканирования не обязательна, но с ней процесс намного удобнее – это стойка под проектор с камерой. Сам процесс калибровки нужен не только для того, чтоб программа узнала параметры оборудования - софт также должен расчвитать взаимное расположение камеры и проектора. В процессе работы их изменение не допускается (как и изменение фокусировки камеры), а значит, требуется жестко все это закрепить, ведь количество сканов может быть большим даже для одного объекта.

На основной странице David"а и изображена подобная система – ничего сложного она собой не представляет. Да и полистав форум и посмотрев, как это организую себе разные люди, понял, что ничего сложного тут не требуется.

Для этих целей была взята стойка от сгоревшего ЖК монитора, и оргстекло от него же, вырезана и склеена вот такая конструкция, как она выглядела в первом варианте


К подставке для проектора и был приделан крепеж для установки различных линз, что позволяло менять диагональ экрана, и сканировать объекты разного размера.
Следует также упомянуть о том, что сканирование с помощью проектора не требует постоянного нахождения в поле зрения калибровочных панелей. После того как произведена калибровка их можно убрать. Это позволяет откалибровав установку спокойно её переносить, двигать и т.д.
То есть вы можете используя большой калибровочный шаблон произвести дома на стенах калибровку, а затем с этой стойкой и ноутбуком выйти на улицу и отсканировать свой автомобиль, например. Взяли меньший шаблон, поставили пару линз – и можно сканировать ювелирные изделия.

Недавно фирма выпустила усовершенствованный набор для сканирования, вот там уже стойка намного серьезней и интересней смотрится –

Как по мне, при стоимости лицензии на программу около 500$ (это они еще цену подняли недавно), отдавать за такой набор более 2000 евро – не совсем оправданно, собрать самому что-то подобное не сложно и значительно дешевле.

Вернемся к проектору. Как оказалось, у этого проектора был один существенный недостаток для использования в сканере, а именно его родное разрешение (854*480). И все бы ничего, если бы он и на выходе выдавал то же самое, но увы – картинка преобразовывалась к стандартным разрешениям (типа 1024*768), и в результате линия шириной в один пиксель была в разных частях экрана где-то ярче, где-то тусклее, где-то уже а где-то шире… Все это негативно сказывалось на качестве сканирования, выражаясь в виде ряби и полосок на получаемой модели.
К тому времени я уже задумывался о покупке проектора для стереолитографического 3Д принтера (). Рассмотрев несколько вариантов, я остановился на модели Acer P1500, т.к. ей не нужны никакие доработки для использования в принтере (этот проектор без всяких линз способен дать сфокусированное изображение на экране примерно 4*7 см). А значит, и для сканера он подойдет как нельзя лучше. При этом разрешение в 1920*1080 у него реальное. Так оно и вышло, этим проектором пользуюсь до сих пор и полностью доволен результатами.

КАМЕРА.

Критерии при выбора камеры у меня были те же, что и при выборе проектора. Пройдясь по магазинам, остановился на Logitech C615. Скан монеты был сделан именно с неё, без всяких модификаций. Но когда я попытался отсканировать фигурку, то столкнулся с трудностью, которая называется «глубина резкости». Когда объект настолько мал, то фактически у нас получается макросъемка, а резкость при такой съемке достигается только на небольшом отрезке, буквально всего пара миллиметров (именно поэтому монета хорошо отсканировалась – рельеф вполне укладывался в область резкости). Было решено переделать камеру под другой объектив. На Ebay было заказано несколько разных объективов для пробы, а также был вырезан новый корпус под плату камеры. План был такой

Финальный результат немного отличался


Основная идея, я думаю, понятна. А сейчас и на Thingiverse и на форуме программы можно скачать stl для печати корпусов под разные типы вебкамер.

С платы камеры пришлось убрать стандартный объектив, и как выяснилось позже – вместе с ним был убран и ИК-фильтр, так что будьте в этом вопросе аккуратней. Фильтр потом пригодится для использования с другими объективами, хотя можно и отдельно их докупить – цена копеечная.

Таким образом, у меня вот такая коллекция объективов образовалась.

Пока я ожидал доставку объективов, читались различные форумы по фотосъемке. Изучая вопрос с глубиной резкости, я выяснил, что увеличить её можно сильнее закрыв диафрагму объектива. А значит и объектив требовался такой, в котором была возможность регулировать диафрагму (увы, среди заказанных не все обладали такой возможностью, но на мое счастье и парочка таких попалась). В общем, для улучшения камеры желательно иметь варифокальный объектив с зумом и регулируемой диафрагмой. На практике все оказалось так, как и было в теории – закрывая диафрагму, сразу было видно увеличение глубины резкости, что позволило-таки сканировать объемные, но мелкие объекты.

Основной объектив, которым я пользуюсь - на фото выше установлен на камере. Второй, с регулируемой диафрагмой, самый большой, в центре. Его я использую для совсем уж маленьких объектов. Остальные без диафрагмы, так что ими не пользуюсь - оказалось что вполне достаточно и этих двух.

В планах теперь либо найти вебкамеру с большим разрешением (качество и детальность сканов напрямую зависит от разрешения камеры), либо попробовать использовать для этих целей какой-нибудь цифровой фотоаппарат с возможностью съемки видео – обычно в них намного больше разрешение можно получить, да и объективы лучше.

Собственно на этом можно было бы и закончить – вроде обо всем рассказал. Я тоже думал что на этом у меня закончилась сборка сканера, но чем дальше в лес… Изучая форум данной программы я часто натыкался на различные схемы поворотных столиков - благо софт позволяет автоматизировать процесс сканирования. После одного скана подается команда на com-порт, поворотный столик вращается, поворачивая объект на заданное количество градусов, и дает команду на следующий скан. В результате одним кликом мышки мы имеем круговые сканы объекта - казалось бы, чего еще желать? Эту систему я с интересом опробовал, но увы – мне такой подход абсолютно не понравился, и тому есть пара причин.

1 – если объект сложной формы, то просто его вращать его будет недостаточно – требуется еще и наклонять в разные стороны, чтобы камера с проектором дотянулась до всех впадин и других труднодоступных мест.
2 – даже если таких мест нет, и учитывая все сканы, которые были сделаны, на объекте не осталось частей, которые не попали в скан, остается вопрос точности скана.

Допустим, какая-то часть модели на одном из сканов вышла идеально. Но это не значит что на всех сканах, в которые эта часть попала, она выглядит также идеально, а при сшивании сканов с разных ракурсов результат будет усреднен, что не может радовать. Программа позволяет немного редактировать полученные сканы (можно вырезать ненужную часть). Если мы вращаем модель на 20 градусов, значит, после полного оборота у нас будет 18 сканов, нужная нам часть вполне может присутствовать на половине из них, следовательно, чтобы оставить наилучший результат надо будет удалить этот кусок из 8ми сканов… А таких кусков при сложной модели может быть много, в результате от каждого скана будет отрезаться чуть ли не половина, что очень трудоемко и требует много времени.

Вместо этого лучше после первого скана сразу сканировать прилегающие области, и проверять результат. Как только какой-то кусок готов – переходим к сканированию следующего, и так, пока вся модель не будет в идеальном виде. Такой подход дает лучший результат за меньшее время.

Но возникает вопрос удобства. Согласитесь, неудобно вручную пытаться крутить объект, глядя не на него, а на монитор – чтоб контролировать попадание в объектив, не поменяв расстояние до камеры и проектора при этом (дабы не сбился фокус). При очередной подобной эквилибристике я случайно задел камеру, что соответственно сбило всю калибровку, и весь процесс пришлось начать заново. Такой расклад мне категорически не понравился, и я после некоторых размышлений пришел к плану вот такой конструкции (которую, как вы понимаете, впоследствии и собрал).

Это не поворотный столик в обычном понимании этого термина. Благодаря такой конструкции я могу не только вращать модель, но и наклонять её, как мне будет нужно. При этом центр модели остается в плоскости фокуса, но даже если и нет – можно вперед-назад крепление с моделью двигать.



Все это собралось на ардуино, была написана небольшая программа для управления, и в результате мне теперь при сканировании не приходится вставать из-за компьютера – используя программу, я меняю положение сканируемого объекта, и при этом тут же, в окне камеры выбираю оптимальный для сканирования ракурс.

Внутренности

В программу я заложил возможность автоматического сканирования, а так же сканирования непросто по кругу, а с наклонами на 45 градусов в одну и другую сторону, что дает в три раза больше сканов. Тем не менее, в итоге, я все-равно никогда этой возможностью не пользуюсь – слишком неудобно потом разбираться в полученной куче сканов и чистить их от неудачных кусков.

Следует также упомянуть о некоторых нюансах сканирования.
1 – невозможно сканировать блестящие и зеркальные поверхности. Свет от них отражается, или дает такой блик, что программа не может корректно распознать линию. Если есть необходимость сканирования такого объекта, то подобные части придется чем-то замаскировать (смывающейся краской, бумажным скотчем и т.д.).
2 – удобнее сканировать монотонные объекты, так как при настройке камеры на светлый цвет выставляется не такая большая яркость проектора, малая экспозиция и т.д. А для объекта темного цвета требуется большая яркость, так что если у вас объект разноцветный, то для разных его частей требуются разные настройки для получения наилучшего результата. Здесь тоже удобней использовать сканирование объекта частями.
3 – если вы хотите сразу получить цветную текстуру то учтите, что настройки камеры и проектора для скана не влияют на настройки для снятия текстуры (скан вообще в черно-белом режиме делается), так что поиграйтесь настройками в режиме текстуры также, как вы будете это делать в режиме сканирования.

Процесс сканирования у меня сейчас выглядит таким образом:
- Фокусировка проектора и камеры

Свет проектора слишком ярок и на фото не видна проецируемая сетка, но вот вид из камеры в программе

Калибровка сканера

Калибровочный угол был сделан из металлических пластин, а калибровочные шаблоны разного размера были напечатаны на магнитной бумаге - так можно очень быстро подстраиваться под разные размеры сканируемых объектов.

Вид в программе

Рекомендуется, чтобы совокупный угол между лучом проектора и камеры был около 20 градусов. Поэтому такая стойка и используется - при сканировании больших объектов (например, человека) камеру надо гораздо дальше от проектора отставить, здесь же они у меня вплотную стоят. Расположение камеры относительно проектора может быть только вертикальным, или только горизонтальным - в зависимости от геометрии объекта. В данном случае расположение диагональное (13 градусов по вертикали и 36 по горизонтали).

Результаты сканирования с разных ракурсов. Это уже подчищенные сканы, т.е. удалены все неудачные и ненужные (подставка фигуры, попавшее в кадр крепление) части.

Совмещение сканов для последующего объединения в один объект

Благодаря тому, что каждый скан имеет свой цвет удобно контролировать правильность совмещения.

Ну и после объединения сканов с разных ракурсов получаем такие модели

Миниатюра Боромира из властелина колец.

При сканировании разноцветного объекта результат немного хуже, если сильно не заморачиваться. Но зато можно получить объект сразу с текстурой:)

Оригиналы моделей

В галерее работ пользователей на сайте разработчика (http://www.david-3d.com/en/news&community/usergallery) можно найти еще много интересных сканов, даже отпечатки пальцев люди сканируют. И встречаются даже сканы таких же миниатюр из вархаммера

В заключении хочется сказать о том, что какое бы железо вы не использовали, какой бы дорогой 3д сканер вы не купили, но это не панацея для печати чего угодно. Теоретически конечно можно полученный объект отправлять в слайсер и печатать, но есть несколько причин, почему не стоит так поступать, а стоит в любом случае изучать пакеты 3Д графики.

1 - Полученные сканы, при хорошем качестве сканирования (а мы ведь хотим получить наилучшее качество) имеют очень много полигонов. Нет, даже ОЧЕНЬ много. Скан Боромира после слияния содержал более 8 миллионов полигонов - не каждый слайсер сможет работать с таким объектом.
2 - Любые объекты несут на себе следы сборки и изготовления. И если в реальности для исправления этого применяют надфили и наждачку (а иногда все-равно есть недоступные места, где невозможно применить инструменты), то работая с цифровой копией объекта, мы можем изменить его как угодно - убрать дефекты, улучшить детализацию и т.д.
3 - Как я говорил в начале статьи, когда я задумался о сканере, я хотел не копии объектов печатать, а изменять их как мне будет угодно. Я не скульптор, у меня нет инструментов, материалов и навыков, чтобы вылепить такую мелкую модель. Но умея работать в 3Д, мне намного проще, отсканировав подобного Боромира, сделать из него какого-нибудь Принца датского.


Кстати, эта модель содержит уже почти в 100 раз меньше полигонов, чем результат сканирования.

Теги:

  • 3д сканер
  • diy или сделай сам
  • 3д моделирование
  • 3д графика
Добавить метки

Интервью с Георгием Казакевичем, экспертом направления технической поддержки 3D-оборудования компании iQB Technologies

– В первой части интервью мы говорили об обратном проектировании (reverse engineering ). Теперь давайте разберемся, что такое контроль геометрии?

Контроль геометрии – это, по сути дела, контроль качества . Вот смотрите: предприятие получает заготовки, которые оно должно доработать. Если производить входной контроль этих заготовок, можно очень сильно уменьшить себе головную боль на этапе изготовления.

Взгляните на схему (рис. 1): для первой детали первые три пункта выполняются вручную (сканирование, подготовка к анализу и непосредственно анализ), а отчет составляет за вас программное обеспечение. Для следующих 999 деталей вручную делается только сканирование, остальные три этапа выполняет ПО. Таким образом, вы тратите время только на оцифровку. А при контроле геометрии сканирование – это обычно от 5 до 15% затраченного времени, не больше. Следовательно, при потоковом контроле или контроле серийного производства мы начинаем экономить массу времени.

Раньше предприятие могло себе позволить контролировать одну деталь из тысячи, потому что на это уходил день. Внедряя 3D-сканирование, можно контролировать сто деталей из тысячи всего за два дня. В первый день мы делаем всё вручную, и лишь еще один день потратим на 99 деталей – их надо только отсканировать. После чего помещаем CAD-модель в определенную папку и говорим программному обеспечению: «Работай».

Рис. 2. Карта отклонений геометрии футеровки

– Расскажите, пожалуйста, как это работает, на примерах из практики iQB Technologies .

– Была задача измерить толщину футеровки, успешно выполненная главным техническим экспертом нашей компании . Существует узел смешения жидкостей, он металлический, потому что жидкости подаются под давлением. Проблема в том, что должным образом обработать металл внутри – это, во-первых, тяжело, во-вторых, дорого. Ко всему прочему, металл – это материал, который вступает во взаимодействие со многими жидкостями, он может ржаветь, подвергаться коррозии и т.д. Этот узел изнутри покрывается специальным пластиковым составом. Для того чтобы достигалось правильное смешение жидкостей, покрытие должно быть равномерным. Если в нем есть рытвины, если оно неравномерно по толщине, внутри будут появляться завихрения. Они создают дополнительное давление на узел, следовательно, уменьшают срок его эксплуатации.

Раньше предприятие контролировало одну деталь из тысячи, потому что на это уходил день. Внедряя 3D-сканирование, можно контролировать сто деталей из тысячи всего за два дня.

Итак, сначала было выполнено 3D-сканирование узла без покрытия, затем с покрытием, и результаты подвергнуты сравнению. Красная зона на скане (рис. 2) – это покрытие. На правой картинке видно, что оно неровное. Исходя из полученных результатов, заказчик может предъявить претензии субподрядчику, который занимается нанесением этого покрытия.

Рис. 3. Контроль сварной конструкции

Следующий пример – выполненный мной контроль сварной конструкции. Я ездил в Нижний Новгород на завод компании Liebherr, который производит для сборки промышленной техники. Сами металлические листы приходят из Германии, в России свариваются и потом отправляются обратно. Из-за того, что конструкция довольно большая (2 м длиной), предусмотрены посадочные отверстия для крепления к другим конструкциям. Если во время сварки произойдет какой-нибудь перекос, деталь в одном месте присоединится, а в другом нет. Чтобы избежать этого, на заводе решили перед отправкой в Германию все детали предварительно сканировать и оценивать на отклонения, которые получились при сварке. В таблице справа (рис. 3) мы видим фактические размеры, которые показало 3D-сканирование. Отклонения отображаются в виде цветовой карты. Зеленый цвет – хороший результат, желтый – в пределах допуска, красный – неприемлемое отклонение. Конкретно та деталь, которую мы сканировали, естественно, не проходит и считается браком.


– В каких еще отраслях Вы применяли 3D-сканер и ПО для контроля геометрии?

Рис. 4. Контроль геометрии крыла автомобиля

– К примеру, у нас были проекты, связанные с . Запчасти для автомобилей, как вы знаете, достаточно дорогие. Их всегда можно заказать из Китая, но гораздо удобнее наладить производство в России. Наш заказчик, который изготавливает запчасти для машин высокого сегмента, стал получать жалобы: детали «играют», когда их пытаются посадить на место. Мы отсканировали крыло для BMW, сделанное в России, и крыло оригинального BMW. Сравнили их друг с другом и увидели, что российская деталь по размеру чуть больше, чем требуется. На основании этого в производственный цикл были внесены изменения.

Рис. 5. Корпус автобуса

На рисунке 6 вы видите корпус автобуса и результаты 3D-сканирования – это проект, которым занимался Алексей Чехович. В Москве есть предприятие, которое производит автобусы из смолы. Современные смолы по прочности могут соперничать с металлами, при этом они намного легче, а значит, экономичнее с точки зрения расходов топлива. Такой автобус собирается из нескольких частей. На предприятии заметили, что при сборке возникают некоторые перекосы, напряжения. Вначале нас пригласили отснять сделанные заготовки. Мы их отсняли и увидели, что заготовка сама по себе кривая. А в дальнейшем мы выяснили, что проблема даже не в заготовке, а в самой форме, в которой ее делали. То есть заготовка с формой идеально сошлась, а вот сама форма была бракованной, и ее пришлось заменить. После этого было решено, что мы примерно раз в полгода будем проверять форму.

– Контроль качества включает в себя и эксплуатационный контроль. Приходилось ли Вам решать подобные задачи с помощью 3D-сканирования?

Да, и это, как правило, связано со сложными, дорогими устройствами, типа самолета. В процессе эксплуатации на него действуют колоссальные нагрузки, и существуют ограничения на структурные изменения конструкции, которые самолет приобретает в процессе эксплуатации. Компания S7 заказала у нас полное 3D-сканирование Airbus. Анализ мы не выполняли, так как эти данные составляют коммерческую тайну.

Рис. 6. Эксплуатационный контроль Airbus авиакомпании S7

Обратите внимание на скан, где видно наклейку на хвостовой части (рис. 6). Дело в том, что даже такая вещь, как наклейка влияет на расход топлива. Измерительные системы, которые есть в нашем распоряжении, настолько чувствительны, что могут рассчитать оптимальное размещение наклейки. И по просьбе S7 было произведено 3D-сканирование хвоста самолета с наклейкой и без нее, чтобы понять, насколько правильно она расположена.

Рис. 7. Контроль оснастки на авиационном заводе

Упомяну еще один проект из области . Заказчиком iQB Technologies был самолетостроительный завод, изначально поручивший нам анализ листовых изделий довольно большого размера (2 метра и больше). На основании измерений мы выяснили, что деталь гнутая и не укладывается в требуемые допуски. И это при том, что на самом заводе она прошла контроль.

После того как деталь изготовили, ее кладут на деревянный шаблон (рис. 9). Если она лежит ровно, делают вывод, что она годная. Поскольку показывал отклонения, мы предложили проверить шаблон. И вот на скане можно увидеть множество зон с отклонениями. Такие шаблоны больших размеров, по которым изготавливаются узлы или детали, имеют сложный профиль, и поэтому их тяжело контролировать. Негодность самой шаблонной конструкции – это, на самом деле, большая проблема для многих предприятий.

– И здесь на помощь приходит 3D-сканер…


Используются два понятия 3d модели: поверхностная модель и твердотельная модель . Они обладают разными свойствами и соответственно разными возможностями использования.

Поверхностную модель можно распечатать на 3d принтере, разместить на сайте, использовать для визуализации объекта. Изменить форму такой 3d модели нельзя. Если необходимо получить размеры, сделать чертеж, доработать модель, полноценно использовать ее в CAD-программе, stl-модель нужно перевести в твердотельную. Для этого необходимо произвести ряд действий.

1. Сканирование

Сканер подсвечивает изделие лазером или структурированным подсветом и получает информацию о расстоянии до поверхностей объекта. На основе этой информации строится участок поверхностной модели, который представляет собой облако миллионов точек. После получения достаточного количества таких участков программа, которая поставляется вместе со сканером, сшивает их в один объект в автоматическом или ручном режиме.

2. Обработка поверхностной модели

Поверхностная модель (полигональная модель, stl-модель, облако точек, облако треугольников) - это набор точек, соединенных в треугольники, которые образуют множество поверхностей, обозначающих границы объекта. Поверхностная модель может быть представлена как в виде облака точек, так и в виде набора треугольников, эти два вида легко трансформируются друг в друга.

Самый распространенный формат файла полигональной модели - stl, но могут быть и другие.

Модель из облака точек, полученных со сканера, как правило некачественная. Даже при идеальной для сканирования поверхности (объемная, белая, матовая, без труднодоступных мест и острых краев) 3д сканер все равно улавливает различные шумы - это могут быть как особенности самого объекта - грязь, сварные швы, метки и пр., так и внешние условия и характеристики самого сканера- освещение, температура, колебания опоры сканера. В итоге образуются лишние неровности, туннели, дыры и другие артефакты.

Некоторые операции обработки можно произвести в собственном софте сканера, но, как правило, это очень ограниченный набор функций. Для более качественной обработки используются сторонние программные комплексы, например Geomagic.

В процессе обработки над моделью может быть произведен ряд операций:

  • зашиваются дыры,
  • выравниваются поверхности,
  • удаляется шум,
  • модель правильно ориентируется;
  • уменьшается количество треугольников.

Полученную поверхность объекта можно просматривать в разных режимах: как облако точек или как сетку. Во втором случае все точки соединяются в треугольники, образуя миллион микро-поверхностей.

Эта сетка по сути и является полноценной полигональной моделью. Ее можно сохранить в формат stl или другие форматы (txt, csv, odt, xls).

Такую модель можно напечатать на 3d принтере, но сверх того возможности ее использования ограничены.

Важно! Несмотря на то, что на данном этапе мы получили stl-модель, она пока еще не пригодна для использования на многокоординатных станках с ЧПУ, так как содержит слишком большое количество поверхностей. Для станка с ЧПУ требуется дополнительная обработка базовой сканированной stl-модели: выравнивание, усреднение, уменьшение количества поверхностей.

По той же причине такую модель не получится загрузить в CAD-систему. SolidWorks, например, выдаст предупреждение о том, что модель содержит слишком большое количество поверхностей.

3. Построение твердотельной модели

На данном этапе на основе полигональной модели происходит построение нормального твердого тела также в специализированном софте, например Geomagic Design.

Используемые операции: вытягивание эскизов, деление на области, поиск вытянутых областей, построение замкнутого эскиза.

При правильной обработке модели на выходе мы получаем модель с деревом построений, пригодную для дальнейшей обработки в CAD-системе.

4. Контроль правильности построения модели

На данном этапе полученная твердотельная модель сравнивается со сканированной. Специальный инструмент программы позволяет в цветном виде увидеть отклонения, вызванные ошибками построения модели. Придется вернуться на несколько шагов назад и исправить некоторые операции.

5. Экспорт в CAD-систему

Этот, казалось бы, автоматический этап также может выявить ряд ошибок на этапе обработки модели. Например программа Geomagic Design Х с помощью своего API строит в открытом заранее SolidWorks модель на лету согласно собственному дереву построений. В конце может появится ошибка - в ней будет описано, на каком этапе построения модели возникла ошибка - идем обратно в Design X и редактируем в дереве этот элемент.

Общий процесс обработки получается довольно сложным, что и определяет более высокую стоимость 3d сканирования, по сравнению с ручным образмериванием изделий. Надеемся, что развитие технологий 3d сканирования и обработки 3d моделей позволит в дальнейшем упростить или объединить эти процедуры.