Сайт о телевидении

Сайт о телевидении

» » Амплитудная модуляция частота несущего колебания. Модуляция - чем отличаются виды модуляции AM, ЧМ (FM) и SSB: просто о сложном

Амплитудная модуляция частота несущего колебания. Модуляция - чем отличаются виды модуляции AM, ЧМ (FM) и SSB: просто о сложном

Для передачи звука в эфир необходимо высокочастотное несущее колебание, или просто несущая, на которую с помощью процесса модуляции накладываются звуковые, низкочастотные колебания.

Несущая вырабатывается задающим генератором, работающим на отведенной для радиостанции частоте (рис. 1.21) и имеющим очень высокую стабильность. Его синусоидальные колебания 1 поступают на модулятор, где взаимодействуют со звуковыми колебаниями 2, образуя модулированный сигнал 3. Последний подается на усилитель мощности, а с его выхода - на антенну радиостанции.

Очень часто амплитудную модуляцию (AM) осуществляют непосредственно в усилителе мощности, изменяя напряжение питания в такт со звуковыми колебаниями.

Очевидно, что при отрицательной полуволне звукового напряжения амплитуда может упасть только до нуля, а при положительной полуволне - возрасти не более чем в два раза (иначе будет перемодуляция и искажения). Это соответствует коэффициенту модуляции (отношению амплитуды колебаний звуковой частоты к амплитуде несущей) m = 1. Такая ситуация возможна только на пиках звукового сигнала, в среднем же модуляция получается мелкой, a m ‹‹ 1. При испытаниях, контроле и настройке передатчиков с помощью синусоидального звукового сигнала устанавливают m = 0,3.

Разберем теперь спектры сигналов при амплитудной модуляции. Говорят, что радиостанция работает на какой-то определенной частоте, например 549 кГц («Маяк» в диапазоне СВ). Но только ли одну эту частоту занимает сигнал радиостанции? Оказывается, нет. Радиостанция занимает некоторую полосу частот вокруг указываемой в справочниках и волновых расписаниях. Для более подробного рассмотрения данного вопроса допустим, что модуляция производится чистым тоном, то есть звуковым сигналом с одной единственной частотой F.

В этом разделе нам удобнее будет пользоваться не циклическими частотами f и F, соответствующими числу колебаний в секунду, а угловыми частотами ω и Ω, связанными с циклическими простыми соотношениями: ω = 2πf и Ω = 2πF. Модулированный AM сигнал записывается в виде: s(t) = (1 + m cos Ω t) cos ω t, где m - коэффициент модуляции, m < 1. Это выражение в точности описывает форму сигнала 3 на рис. 1.21. Но его можно представить и в другой форме, раскрыв скобки и воспользовавшись известными тригонометрическими формулами для произведения двух косинусов:

s(t) = cos ω t + (m/2) cos (ω+ Ω) t + (m/2) cos (ω - Ω) t.

Теперь мы видим, что излучается не один сигнал, а целых три, в соответствии с тремя слагаемыми этого выражения.

Спектральная диаграмма излучаемого сигнала показана на рис. 1.22. Слева на ней в виде вертикальной линии показана звуковая частота F, в середине - несущая частота f 0 , соответствующая первому слагаемому, а по бокам от нее еще две частоты, соответствующие остальным слагаемым, на частотах f 0 + F и f 0 - F. Их так и называют: боковые частоты, верхняя и нижняя. Боковых частот нет в отсутствии модуляции, когда m = 0, но они возрастают до половины уровня несущей (который для простоты рассуждений принят единичным) при полной модуляции, когда m = 1. Мощность же каждой из боковых частот пропорциональна квадрату их амплитуды и изменяется при возрастании коэффициента модуляции от нуля до четверти от мощности несущей.

Что же получится, если модулировать несущую не чистым тоном, а некоторым спектром звуковых частот, соответствующим речи или музыке? Каждый компонент звукового спектра образует свою пару боковых частот, и получается сложный спектр модулированного сигнала, содержащий несущую, верхнюю и нижнюю боковые полосы, как показано на рис. 1.23. Верхняя боковая полоса (ВБП) в точности соответствует спектру звуковых частот (ЗЧ), но смещена по оси частот вверх на интервал, соответствующий значению несущей.

Нижняя боковая полоса (НБП) также точно отображает спектр звуковых частот, но инвертирована, то есть зеркально отражает верхнюю боковую полосу относительно несущей. По-прежнему боковые полосы исчезают при отсутствии модуляции и их суммарная мощность возрастает до половины мощности несущей на пиках модуляции.

Теперь мы, наконец, можем с определенностью ответить на вопрос о том, какую полосу частот занимает сигнал радиостанции. В справочниках указывают частоту несущей f 0 , расположенной в середине спектра AM сигнала, а полная ширина полосы сигнала соответствует удвоенной верхней модулирующей частоте F B . В соответствии с отечественными ГОСТ верхняя модулирующая частота принята равной 10 кГц, следовательно ширина спектра частот сигнала радиостанции составляет 20 кГц.

При ам­плитудной модуляции в соответствии с законом передаваемого со­общения меняется амплитуда модулируемого сигнала. Амплитудная модуляция - наиболее распространенный тип аналоговой модуляции в системах радиосвязи, радиовещания и телевидения.

Простейшая разновидность амплитудной модуляции -однотональная (от слова тон - звук одной частоты), при которой модулирующий сигнал представляет собой гармоническое колебание:

где
- амплитуда модулирующего сигнала (максимальная высота синусоиды) ;

- круговая (угловая) частота,
;

- период модулирующего колебания;

- начальная фаза.

В качестве несущего колебания в системах связи и вещания практически всегда применяется высокочастотный гармонический сигнал.

Примем в качестве тестового аналогового сообщения синусои­дальный сигнал:

(40)

Несущие, т.е. модулируемые колебания

(41)

где частота несущих колебаний
- частоты модулирующего колебания.

В результате воздействия колебания (40) на амплитуду несущих колебаний (41) получим сигнал с амплитудной модуляцией:

где
- коэффициент амплитудной модуляции.

Графики трех названных колебаний приведены на рис. 13 и рис. 14.

С целью наглядности на рис. 15, а , б изображены графики модулирующего колебания при
, несущего – при
.

      1. Спектр амплитудно-модулированного сигнала

Из (42) получим выражение:

которое в соответствии с формулой для произведения тригономет­рических функций приведем к виду

из которого следует, что спектр колебания при амплитудной моду­ляции тональным сигналом состоит из трех составляющих с часто­тами: (совпадает с частотой несущей), (
) (нижняя боковая), (
) (верхняя боковая). Амплитуда боковой состав­ляющей
.

Рис. 15. Амплитудная модуляция

a - модулирующий (управляющий) сигнал; б - несущее колебание (радиочастотный сигнал); в - амплитудно-модулированный сигнал.

Ширина спектра AM колебания
. Следовательно, имея базуB=1, сигнал при ампли­тудной модуляции относится к классу узкополосных.

При модуляции более сложным сообщением, занимающим спектр от
до
(рис. 16,а), соответственно изменится и спектр AM колебания, представленный на рис. 16,б.

Спектр амплитудно-модулированного сигнала - совокупность простых (гармонических) колебаний (составляющих) разных частот и амплитуд, на которые может быть разложен по частотной оси сложный колебательный процесс, т.е. АМ-сигнал. Аналитическое выражение для такого сигнала с учетом тригонометрической формулы произведения косинусов можно представить в виде суммы колебаний:

(45)

Из формулы (44) видно, что при однотональной модуляции спектр АМ-сигнала состоит из трех высокочастотных составляющих: исходного несущего колебания амплитудой
и частотой, а также двух новых гармонических колебаний с разными частотами
и
, но одинаковыми амплитудами
/2 , появляющихся в процессе амплитудной модуляции и отражающих передаваемое сообщение.

Колебания с частотами
и
называют соответственно верхней и нижней боковыми составляющими (частотами). Они расположены симметрично относительно несущей частоты.

Спектр однотонального АМ-сигнала показан на рис. 17. Из рисунка наглядно видно, что ширина спектра АМ-сигнала (
) при однотональной модуляции равна удвоенному значению частоты модуляции:

(46)

где F – циклическая частота модуляции (модулирующего сигнала).

При отсутствии модуляции (M = 0) амплитуды боковых составляющих равны нулю и спектр АМ-сигнала преобразуется в спектр несущего колебания (составляющая
на частоте). В случае модулирования несущей сигналом сложной формы, состоящим из нескольких гармоник разных частот, каждая гармоника модулирующего (управляющего) сигнала создает две боковые частоты в спектре радиосигнала, расположенные симметрично относительно несущей частоты. Следовательно, спектр такого АМ-сигнала состоит из несущей и двух боковых полос - верхней и нижней. Ширина каждой боковой полосы равна
, a ширина спектра сложного АМ-сигнала оказывается равной удвоенному значению наивысшей частоты в спектре модулирующего сигнала (рис. 18).

Продолжаем серию общеобразовательных статей, под общим названием «Теория радиоволн».
В предыдущих статьях мы познакомились с радиоволнами и антеннами: Давайте ближе познакомимся с модуляцией радиосигнала.

В рамках этой статьи, будет рассмотрена аналоговая модуляция следующих видов:

  • Амплитудная модуляция
  • Амплитудная модуляция c одной боковой полосой
  • Частотная модуляция
  • Линейно-частотная модуляция
  • Фазовая модуляция
  • Дифференциально-фазовая модуляция
Амплитудная модуляция
При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.

Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции - это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.

Спектр АМ

Данный спектр свойственен для модулирующего колебания постоянной частоты.

На графике, по оси Х представлена частота, по оси У - амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра .
В нормальном случае, при коэффициенте модуляции <=1, амплитуды боковых полос меньше или равны половине амплитуды несущей.
Полезная информация заключена только в верхней или нижней боковых полосах спектра. Основная спектральная составляющая - несущая, не несет полезной информации. Мощность передатчика при амплитудной модуляции в большей части расходуется на «обогрев воздуха», за счет не информативности самого основного элемента спектра.

Амплитудная модуляция с одной боковой полосой

В связи с неэффективностью классической амплитудной модуляции, была придумана амплитудная модуляция с одной боковой полосой.
Суть ее заключается в удалении из спектра несущей и одной из боковых полос, при этом вся необходимая информация передается по оставшейся боковой полосе.

Но в чистом виде в бытовом радиовещании этот вид не прижился, т.к. в приемнике нужно синтезировать несущую с очень высокой точностью. Используется в аппаратуре уплотнения и любительском радио.
В радиовещании чаще используют АМ с одной боковой полосой и частично подавленной несущей:

При такой модуляции соотношение качество/эффективность наилучшим образом достигается.

Частотная модуляция

Вид аналоговой модуляции, при которой, частота несущей изменяется по закону модулирующего низкочастотного сигнала. Амплитуда при этом остается постоянной.

а) - несущая частота, б) модулирующий сигнал, в) результат модуляции

Наибольшее отклонение частоты от среднего значения, называется девиацией .
В идеальном варианте, девиация должна быть прямо пропорционально амплитуде модулирующего колебания.

Спектр при частотной модуляции выглядит следующим образом:

Состоит из несущей и симметрично отстающей от нее вправо и влево гармоник боковых полос, на частоту кратную частоте модулирующего колебания.
Данный спектр представляет гармоническое колебание. В случае реальной модуляции, спектр имеет более сложные очертания.
Различают широкополосную и узкополосную ЧМ модуляцию.
В широкополосной - спектр частот, значительно превосходит частоту модулирующего сигнала. Применяется в ЧМ радиовещании.
В радиостанциях применяют в основном узкополосную ЧМ модуляцию, требующую более точной настройки приемника и соответственно более защищенную от помех.
Спектры широкополосной и узкополосной ЧМ представлены ниже

Спектр узкополосной ЧМ напоминает амплитудную модуляцию, но если учесть фазу боковых полос, то окажется, что эти волны имеют постоянную амплитуду и переменную частоту, а не постоянную частоту и переменную амплитуду (AM). При широкополосной ЧМ амплитуда несущей может быть очень малой, что обусловливает высокую эффективность ЧМ; это значит, что большая часть передаваемой энергии содержится в боковых частотах, несущих информацию.

Основные преимущества ЧМ, перед АМ - энергоэффективность и помехоустойчивость.

Как разновидность ЧМ, выделяют Линейно-частотную модуляцию.
Суть ее заключается в том, что частота несущего сигнала изменяется по линейному закону.

Практическая значимость линейно-частотно-модулированных (ЛЧМ) сигналов заключается в возможности существенного сжатия сигнала при приеме с увеличением его амплитуды над уровнем помех.
ЛЧМ находят применение в радиолокации.

Фазовая модуляция
В реальности, больше применяют термин фазовая манипуляция, т.к. в основном производят модуляцию дискретных сигналов.
Смысл ФМ таков, что фаза несущей, изменяется скачкообразно, при приходе очередного дискретного сигнала, отличного от предыдущего.

Из спектра можно видеть, почти полное отсутствие несущей, что указывают на высокую энергоэффективность.
Недостаток данной модуляции в том, что ошибка в одном символе, может привести к некорректному приему всех последующих.

Дифференциально-фазовая манипуляция
В случае этой модуляции, фаза меняется не при каждом изменении значения модулирующего импульса, а при изменении разности. В данном примере при приходе каждой «1».

Преимущество этого вида модуляции в том, что в случае возникновения случайной ошибки в одном символе, это не влечет дальнейшую цепочку ошибок.

Стоит отметить, что существуют также фазовые манипуляции такие как квадратурная, где используется изменение фазы в пределах 90 градусов и ФМ более высоких порядков, но их рассмотрение выходит за рамки данной статьи.

PS: хочу еще раз отметить, что цель статей не заменить учебник, а рассказать «на пальцах» об основах радио.
Рассмотрены лишь основные виды модуляций для создания у читателя представления о теме.

Амплитудно-модулированные сигналы и их спектры

При амплитудной модуляции (АМ) амплитуда несущего сигнала подвергается воздействию сигнала сообщения. Мгновенное значение АМ колебания с гармонической несущей может быть записано в виде

где U m (t) – «переменная амплитуда» или огибающая амплитуд;

– круговая частота несущего сигнала;

– начальная фаза несущего сигнала.

«Переменная амплитуда» U m (t) пропорциональна управляющему сигналу (сигналу сообщения) U с (t):

, (2.17)

где U m 0 – амплитуда несущего сигнала до амплитудной модуляции, то есть поступающего на модулятор;

– коэффициент пропорциональности.

При модуляции несущего сигнала сигналом сообщения необходимо обеспечить, чтобы U m (t) была величиной положительной. Это требование выполняется выбором коэффициента .

Для исключения влияния переходных процессов в радиоэлектронной цепи модулятора и других цепях преобразования модулированного сигнала на спектр сигнала сообщения необходимо выполнение следующего условия: наивысшая по частоте спектральная составляющая в ограниченном спектре сигнала сообщения должна иметь частоту , – что обеспечивается выбором частоты несущего сигнала.

На рис. 2.10 и 2.11 показаны два примера построения графиков АМ колебаний. На рисунках изображены следующие графики:

а – сигнал сообщения u c (t);

б – несущий сигнал u 0 (t);

в – огибающая амплитуд U m (t);

г – АМ сигнал u(t).

Для понимания образования спектра АМ сигнала рассмотрим простой случай: однотональное амплитудно-модулированное колебание. В этом случае модулирующий сигнал является гармоническим (однотональным):

с амплитудой U mc , частотой и начальной фазой .

Огибающая амплитуд однотонального АМ колебания имеет вид:

где – максимальное приращение амплитуды. Мгновенное значение однотонального АМ колебания

Отношение называется коэффициентом глубины модуляции или просто коэффициентом модуляции . Так как U m (t)> 0, то 0< m< 1. Часто m измеряют в процентах, тогда 0< m< 100%. С учетом введения коэффициента модуляции однотональное модулированное колебание запишем в виде:

Графики, поясняющие процесс однотональной амплитудной модуляции, приведены на рис. 2.12.

Рис. 2.12. Однотональная амплитудная модуляция

Для нахождения спектра однотонального амплитудно-модулированного сигнала необходимо сделать следующие преобразования:

(2.20)

При выводе выражения (2.20) использована тригонометрическая формула

Таким образом, при однотональной амплитудной модуляции несущего сигнала спектр содержит три составляющие: одна на несущей частоте имеет амплитуду U m 0 и две на боковых частотах с амплитудами mU m 0 /2, зависящими от коэффициента модуляции; при m< 1 их амплитуды составляют не более половины амплитуды несущей гармоники. Начальные фазы колебаний боковых спектральных составляющих отличаются от начальной фазы на величину . На рис. 2.13 показаны графики АЧС и ФЧС однотонального амплитудно-модулированного колебания.

Рис. 2.13. Спектр однотонального амплитудно-модулированного колебания

Из анализа спектра следует, что АЧС является четным относительно частоты , а ФЧС нечетным относительно точки с координатами ( , ).

При условии все составляющие спектра являются высокочастотными, следовательно, такой сигнал может эффективно передаваться с помощью ЭМВ.

Рассмотрим энергетические параметры однотонального АМ сигнала. Средняя за период несущего сигнала мощность, выделяемая на единичном сопротивлении,

В отсутствии модуляции эта мощность равна

а при модуляции изменяется в пределах от

.

Если m=100%, то , а P min = 0. Средняя мощность сигнала за период модуляции будет складываться из мощностей спектральных составляющих

В случае m=100% Р ср = 1,5Р 0 .

Перейдем к рассмотрению общего случая к так называемому многотональному АМ сигналу. Модулирующий сигнал, то есть сигнал сообщения, имеет спектр вида (1.22)

.

Огибающая амплитуд имеет вид:

где – максимальное приращение амплитуды n-ой гармоники модулирующего сигнала.

Выражение для многотонального АМ сигнала примет следующий вид:

(2.23)

где – коэффициент модуляции n-ой гармоники модулирующего сигнала. Применяя аналогичные, как это было сделано для однотональной амплитудной модуляции, тригонометрические преобразования, получим

(2.24)

Выражение (2.24) представляет спектр амплитудно-модулированного сигнала. Относительно колебания с частотой имеют место два ряда составляющих с верхними и нижними боковыми частотами. Эти составляющие образуют так называемые верхнюю и нижнюю боковые полосы спектра.

Передать весь спектр АМ сигнала по каналу информации невозможно по следующим причинам. Во-первых, нельзя создать идеальную линейную цепь в области частот , см. п.1.4. Во-вторых, при увеличении полосы пропускания линейной цепи может уменьшиться отношение мощности сигнала к мощности шумов (см. п.1.5). В-третьих, полоса пропускания, по возможности, должна быть минимальной, чтобы в заданном частотном диапазоне работало как можно больше радиолиний (радиоканалов), не влияющих друг на друга, то есть не создающих друг другу помех. Следовательно, спектр сигнал ограничивается частотой , наиболее удаленной от частоты несущего сигнала. На рис. 2.14 приведенный амплитудный спектр АМ сигнала. Ширина спектра определяется максимальной частотой в спектре модулирующего сигнала и составляет 2 . Примерные значения ширины спектра для некоторых АМ сигналов представлены в табл. 1.1.

Непрерывные методы модуляции

Методы модуляции сигналов

Лекция № 7

В ряде случаев при телеизмерениях необходимо передавать сведения о непрерывном процессе при помощи непрерывных сообщений. И если при этом необходимо получение сведений о бесконечно большом числе градации, то и сигналы, при помощи которых передаются непрерывные сообщения, должны быть непрерывными.

Непрерывный сигнал образуется при помощи непрерывных методов модуляции.

Модуляция – это образование сигнала путем изменения параметров переносчика под воздействием сообщения.

При непрерывных методах модуляции в качестве переносчика используется ВЧ – синусоидальное колебание, или несинусоидальное. Так как синусоидальное колебание характеризуется такими основными параметрами, как амплитуда, частота и фазы, то существует три основных типа модуляции: амплитудная (АМ), частотная (ЧМ) и фазовая (ФМ). Имеют место также и разновидности этих модуляции, о чем будет сказано ниже, а также колебании основных типов модуляции, так называемые двукратные модуляции.

Можно непрерывное сообщение передавать и непосредственно без использования переносчика ВЧ, т.е. без модуляции. Однако модуляция расширяет возможности передачи сообщений по следующим причинам:

а) увеличивается число сообщений, которые могут передаваться по одной линии связи путем использования частотного разделения сигналов и поднесущих частот;

б) повышается достоверность передаваемых сигналов при использовании помехоустойчивых типов модуляции;

в) повышается эффективность излучения сигнала при передаче по радиоканалу. Это объясняется тем, что размер антенны должен составлять не менее 1/10 длины волны излучаемого согнала. Так, при передаче сообщения частотой 10 кГц, имеющего длину волны 30 км, потребовалось бы антенна длиной в 3 км. Если это сообщение передать на несущий 200 кГц, то это уменьшит длину антенны в 20 раз (150 м).

Амплитудной модуляцией (АМ) называется образование сигнала путем изменения амплитуды гармонического колебания пропорционально мгновенным значением напряжения или тока другого электрического сигнала (сообщения).

Будем рассматривать случай амплитудной модуляции при которой передаваемое сообщение является простейшим гармоническим колебанием U с = U Ω cos Ωt (рис. а ) где Ω – частота, а U Ω – амплитуда колебания, ВЧ – переносчик, или несущая, U n = U w 0 = cos ω 0 t (рис.б ), ω 0 – частота несущей, а U ω 0 – амплитуда.

Под воздействием сообщения на амплитуду несущей образуется новое колебание, в котором изменяется амплитуда, но остается постоянной частота ω 0 .

Амплитуда несущей будет изменятся по линейному закону.



U а м = U ω 0 + ku c = U ω 0 + k U Ω cos Ωt = U ω0 (1+m cos Ωt ).

где k – коэффициент пропорциональности, а

– (4-2)

относительное изменение амплитуды несущей, называемое коэффициентом или глубиной модуляции. Иногда коэффициент модуляции выражают в процентах. Если амплитуда модулированного колебания возрастает до удвоенной величины по сравнению с амплитудой несущей, то глубина модуляции составляет 100%.

Амплитудное – модулирование колебание будет иметь вид, представленный на рис. в), а его мгновенное значение будет определятся равенство

Uам =Uω 0 (1 + m cos Ω t ) cos ω 0 t (4-3)

Раскрыв скобки и воспользовавшись тем, что

cos Ωt cosω 0 t= }