Сайт о телевидении

Сайт о телевидении

» » И начальной фазой. Воздействие сосредоточенной по спектру помехи

И начальной фазой. Воздействие сосредоточенной по спектру помехи

3. Модулированные сигналы. Теория передачи сигналов

3. Модулированные сигналы

3.1. Аналитическое представление модулированных колебаний

Модулированные сигналы различаются по виду переносчика (несущей) и по его модулированным параметрам. В качестве переносчиков в настоящее время широко используются гармонические колебания, периодическая последовательность импульсов и узкополосный случайный процесс. Каждый из этих переносчиков характеризуется определенным числом параметров. Параметры, изменяющиеся во времени под действием передаваемого сообщения, называются информационными, так как в их изменениях заложена передаваемая информация. Параметры, которые остаются неизменными, являются постоянными признаками сигнала; они могут быть использованы на приеме для отличения сигнала от помех. Во многих случаях модулированный сигнал можно представить как произведение двух функций

где - функция, представляющая несущее колебание (переносчик), а - модуляционная функция, выражающая воздействие передаваемого сообщения u (t ) на несущую f (t ). Когда для представления несущей выбирается аналитический сигнал (2.98), то для каждой модуляционной функции M (t ) существует комплексный модулированный сигнал s (t ). При аналитическом представлении сигнала его действительная и мнимая части соответствуют реально существующему модулированному сигналу, а его модуль определяет огибающую. В случае, когда несущей является гармоническое колебание , модуляционная функция выражает воздействие видеосигнала u (t ) на амплитуду (частоту или фазу) несущей.

Спектр модулированного колебания (3.1) согласно теореме о спектре произведения определяется сверткой

(3.2)

Отсюда следует, что процесс модуляции приводит к сложному преобразованию спектра сигнала. Если несущая представляет собой узкополосное колебание, то модуляция приводит к расширению спектра и переносу его в область около несущей частоты (рис. 3.1 а). Если несущая - чистая синусоида, то имеет место простое смещение спектра (рис. 3.1 б). Если несущая записывается в форме аналитического сигнала, спектр которого существует только для положительных частот, то частотное преобразование относится только к положительным частотам, как показано на рис. 3.1.

Рис. 3.1. Смещение спектра при модуляции: общий случай аналитической несущей (а), случай гармонической несущей (б)

3.2. Основные виды аналоговой модуляции

К основным видам аналоговой модуляции относятся амплитудная модуляция (AM), фазовая модуляция (ФМ) и частотная модуляция (ЧМ). Разновидностями AM являются балансная (БМ) и однополосная (ОМ) модуляции.

Непосредственная передача. Наиболее простым сигналом для передачи непрерывного сообщения u (t ) является сигнал, пропорциональный u (t ):

s (t )= Au (t ), (3.3)

где А - некоторая постоянная. Такой сигнал соответствует форме (3.1), если в ней положить f (t )= A и М [ u (t )]= u (t ). Примером такой непосредственной передачи сообщений является обычная телефонная связь по проводам.

Амплитудная модуляция. Для этого вида модуляции: f (t )=,

где т - коэффициент модуляции.

Модулированный сигнал запишется

Это выражение даёт представление реального AM сигнала

Спектр сигнала в общем случае определяется как преобразование Фурье от s (t ):

Учитывая, что и

где - спектр передаваемого сообщения. Отсюда видно, что при AM происходит перенос спектра сообщения на частоту (рис. 3.16). Ширина спектра сигнала F при AM в два раза шире спектра сообщения Fm :

u (t )=,

Из этого выражения следует, что амплитуда модулированного сигнала изменяется от до , а мощность сигнала соответственно от до

Где мощность несущего колебания. Средняя мощность AM сигнала равна:

При m=l и Pcp =1,5 PH ; отношение средней мощности к максимальной равно 0,375. "Эти соотношения указывают на существенный недостаток амплитудной модуляции - плохое использование мощности передатчика.

Балансная модуляция (БМ). Кроме обычной AM применяется передача AM без несущей - балансная модуляция. Для этого вида модуляции:

f (t )=, (3.7)

Спектр сигнала при БМ

Здесь имеются только две боковые полосы - несущая отсутствует.

При однополосной модуляции (ОМ) передается только одна боковая полоса. Для этого вида модуляции при передаче верхней боковой полосы:

f (t )=, (3.10)

Спектр сигнала ОМ

(3.12)

Действительно, если разложить функции u (t ) и (t ) в ряд Фурье:

и учесть, что cosx; и sinx являются парой преобразования Гильберта, по получим

Такое представление является аналитическим для всех >0. Замена модуляционной функции [ u (t )] на сопряженную ей *[ u (t )]= u (t )- i (t ) дает форму сигнала s (t ), соответствующую нижней боковой полосе.

Системы БМ и ОМ позволяют сократить бесполезный расход энергии на составляющую несущей частоты, а при ОМ дополнительно вдвое сократить ширину спектра передаваемого сигнала. Однако реализация указанных преимуществ требует более сложной аппаратуры.

Угловая модуляция. В случае угловой модуляции (ЧМ и ФМ) модуляционная функция имеет вид

При синусоидальной несущей f (t )= модулированный сигнал будет иметь следующее выражение:

Реальный сигнал

Это обычное представление сигнала с угловой модуляцией. Согласно (3.15) полная фаза высокочастотного колебания равна:

(3.16)

а мгновенная частота колебания изменяется по закону производной от , т. е.

(3.17)

Наоборот, при изменении частоты по закону ω(t ) (3.17) фаза колебания ψ(t) будет изменяться по закону интеграла от ω(t ):

(3.18)

В случае фазовой модуляции . Тогда на основании (3.15) и (3.16) имеем:

(З.19) (3.20)

При частотной модуляции по закону передаваемого сообщения изменяется частота несущего колебания

(3.21)

где- амплитуда частотного отклонения (девиация частоты). Полная фаза колебания при этом будет равна:

Тогда выражение ЧМ сигнала запишется в виде

При модуляции одним тоном, когда и (t )= cosΩt , выражения сигнала при ФМ и ЧМ по форме имеют одинаковый вид:

где т - индекс модуляции: при ФМ при ЧМ

Для определения спектра сигнала заменим в (3.24) косинус суммы двух углов по известным формулам из тригонометрии

Здесь для упрощения записи мы положим =0. Из теории бесселевых функций известны следующие соотношения:

где - бесселева функция первого рода k - г o порядка от аргумента т. После подстановки (3.26) и (3.27) в (3.25) получаем

Таким образом, оказывается, что даже при синусоидальных ЧМ и ФМ получается теоретически безграничный спектр. Он состоит из несущей ω0 и двух боковых полос . Амплитуда несущей А010(т) при ЧМ и ФМ. в отличие от AM, зависит от модулирующего колебания. При некоторых значениях т она может быть вообще равна нулю (т =2, 3; 5,4). Амплитуда боковых частот равна . Однако практически ширина спектра ЧМ и ФМ сигналов ограничена.

Рис. 3.2. Спектр сигнала с угловой модуляцией

На рис. 3.2 приведен спектр сигнала с угловой модуляцией одним тоном при m=5. Как видим, амплитуды боковых частот быстро убывают с увеличением номера гармоники k . При k > m составляющие спектра малы и ими можно пренебречь. Практически ширина спектра сигнала при угловой модуляции равна F=2(m+l)Fm, где F т = частота модулирующего колебания.

Различие между ЧМ и ФМ проявляется только при изменении частоты модуляции Ω. При ЧМ т=, поэтому при m >>1 полоса практически не зависит от Fm . При ФМ b

при m>>1 ширина спектра будет равна F =2 ΔφfmFm т. е. она зависит от модулирующей частоты Fm . В этом и состоит различие в спектрах ЧМ и ФМ.

В случае малого индекса модуляции спектр ЧМ и ФМ сигналов, так же как и в случае AM, имеет только три составляющие:

Это непосредственно следует из (3.28), если учесть, что при m << l sin (msinΩt ) msinΩt , а cos (msinΩt ) 1.

Сравнение (3.6) и (3.29) показывает, что различие спектров сигналов при AM и угловой модуляции заключается только в сдвиге фазы колебания нижней боковой частоты на 180° относительно его положения при AM. Это различие существенно и иллюстрируется векторными диаграммами, изображенными на рис. 3.3.

Рис. 3.3. Векторные диаграммы: AM сигнала (а), ЧМ сигнала (ш<1) (б)

Однополосная угловая модуляция. Если функция - аналитическая:

то сигнал

также является аналитической функцией при . Он не содержит отрицательных частот, хотя и имеет бесконечный спектр в области положительных частот:

Выражение (3.30) определяет новый модулированный сигнал. Этот сигнал представляет собой вариант сигнала однополосной угловой модуляции. Для доказательства этого рассмотрим случай частотной модуляции одним тоном u (t ) = sinΩt . Для этого случая функция φ(t ) и ее преобразование Гильберта принимают вид:

Где индекс модуляции. Модулирующая функция при этом преобразуется к виду

, а модулированный сигнал

Отсюда видно, что спектр модулированного сигнала состоит из одной боковой полосы частот. Сигнал однополосной ЧМ можно получить из обычного ФМ сигнала путем преобразования Гильберта (например, посредством фазового сдвига на ) и модуляции амплитуды по экспоненциальному закону. Тогда ограничение такого сигнала в приемнике восстановит нижнюю боковую полосу частот и позволит применить для детектирования обычный дискриминатор.

3.3. Сигналы при дискретной модуляции

При дискретной модуляции закодированное сообщение u (t ), представляющее собой последовательность кодовых символов {}, преобразовывается в последовательность элементов сигнала {} . Последние отличаются от кодовых символов лишь электрическим представлением. В частном случае дискретная модуляция состоит в воздействии кодовых символов i } на переносчик f (t ). Такая дискретная модуляция аналогична непрерывной.

Посредством модуляции один из параметров переносчика изменяется по закону, определяемому кодом. При непосредственной передаче переносчиком может быть постоянный ток, изменяющимися параметрами которого являются величина и направление. Обычно же в качестве переносчика, как и при непрерывной модуляции, используется переменный ток (гармоническое колебание). В этом случае можно получить амплитудную (AM), частотную (ЧМ) и фазовую (ФМ) модуляции. Дискретную модуляцию часто называют манипуляцией, а устройство, осуществляющее дискретную модуляцию (дискретный модулятор), называют манипулятором или генератором сигналов.

На рис. 3.4 приведены графики сигналов при различных видах манипуляции. При AM символу 1 соответствует передача несущего колебания в течение времени (посылка), символу 0 - отсутствие колебания (пауза). При ЧМ передача несущего колебания с частотой соответствует символу 1, а передача колебания соответствует 0. При ФМ меняется фаза несущей на 180° при каждом переходе от 1 к 0 и от 0 к 1.

Рис. 3.4. Сигналы при различных видах дискретной модуляции

Наконец, в настоящее время применяется относительная фазовая модуляция (ОФМ). В отличие от ФМ, в системе ОФМ фаза несущего колебания изменяется на 180° при передаче символов 1 и остается неизменной при передаче символов 0.

При ОФМ манипуляция каждой данной посылки осуществляется относительно предыдущей. Очевидно, таким способом можно манипулировать (изменять) любой параметр несущего колебания: при изменении частоты получим относительную частотную манипуляцию (ОЧМ), при изменении амплитуды относительную амплитудную манипуляцию (ОАМ). Дельта-модуляция, о которой мы упоминали в § 1.6, также является одним из видов относительной манипуляции.

Рассмотрим спектры сигналов при некоторых видах дискретной модуляции. Будем полагать, что модуляция производится двоичным сообщением u (t ), представляющим собой периодическую последовательность прямоугольных импульсов с периодом .

Амплитудная манипуляция. Сигнал AM можно записать в виде

где периодическая функция u (t ) на интервале равна:

(3.33)

Представим u (t ) рядом Фурье

(3.34)

Тогда сигнал AM запишется в виде

(3.35)

Рис. 3.5. Спектр сигнала при амплитудной манипуляции

Спектр сигнала AM, построенный по ф-лам (3.35), показан на рис. 3.5. Он состоит из несущего колебания с амплитудой и двух боковых полос, спектральные составляющие которых имеют амплитуды

(3.36)

Огибающая спектра дискретного сигнала AM выражается формулой

(3.37)

т. е. представляет собой смещенный на частоту спектр одиночного импульсного сигнала u (t ).

Фазовая манипуляция. Сигнал ФМ можно записать в виде

Периодическая функция, определяющая закон изменения фазы на интервале , выражается формулой

(3.39)

Подстановка (3.39) в выражение (3.38) дает

Представим u (t ) рядом Фурье

Тогда сигнал ФМ запишется в виде

(3.40)

Рис. 3.6. Спектры сигналов при фазовой манипуляции

Спектр сигнала ФМ для различных значений девиаций фазы , построенной на основании ф-лы (3.40), показан на рис. 3.6. Он состоит из несущего колебания и двух боковых полос. Амплитуда несущего колебания зависит от : и при =- обращается в 0. Амплитуды спектральных составляющихв боковых полосах также зависят от . При увеличении от 0 до , как видно из рис. 3.6, амплитуда несущего колебания убывает до нуля, а амплитуды боковых частот увеличиваются.

Когда =- вся энергия сигнала ФМ содержится только в боковых полосах. Так же, как и при AM, огибающая дискретного спектра боковых частот представляет собой смещенный на частоту спектр одиночного импульсного сигнала u (t ), умноженный нa sin:

(3.41)

Аналогично определяется спектр сигнала при частотной манипуляция.

3.4. Сигналы при импульсной модуляции

В системах связи с импульсной модуляцией переносчиком Информации служит периодическая последовательность импульсов одинаковой формы

(3.42)

где U (t ) - нормированная функция, характеризующая форму импульса; A 0 - амплитуда импульса; - начало переднего фронта k -го импульса ; - период следования импульсов; - начало отсчета последовательности; - длительность k -го импульса, отсчитываемая на некотором заданном уровне.

3.7. Сигналы при различных видах импульсной модуляции

При модуляции один из параметров последовательности изменяется в соответствии с передаваемым сообщением (рис. 3.7). Так, при амплитудно-импульсной модуляции (АИМ) изменяется амплитуда импульса А:

(3.43)

Рис. 3.8. Параметры периодической последовательности прямоугольных импульсов

При широтно-импульсной модуляции (ШИМ) изменяется длительность импульса

(3.44)

где - максимальное отклонение фронта импульсов в одну сторону.

При фазовой импульсной модуляции (ФИМ) изменяется сдвиг

импульсов относительно тактовых точек .

При частотно-импульсной модуляции (ЧИМ) в соответствии с

передаваемым сообщением изменяется частота следования импульсов.

Так же, как и при ФИМ, импульсы сдвигаются относительно тактовых точек, но в другой закономерности. Различие между ФИМ и ЧИМ аналогично различию между ФМ и ЧМ синусоидального переносчика.

Периодическую последовательность прямоугольных импульсов

(рис. 3.8) можно записать в следующем виде:

Такую последовательность импульсов можно представить рядом Фурье. В соответствии с выражениями (2.67) и (2.68) имеем

,где ,

В нашем случае

(3.47)

(3.48)

где

Спектр амплитуд периодической последовательности прямоугольных импульсов приведен на рис. 3.9. Амплитуды спектральных компонент определяются значениями модуля спектральной плотности || (3.47) на гармониках частоты повторения . Форма огибающей частотного спектра периодической последовательности определяется формой отдельного импульса. С увеличением периода повторения интервал частот между соседними спектральными компонентами сокращается, их число растет, а амплитуда каждой компоненты уменьшается при сохранении постоянного соотношения между ними. При неограниченном увеличении периодическая последовательность вырождается в одиночный импульс, а линейчатый спектр становится сплошным.

Рис. 3.9. Спектр периодической последовательности прямоугольных импульсов

Спектр периодической последовательности радиоимпульсов получается из спектра последовательности видеоимпульсов переносом шкалы частот на несущую частоту и дополнением полученного спектра его зеркальным отображением.

При модуляции параметры, входящие в выражения (3.46) и (3.48), являются функциями времени:. Модулированная последовательность будет представлять теперь уже непериодическую функцию, деформированную относительно исходной:

или согласно (3.48)

Полученная формула определяет частотный спектр деформированной последовательности импульсов. Для получения спектров сигналов при различных видах модуляции в ф-лу (3.50) необходимо подставить соответствующее выражение модулированного параметра.

Для примера найдем спектр при АИМ. При модуляции одним тоном u (t )= sinΩ (t ) и A = A 0 (1+ msinΩt ); остальные параметры последовательности неизменны:

После подстановки этих значений в (3.50) и несложных тригонометрических преобразований для частотного спектра АИМ сигнала получаем

На рис. 3.10 приведен график спектра АИМ сигнала. Сравнение его с рис. 3.9 показывает, что при АИМ модулируется по амплитуде каждая составляющая спектра немодулированной последовательности импульсов как изолированная «несущая». В спектре содержится низкочастотное модулирующее сообщение u (t ) с частотой Ω, следовательно, демодуляция при АИМ может быть осуществлена с помощью фильтра нижних частот, пропускающего низкочастотное колебание u (t ).

Аналогично определяется спектр и для других видов импульсной модуляции. Для вычисления спектра при ФИМ в (3.50) необходимо подставить выражение (3.45), определяющее изменение положения импульса в соответствии с передаваемым сообщением, а при ШИМ - выражение (3.44), определяющее изменение длительности импульса.

При импульсно-кодовой модуляции (ИКМ) передача отдельных значений сигнала сводится к передаче определенных групп импульсов. Эти группы передаются друг за другом через относительно большие промежутки времени по сравнению с длительностью отдельных импульсов. Каждая кодовая группа импульсов представляет собой регулярный непериодический сигнал, спектр которого может быть вычислен на основании преобразований Фурье обычным образом.

Рис. 3.10. Спектр АИМ сигнала

Ширина спектра последовательности импульсов практически не зависит от частоты повторения и определяется, главным образом, шириной спектра одного импульса. При наличии модуляции любого вида спектр расширяется незначительно за счет боковых частот крайних составляющих спектра немодулированных импульсов. Поэтому рабочая полоса частот, занимаемая импульсными сигналами, практически не зависит от вида модуляции и определяется длительностью и формой импульса.

3.5. Энергетический спектр модулированных сигналов

До сих пор мы рассматривали модуляцию несущего колебания детерминированным процессом u (t ), который отображает определенное сообщение или отдельную его реализацию. Совокупность же возможных сообщений представляет собой некоторый случайный процесс. Так, при передаче речи или музыки статистические свойства передаваемых сообщений очень близки к свойствам нормального случайного процесса. Важнейшими характеристиками колебания, модулированного случайным процессом, являются функция корреляции и энергетический спектр.

Следует подчеркнуть, что модулированный сигнал является нестационарным случайным процессом даже тогда, когда модулирующие процессы (сообщения) стационарны. Энергетический спектр нестационарного случайного процесса определяется посредством двукратного усреднения - по множеству и по времени. Сначала определяется усредненная по времени корреляционная функция, а затем обратным преобразованием Фурье - искомый энергетический спектр.

Рассмотрим случай, когда передаваемое сообщение u (t ) представляет собой стационарный процесс с u (t )=0, а переносчик - гармоническое колебание .

При амплитудной модуляции

s (t ) = А0 cos ω 0 t ,

где m - среднеквадратическое значение коэффициента модуляции. Функция корреляции модулированного сигнала

где Bu (t ) - функция корреляции передаваемого сообщения u (t ). Как видим, функция B (t , τ) зависит от времени, что указывает на нестационарность модулированного сигнала. После усреднения по времени получаем

Применяя к В (τ) преобразование Фурье (2.84), находим энергетический спектр сигнала при AM

Таким образом, спектр модулированного по амплитуде гармонического колебания случайным процессом состоит из несущего колебания с частотой и смещенного на спектра передаваемого сообщения u (t ).

Сигнал при угловой модуляции (ЧМ и ФМ) можно записать в общем виде

s (t ) = А0 cos ,

При ФМ , а при ЧМ.Здесь и - среднеквадратические значения девиации соответственно фазы и частоты.

Функция корреляции модулированного сигнала

При усреднении по времени первое слагаемое обращается в нуль. Второе слагаемое не зависит от времени t поэтому

Обозначим разность и по известной формуле представим косинус суммы двух углов в виде

Средние по множеству значения косинуса и синуса можно найти, если известен закон распределения вероятностей сообщения u (t ). Если u (t ) подчиняется нормальному закону, то , являющееся линейным преобразованием от u (t ), также будет иметь нормальное распределение с нулевым средним значением и дисперсией . Легко убедиться, что в этом случае:

Таким образом, усредненная по времени функция корреляции сигнала при угловой модуляции

(3.54)

Дисперсию процесса можно выразить через функцию корреляции или энергетический спектр сообщения u (t ). Действительно.

где - функция корреляции процесса . При , поэтому ; при ЧМ , где , поэтому . Далее можно определить энергетический спектр модулированного сигнала путем преобразования Фурье (2.81) от функции (3.54).

3.6. Модуляция шумовой несущей

В качестве переносчика можно использовать не только периодические колебания, но и узкополосный случайный процесс. Такие переносчики также находят практическое применение. Например, в оптических системах связи, в которых используется некогерентное излучение, сигнал, по существу, представляет собой узкополосный гауссов шум.

Согласно (2.36) узкополосный случайный процесс можно представить как квазигармоническое колебание

с медленно изменяющимися огибающей и фазой . При амплитудной модуляции в соответствии с передаваемым сообщением изменяется огибающая U (t ), при фазовой модуляции - фаза и при частотной - мгновенная частота .

Рассмотрим амплитудную модуляцию шумовой несущей. Выражение для модулированной несущей в этом случае можно записать в виде

y (t ) = f (t ), (3.57)

где f (t ) - переносчик, u (t ) - модулирующая функция (видеосигнал), m - коэффициент модуляции.

Предполагается, что модулирующий процесс u (t ) также представляет собой стационарный нормальный процесс со средним значением, равным нулю u (t ) = 0. Процессы f (t ) и u (t ) независимы. При этих ограничениях функция корреляции модулированной по амплитуде шумовой несущей будет

Теперь находим энергетический спектр

Первый интеграл дает энергетический спектр шумовой несущей . Для второго интеграла на основании теоремы о спектре произведения имеем

Окончательно спектр модулированной несущей будет равен:

Таким образом, спектр модулированной по амплитуде шумовой несущей получается суперпозицией спектра несущей и свертки этого спектра со спектром передаваемого сообщения, сдвинутого в область высоких частот на величину .Аналогично определяются функция корреляции и энергетический спектр при ФМ и ЧМ.

Применение «шумовых» сигналов позволяет ослабить влияние замираний в каналах с многолучевым распространением радиоволн. Поясним это на простейшем примере. Пусть на вход приемника поступают сигналы двух лучей и сдвигом на τ . время т. Мощность результирующего сигнала, определяемая за достаточно большое время Т,

где - функция корреляции сигнала, Р0 - его средняя мощность. Функция корреляции шума быстро убывает с увеличением т и тем быстрее, чем шире его спектр. Следовательно, при достаточно большой ширине спектра можно считать 0 и , т. е. средняя мощность принятого сигнала, несмотря на замирания, остается примерно постоянной.

3.7. Шумоподобные сигналы

Применение в качестве переносчика реализаций реального шума связано с определенными трудностями, которые возникают при формировании и приеме таких сигналов. Поэтому на практике нашли применение шумоподобные сигналы. Эти сигналы не являются случайными. Они формируются по определенному алгоритму. Однако их статистические свойства близки к свойствам шума: энергетический спектр почти равномерный, а функция корреляции имеет узкий основной пик и небольшие боковые выбросы. Шумоподобные и шумовые сигналы относятся к типу широкополосных сигналов (TF >>1).

В настоящее время известны методы формирования шумоподобных сигналов, которые при большой базе 2TF позволяют независимо воспроизводить их на приемном и передающем концах и отвечают требованиям синхронизации этих сигналов.

Широкое применение находят дискретные сигналы, которые строятся следующим образом. Информационная посылка длительностью Т разбивается на N бинарных элементов длительностью (рис. 3.11). Такое разбиение позволяет получить сигнал длительностью Т с полосой - и значением базы 2 TF . Последовательности бинарных элементов образуют коды, которые выбираются так, чтобы обеспечить заданные свойства сигнала. С помощью модуляции или гетеродинирования формируется высокочастотный сигнал, который передается по каналу. Часто при этом используется модуляция фазы на два положения: 0 и π

Функция корреляции дискретных сигналов при достаточно большом значении числа элементов N имеет главный максимум, сосредоточенный в области , и боковые лепестки, имеющие сравнительно малый уровень (рис. 3.11). Эта функция сильно напоминает функцию автокорреляции отрезка шума с полосой F . Отсюда и произошло название шумоподобные сигналы.

В системах связи, в которых используются шумоподобные (составные) сигналы, каждый элемент сообщения передается не одним, а несколькими элементами сигнала, несущими (повторяющими) одну и ту же информацию. Число N может достигать нескольких сотен и даже тысяч. Как будет показано в дальнейшем, это позволяет реализовать накопление сигнала, обеспечивающее высокую помехоустойчивость даже в том случае, когда уровень сигнала ниже уровня помех.

Рис. 3.11. Принцип построения сложного широкополосного сигнала

Обширный класс дискретных сигналов строится на основе линейных рекуррентных последовательностей. Эти сигналы имеют хорошие корреляционные свойства и сравнительно несложную практическую реализацию. Структура сигналов имеет случайный характер, хотя способ их формирования вполне регулярен. Непрерывные ФМ сигналы, построенные на основе рекуррентных последовательностей, могут иметь почти идеальную автокорреляционную функцию.

Среди линейных рекуррентных последовательностей особое место занимают псевдослучайные М -последовательности Хаффмена. Они представляют собой совокупность N периодически повторяющихся символов , каждый из которых может принимать одно из двух значений: +1 или -1. Это значение определяется взятым с противоположным знаком произведением значений двух или большего числа (но всегда четного) предыдущих сигналов

и . Почти каждому целому числу п соответствует несколько чисел k , при которых по правилу (3.60) образуется последовательность.

Из выражения (3.63) следует, что число N является максимальным периодом бесконечной последовательности Хаффмена. Могут образоваться также последовательности меньшего периода. Максимальное число различных последовательностей максимального периода для любого п равно:

(3.64)

где - функция Эйлера.

Бинарные псевдослучайные последовательности Хаффмена обладают рядом замечательных свойств. Нормированная функция автокорреляции в непрерывном режиме работы имеет главный максимум, равный единице, и одинаковые по величине боковые лепестки, равные . Функция взаимной корреляции для различных последовательностей равна -1/М. В импульсном режиме работы уровень боковых лепестков не превышает величины . Различные последовательности при заданном п отличаются как порядком чередования символов +1 и -1, так и максимальным значением боковых лепестков. При этом можно указать последовательность, у которой максимальный уровень боковых лепестков будет наименьшим среди возможных последовательностей для заданного п. Генерирование псевдослучайных последовательностей Хаффмена сравнительно просто осуществляется с помощью регистров сдвига.

Кроме сигналов Хаффмена, практическое применение находят и другие виды дискретных сигналов. Можно указать сигналы ПэлиПлоткина, последовательность символов Лежандра, коды Баркера, многофазные коды Фрэнка . Возможны, наконец, различные варианты составных сигналов.

В радиолокации широко применяются сигналы с линейным изменением частоты внутри импульса (ЛЧМ). Объясняется это тем,. что сигналы ЛЧМ имеют хорошие корреляционные свойства и прием их легко может быть осуществлен с помощью согласованных фильтров.

Шумоподобный сигнал может подвергаться всем известным способам модуляции. При амплитудной модуляции изменяются амплитуды всех его элементов. При частотной модуляции варианты сигнала отличаются средней частотой, при фазовой - разностью фаз между элементами двух посылок.

Специфическим видом модуляции, свойственным только широкополосным системам связи, является структурная модуляция или модуляция по форме сигнала. В этом случае в качестве вариантов сигнала используются колебания, построенные из одинаковых элементов, но с разным взаимным расположением этих элементов. Например, двоичную передачу можно осуществить с помощью сигналов вида:

Аналогично строятся многопозиционные широкополосные системы со структурной модуляцией. В этом случае используется ансамбль шумополобных сигналов . При этом, конечно, различие между этими сигналами должно быть достаточным для их разделения на приеме. С этой точки зрения большой интерес представляют противоположные и ортогональные сигналы.

Вопросы для повторения

1. Изобразите векторные диаграммы AM и ЧМ сигналов.

2. Определите среднюю мощность AM сигнала.

3. При каком виде модуляции ширина спектра сигнала минимальна? Чему она равна? Чему равна ширина спектра ЧМ сигнала?

4. Перечислите основные виды дискретной модуляции. Поясните принцип ОФМ.

5. Докажите, что при спектр сигнала при фазовой манипуляции ничем не отличается от спектра сигнала при балансной модуляции.

6. Назовите основные виды импульсной модуляций. Поясните их принцип.

7. Чем в основном определяется ширина спектра сигнала при импульсной модуляции?

8. Поясните принцип модуляции шумовой несущей.

9. Изобразите графически смещение спектра при шумовой и гармонической несущих.

10. Поясните принцип построения дискретных шумоподобных сигналов. Приведите примеры.

11. Является ли дискретная псевдослучайная последовательность случайным процессом? В чем ее сходство с шумом?

12. Как осуществляется модуляция шумоподобных сигналов?

Фильтрация сигналов на фоне помех.

1. Задачи и методы фильтрации

Электрическим фильтром называется пассивный четырехполюсник пропускающий электрические сигналы некоторой полосы частот без существенного ослабления или с усилением, а колебания вне этой полосы частот - с большим ослаблением. Такие устройства применяются для выделения полезных сигналов на фоне помех. Задача фильтрации формулируется следующим образом.

Если на вход линейного фильтра поступает смесь сигнала и помехи

то проблема состоит в том, как наилучшим образом выделить сигнал их этой смеси, т.е. как создать оптимальный фильтр. Известными считаются статические характеристики (т.е. спектр или корреляционная функция)

функции х(t), представляющей собой смесь сигнала и помехи. Искомой является периодическая функция оптимального фильтра.

Задача об оптимальной фильтрации решается по-разному в зависимости от того смысла, который вкладывается в понятие оптимальности. Рассмотрим три наиболее важных случаи оптимальной фильтрации.

1. Форма сигнала известна. От фильтра требуется только сохранение полученного сообщения, заключенного в сигнале, т.е. сохранение неискаженным помехой информационного параметра сигнала и не требуется сохранение формы. Такая задача может быть поставлена при фильтрации сигналов, форма которых известна на приемной стороне (например, обнаружение сигнала в радиотелеграфии и радиолокации). Фильтр при этом называют оптимальным, если в некоторый момент времени t 0 на его выходе обеспечивается максимальное отношение сигнала к среднеквадратическому значению напряжения шума. Такой фильтр может быть интегратором, поскольку речь идет о типовом значении полезного сигнла. При этом он должен лучше пропускать те частоты, на которых больше интенсивность спектральных составляющих сигнала и меньше интенсивность помех.

Для передаточной функции только оптимального фильтра теория дает следующие выражения:

(2)

где а - некоторая постоянная;

- величина, комплексно сопряженная амплитудному спектру сигнала;

Спектр мощности помехи.

В случае помехи с равномерным спектром частная характеристика оптимального фильтра с точностью до постоянного множителя совпадает с амплитудным спектром сигнал:

Отсюда специфическое название подобных оптимальных фильтров - согласованные фильтры (т.е. согласованные с сигналом).

Например, при приеме сигнала в виде передаточной повторяющихся импульсов, спектр каждого из которых состоит из отдельных узких полос (см. рис.), фильтр должен пропускать лишь эти полосы.

Рассматриваемый сигнал пройдет через такой фильтр без искажений, а мощность помехи уменьшится, т.к. она будет складываться из мощностей лишь тех спектральных составляющих помехи, которые попадут в полосу прозрачности фильтра. Такой фильтр для приема последовательностей импульсов получил название гребенчатого фильтра. Его применение приводит к тем большему увеличению превышения сигнала над помехой, чем уже полоса прозрачности фильтра. В свою очередь полосы прозрачности могут быть сделаны тем более узкими, чем больше характер последовательности приближается к периодическому закону (в этом случае полосы спектра превращается в линии). Но приближение к периодическому сигналу, т.е. достаточно многократное его повторение, эквивалентное увеличению длительности сигнала. Таким образом, согласованная фильтрация повышает помехоустойчивость как бы за счет увеличения длительности полезного сигнала.

2. Форма сигнала неизвестна, а от фильтра требуется ее сохранения. Например, фильтрация после детектора должна обеспечивать наилучшее воспроизведение на фоне шума не одного или нескольких параметров сигнала, а всего сигнала S(t). В этом случае в качестве критерия оптимальности (точности воспроизведения сигнала) удобно принять среднеквадратичнную ошибку, т.е. средний квадрат уклонения воспроизведенного сигнала от периодического. если сигнал и помеха являются независимыми и стационарными случайными процессами, то частотная характеристика такого оптимального фильтра, обеспечивающего минимальную среднеквадратичную ошибку, определяется спектрами мощности сигналом Р С  и помехи G П .

(4)

Фильтр ослабляет те спектральные составляющие, которые сильней поражены помехой, и для которых больше отношение G П / Р С  А на тех частотах, где помеха отсутствует G П 

3. Выделение длительного периодического сигнала из его смеси с помехой может быть осуществлено путем исследования функции корреляции этой смеси. Корреляционный фильтр, осуществляющий такое исследование, содержит блок переключения и блок усреднения (интегратор).

При взаимокорреляционной фильтрации, когда фильтр, располагая образцом сигнала, определяет функцию взаимной корреляции между принятой смесью X(t) и образцом сигнала S(t) (в данном случае речь идет только о констатации факта наличия сигнала):

Если сигнал и помеха некоррелированы, то и напряжения будет свидетельствовать о наличие сигнала в смеси.

Автокорреляционная фильтра используется при отсутствии определенных сведений о форме сигнала. Фильтр в этом случае определяет автокорреляционную функцию смеси:

При отсутствии корреляции между сигналом и помехой последние два слагаемых исчезнут. Что касается оставшихся двух слагаемых, то первое из них может носить черты периодичности, т.к. является автокорреляционной функцией сигнала близкого к периодическому, а второе обращается в ноль, если сдвиг больше интервала корреляции помехи  П. Таким образом, при достаточно большом сдвиге  и времени усреднения Т наличие напряжения K C . C () на выходе коррелятора свидетельствует о наличии периодического сигнала в смеси.

Однако реальные сигналы связи не являются периодическими и ограничены некоторой длительностью  с. Следовательно, при  с автокорреляционная функция сигнала становится равной нулю (см. рис.). С другой стороны, интервал корреляции помехи  П возрастает тем больше, чем большему ограничению подвергается спектр помехи в фильтре, поскольку помеха приобретает характер периодичности. При оптимальной фильтрации до коррелометра  П может превысить  с и корреляционная фильтрация не даст никакого эффекта.

Таким образом, автокорреляционная фильтрация эффективна только в том случае, если  с > П, т.е. при широкой полосе пропускания фильтровых цепей и достаточно длительных сигналов. Повышение помехоустойчивости сигнала по длительности над помехой.

2. Согласованная фильтрация заданного сигнала

2.1. Методика анализа .

Для задачи обнаружения сигнала в шумах наибольшее распространение получил критерий максимума отношения сигнал-шум (помеха) на выходе фильтра. Фильтры, отвечающие этому критерию, называются согласованными.

Требования к фильтру, максимизирующему отношение сигнал-помеха, можно сформулировать следующим образом. Пусть на вход фильтра подается аддитивная смесь сигнала. S(t) и шума Сигнал полностью известен. Это означает, что заданы его форма и положение на оси времени. Шум представляет собой вероятностный процесс с заданными статистическими характеристиками. Требуется синтезировать фильтр, обеспечивающий получение на выходе наибольшего возможного отношения пикового значения сигнала к среднеквадратичному значению шума. При этом не ставится условие сохранения формы сигнала, т.к. для обнаружения его в шумах форма значения не имеет.

Для уяснения сути согласованной фильтрации сначала рассмотрим наиболее простой случай, когда на входе фильтра с равномерной АЧХ имеется лишь один полезный сигнал S(t) с известным спектром . Требуется найти ФЧХ фильтра, при которой обеспечивается максимализация типа сигнала на выходе фильтра. Такая постановка задачи равносильна задаче максимизации пика сигнала при заданной энергии входного сигнала, поскольку спектральная плотность S() полностью определяет его энергию и не меняется фильтром, а любое изменение фазовых соотношений в спектре тем более не меняет энергии сигнала. Равенство S вх (ω)= S вых (ω) означает, что , т.е. ≠ К(ω).

Представим выходной сигнал в виде:

(4)

где - передаточная функция (5) четырехполюсника с искомой ФЧХ и равномерной АЧХ К 0 =соnst.

Таким образом

(6)

Основываясь на очевидном неравенстве

(7)

и учитывая, что , можно составить следующее неравенство:

(8)

Это неравенство определяет верхний предел мгновенного значения колебания S ВЫХ (t) при заданном спектре входного сигнала. Максимизация пика выходного колебания получается при обращении неравенства (8) в равенство, а для этого необходимо, как это следует из сопоставления выражения (6) и (8), обеспечить определенное соотношение между фазовой характеристикой фильтра  к () и фазовой характеристикой спектра  s () входного сигнала.

Допустим, что выходной сигнал достигает максимума в момент t 0 (пока еще неопределенный). Тогда выражение (6) дает

а условие обращения неравенства (8) в равенство сводится к следующему:

Это соотношение называют условием компенсации начальных фаз в спектре сигнала, поскольку первое слагаемое в правой части (10) компенсирует фазовую характеристику  s () входного спектра S(j). В результате прохождения сигнала через фильтр с фазовой характеристикой  к () сложение всех компонентов спектра, скорреëированных по фазе, образует пик выходного сигнала в момент t=t 0 .

Соотношение (11) показывает, что только при линейной фазовой характеристике S вых имеет пик, т.к. cosnw 1 (t-t 0)=1 при t=0

Связь между фазовой характеристикой  s (), компенсирующей ее характеристикой [- s ()] и полной фазовой характеристикой фильтра  к ()=-[ s ()+wt 0 ] видна из следующего рисунка. После прохождения через фильтр спектр выходного сигнала будет иметь фазовую характеристику.

Нелинейность фазовой характеристики φ s означает, что гармоники задерживаются по-разному и следовательно не могут образовать max в момент t 0 . При линейной фазовой характеристике в момент t 0 все гармоники имеют одинаковую фазу, поскольку гармоническая функция Cosnw 1 (t-t 0), при t=t 0 , всегда обращается в единицу.

Поскольку для образования пика требуется использование всей энергии сигнала, а это возможно не ранее окончания действия входного сигнала, задержка t 0 не может быть меньше, чем полная длительность сигнала.

Введем теперь помеху на входе фильтра. При равномерном энергетическом спектре помехи (белый шум) W()=W 0 =const - фильтр с равномерной АЧХ неприменим, т.к. мощность помехи на выходе достигает очень большой величины.

Борьба с шумами и помехами является основной задачей во многих областях радиотехники. Обеспечить высокую помехоустойчивость систем передачи информации можно разными путями. Например, создают такие устройства для обработки, которые некоторым наилучшим образом выделяют сигнал, искаженный присутствием помехи. Другой путь заключается в совершенствовании структуры передаваемых сигналов, использовании помехоустойчивых способов кодирования и модуляции. Примерами таких помехоустойчивых сигналов служат коды Баркера и сигналы с линейной частотной модуляцией, изученные в гл. 3, 4.

16.1. Выделение полезного сигнала с помощью линейного частотного фильтра

Чтобы выделить полезный сигнал, искаженный наличием шума, можно прибегнуть к частотной фильтрации. Пусть частотный коэффициент передачи линейного стационарного фильтра выбран так, что значения величины велики в области частот, где сконцентрирована основная доля энергии сигнала, и малы там, где велика спектральная плотность мощности шума. Следует ожидать что, подав на вход такого фильтра сумму сигнала и шума, на выходе можно получить заметное увеличение относительной доли полезного сигнала.

Отношение сигнал/шум.

Придадим данному положению количественную формулировку. Пусть на входе линейного фильтра присутствует входной сигнал

являющийся суммой полезного сигнала и шума Здесь и в дальнейшем предполагается, что оба эти сигнала являются узкополосными с одинаковыми центральными частотами . Считается, что сигналы некоррелированы в том смысле, что среднее значение произведения

Будем также предполагать стационарность этих сигналов на неограниченно протяженном интервале времени.

Интенсивность колебаний на входе фильтра можно характеризовать величиной среднего квадрата (средней мощности) входного сигнала, которая в силу равенства (16.2) есть сумма средних квадратов полезного сигнала и шума:

где - дисперсия входного шума.

Для описания относительного уровня сигнала принято вводить так называемое отношение сигнал/шум на входе фильтра по формуле

или в логарифмических единицах (дБ)

Отметим, что безразмерное число характеризует уровень сигнала по отношению к уровню шума весьма приближенно и неполно. Пользоваться этим отношением целесообразно лишь тогда, когда заранее известно, что реализации сигнала и шума в каком-нибудь содержательном смысле «схожи» между собой. Так, входной шум обычно хорошо описывается моделью нормального узкополосного случайного процесса. Отдельные реализации данного шума представляют собой квазигармонические колебания. Естественно, что в этом случае можно пользоваться формулой (16.4) для оценки уровня полезных модулированных сигналов вида AM или ЧМ.

Пример 16.1. На входе фильтра присутствует однотональный AM-сигнал и гауссов шум односторонний спектр мощности которого

Найти отношение сигнал/шум на входе фильтра.

Среднюю мощность сигнала получим, усредняя его квадрат по времени:

Здесь первое слагаемое соответствует средней мощности несущего колебания, которое не содержит информации о передаваемом сообщении. Поэтому при расчетах помехоустойчивости принято опускать эту составляющую и считать, что

Дисперсия шума на входе фильтра

Отношение сигнал/шум

оказывается прямо пропорциональным квадрату коэффициента модуляции и обратно пропорциональным частоте модуляции.

Отношение сигнал/шум на выходе фильтра.

Линейный фильтр подчиняется принципу суперпозиции. Сигнал и шум обрабатываются таким фильтром независимо и создают на выходе сигнал со средним квадратом

Это дает возможность ввести отношение сигнал/шум на выходе фильтра:

Будем называть выигрышем фильтра по отношению сигнал/шум величину

которая также может быть выражена в децибелах:

(16.10)

Ясно, что если то фильтрация суммы сигнала и шума приводит к благоприятному результату в смысле принятого нами критерия - повышению относительного уровня полезного сигнала на выходе.

Ответ на вопрос о том, какое отношение сигнал/шум следует считать достаточным для нормального функционирования радиосистемы, целиком зависит от назначения этой системы и всей совокупности предъявляемых технических требований.

Средняя мощность узкополосного сигнала.

Понятие средней мощности целесообразно вводить только по отношению к узкополосным сигналам, неограниченно протяженным во времени. Удобной и достаточно общей математической моделью такого сигнала является сумма

(16.11)

в которой амплитуды и фазы произвольны, а все частоты сосредоточены в узкой полосе вокруг опорной частоты Мгновенная мощность такого сигнала

Среднюю мощность полезного сигнала можно получить, проведя усреднение по времени:

Очевидно, что вклад в сумму дадут только слагаемые с совпадающими индексами, когда Отсюда следует, что

(16.12)

Влияние частотного коэффициента переда и фильтра на отношение сигнал/шум.

Если сигнал вида (16.11) проходит через линейный фильтр с частотным коэффициентом передачи , то средняя мощность сигнала на выходе

Дисперсия выходного шума

Отсюда находим выражение для отношения сигнал/шум на выходе фильтра:

Данная формула содержит полное решение поставленной задачи и позволяет в принципе, зная спектры сигнала и шума, так подобрать АЧХ фильтра, чтобы получить ощутимый выигрыш. Следует, однако, иметь в виду, что полезный сигнал, как правило, сам претерпевает некоторые, порой значительные искажения.

Передача сигналов сопровождается шумами, которые искажают передаваемую информацию. Поэтому на протяжении всего развития техники связи центральной проблемой остается борьба с помехами и шумами (далее, обобщенно, - шумами). Если мощность полезного сигнала соизмерима со средней мощностью шума, трудно не только выделить, но и обнаружить сигнал. Одним из путей повышения помехоустойчивости является различение сигналов, соответствующих разным сообщениям. Затем нужно выбрать такой метод приема, который наилучшим образом реализует это различие. При этом важнейшей задачей является выделение информации с максимальной достоверностью - оптимальный (согласованный) прием. Для этого в состав приемника включают оптимальный фильтр, цепи после- детекторной обработки, следящие схемы АПЧ и ФАПЧ.

Оптимальный (согласованный) линейный фильтр

Уменьшение влияния шумов достигается различными способами, в том числе выбором наилучших характеристик цепей, через которые проходит смесь сигнала и шума. Основой большинства практических методов выделения сигнала из аддитивной смеси сигнала и шума в приемниках является оптимальная линейная фильтрация , использующая линейные частотные фильтры. Удобнее всего описывают оптимальные фильтры с помощью импульсной или частотной (коэффициент передачи) характеристики.

Критерии оптимального приема сигналов. В зависимости от назначения системы передачи информации и характера принимаемого сигнала на фоне действующих помех принимают различные критерии оптимального приема. В одних случаях критерием является обнаружение полезного сигнала, в других - разрешение сигналов, в третьем - измерение параметров этого сигнала.

Обнаружение - это сам факт приема полезного радиосигнала. Такой случай характерен для радиолокации.

Поп разрешением сигналов понимают, какое именно из нескольких возможных переданных сообщений поступило на вход радиоприемного устройства. Например, при передаче цифровых сообщений двоичным кодом необходимо определить, какой бит, 1 или 0, передан в данный момент по радиоканалу.

Измерение параметров сигналов позволяет извлечь необходимую информацию об объекте, с которого она поступила.

Качество принятого сообщения в зависимости от его характера оценивается по-разному. В цифровых системах передачи битовой информации это качество определяется вероятностью ошибки принятого символа. Например, если вероятность составляет 10 3 , то это означает, что из тысячи принятых бит один может быть ошибочным. При передаче речи качество принятого сообщения оценивается по его разборчивости, т.е. по числу правильно понятых слов, смысл которых не искажен. При передаче телевизионного сигнала вводится несколько критериев, по которым оценивается качество принятого изображения. Отмеченные разнородные критерии при передаче аналоговых сообщений являются функцией отношения мощности сигнала к мощности шума на выходе приемника.

При обнаружении сигнала в шумах наиболее эффективен критерий максимума отношения сигнал/шум по мощности на выходе фильтра. Линейный фильтр, для которого отношение максимально, называют оптимальным (подразумевая - наилучшим) или согласованным фильтром , а также коррелятором.

Отношение сигнал/шум. Используем в приемнике линейный фильтр с таким частотным коэффициентом передачи К(со), что значения его модуля |К(со)| велики в частотном диапазоне, где сконцентрирована основная доля мощности полезного сигнала, и малы в частотных областях, где существенна спектральная плотность мощности шума. Следует ожидать, что при подаче на вход оптимального фильтра аддитивной суммы полезного сигнала и шума на его выходе можно получить заметное увеличение отношения сигнал/шум. Оценим количественно данное положение. Пусть на входе линейного фильтра радиоприемника присутствует входное колебание, являющееся суммой полезного сигнала u(t) и шума r(t):

На практике и сигнал, и шум являются узкополосными с одинаковыми центральными частотами со 0 . Кроме того, они некоррелированны, т.е. среднее значение их произведения на некотором интервале Т равно

Также предположим стационарность шумов на протяженном интервале времени.

Интенсивность колебаний на входе линейного фильтра характеризуют значением среднего квадрата (средней мощности) входного сигнала, которая в силу равенства (7.2) есть сумма средних квадратов полезного сигнала и шума:

где о 2 - дисперсия (мощность) входного шума.

Для описания относительного уровня полезного сигнала вводят так называемое отношение сигнал/шум на входе фильтра

Отметим, что безразмерное число Q nx характеризует уровень сигнала по отношению к уровню шума весьма приближенно. Пользоваться этим отношением целесообразно лишь тогда, когда заранее известно, что колебания сигнала и реализации шума «схожи» между собой. Так, входной шум обычно хорошо описывается моделью нормального узкополосного случайного процесса. Отдельные реализации шума представляют собой квазигармони- ческие колебания. Естественно, что в этом случае можно пользоваться формулой (7.3) для оценки уровня полезных сигналов с амплитудной или частотной модуляцией.

Пример 7.1

Пусть на входе линейного фильтра действуют однотональный АМ-сигиал м дм(0 = U n cosoy и гауссов шум г(?) с односторонним спектром мощности

Найдем отношение сигнал/шум на входе фильтра.

Решение

Средняя мощность АМ-сигпала согласно формуле (2.70)

Здесь первое слагаемое 0,5U 2 соответствует средней мощности несущего колебания, которое не содержит информации о передаваемом сообщении. Поэтому при расчетах помехоустойчивости принято опускать эту составляющую и считать

Дисперсия шума на входе фильтра

Отношение сигнал/шум U„M 2 /(F 0 Q) оказывается прямо пропорциональным квадрату коэффициента модуляции и обратно пропорциональным частоте модуляции.

Одним из основных параметров фильтров приемника является коэффициент передачи. Определим коэффициент передачи оптимального фильтра приемника при условии, что сигнал принимается на фоне белого шума с двусторонней спектральной плотностью мощности W 0 (односторонней N n = 2W tt).

Представим коэффициент передачи оптимального фильтра в виде

где К{ со) - АЧХ; (р^(со) - ФЧХ фильтра.

Пусть входной сигнал u(t) имеет спектральную плотность

Здесь S(со) и ф с (со) - амплитудный и фазовый спектры принимаемого сигнала.

Отметим некоторый, пока неизвестный, момент времени t = ? 0 , при котором отношение сигнал/шум на выходе фильтра будет максимальным. В соответствии с формулой (4.5) сигнал на выходе фильтра (линейного четырехполюсника)

Поскольку *? вых (со) = 5 цх (со)/С(со), то с помощью соотношения (3.28) находим среднюю мощность (дисперсию) белого шума на выходе фильтра".

Используя формулы (7.5) и (7.6), найдем отношение мощностей сигнала и шума:

Введем эквивалентный коэффициент передачи линейного фильтра:

Оптимальный коэффициент передачи анализируемого фильтра максимизирует правую часть выражения (7.7).

Задачу нахождения оптимального коэффициента передачи К((о) решают на основе неравенства Буняковского - Коши - Шварца, имеющего вид

Прямая подстановка показывает, что неравенство обращается в равенство, если

где А - постоянный коэффициент; S* (со) - функция, комплексно-сопряженная с 5(со).

Представим эквивалентный коэффициент передачи (7.8) в виде произведения с фазовым множителем:

Отсюда находим коэффициент передачи фильтра

Формула (7.9) полностью определяет коэффициент передачи оптимального фильтра, максимизирующего отношение сигнал/шум. Отсюда же следуют требования к АЧХ и ФЧХ оптимального фильтра:

По определению частотный коэффициент передачи - безразмерная величина, поэтому постоянный коэффициент А должен иметь размерность , обратную размерности амплитудного спектра входного сигнала S(со).

Суть метода обработки принимаемого сигнала оптимальным фильтром приемника поясняет рис. 7.21, где показаны спектры входных сигнала 5(со), белого шума W 0 и выходного сигнала 5 ВЬ1Х (со), а также АЧХ фильтра К(со) и энергетический спектр выходного шума aj(co).


Рис. 7.21.

а - спектры входных сигнала и шума; б - спектр выходного сигнала и АЧХ фильтра;

в - спектр выходного шума

Соотношение (7.10) устанавливает, что АЧХ фильтра К(со) должна с точностью до масштабного множителя А совпадать по форме с амплитудным спектром S(со) входного сигнала. Благодаря этому подавляющая часть спектральных составляющих входного сигнала, имеющих наибольшие амплитуды, проходит на выход оптимального фильтра без ослабления и вносит основной вклад в образование пикового значения. Из множества спектральных компонентов входного белого шума, располагающихся в бесконечной полосе частот, на выход фильтра проходят и не ослабляются те, которые находятся иод кривой его АЧХ, т.е. в ограниченной полосе частот. Это приводит к ослаблению средней мощности шума а 2 х на выходе фильтра по сравнению со спектральной плотностью мощности белого шума W 0 на входе. В результате этого действия отношение сигнал/шум на выходе оптимального фильтра увеличивается.

Формула (7.11), описывающая ФЧХ оптимального фильтра, трактуется как условие компенсации начальных фаз гармонических составляющих спектра выходного сигнала. Согласно этому условию оптимальный фильтр должен иметь такую ФЧХ, чтобы получаемый в нем фазовый сдвиг каждой гармоники -ф с (со) был равен по значению и противоположен по знаку начальной фазе соответствующей составляющей спектральной плотности S(со) входного сигнала. Оптимальный фильтр проводит компенсацию начальных фаз всех спектральных составляющих входного сигнала u(t ), в результате чего и образуется пик выходного сигнала. Составляющая ФЧХ -со? 0 указывает на то, что пик выходного сигнала задержан относительно начала действия входного сигнала на интервал t 0 . Связь между фазовой характеристикой ф с (со) входного сигнала, компенсирующей ее фазовой характеристикой -ф с (со) и ФЧХ фильтра поясняется на рис. 7.22. Фазовая характеристика выходного сигнала, определяемая формулой

показана на рис. 7.22 прямой линией.

Рис. 7.22.

Итак, коэффициент передачи фильтра, описываемый формулой (7.4), согласован с амплитудным и фазовым спектрами входного сигнала. Поэтому рассмотренный оптимальный линейный фильтр часто называют согласованным.

Вернемся к формуле (7.7) и рассмотрим энергетические соотношения между принимаемым сигналом и шумом на выходе исследуемого оптимального фильтра. Так как квадрат модуля комплексного числа равен квадрату его действительной части, то после несложных преобразований получим выражение

Числитель в формуле (7.13) в соответствии с равенством Парсеваля представляет собой энергию входного сигнала Э. Тогда последнее соотношение примет вид

Согласно формуле (7.14) оптимальный фильтр максимизирует отношение сигнал/шум, которое зависит от энергии входного сигнала и спектральной плотности мощности белого шума и не связано с формой входного сигнала.

Пример 7.2

Сигнал, поступающий на вход оптимального фильтра, представляет собой прямоугольный видеоимпульс с некоторой амплитудой Е и длительностью т н = = 10 мкс. Белый шум на входе фильтра имеет спектральную плотность мощности W 0 = 25 10 18 В 2 /Гц. Определим минимальное значение амплитуды Е, при котором возможно обнаружение сигнала, если приемник регистрирует его присутствие при отношении сигнал/шум Q mls = 3/W n = 2 дБ.

Решение

Требуемое значение отношения сигнал/шум найдем из условия 101g(3/W 0) = 2, откуда 3/W 0 = 1,57. Поскольку энергия импульса 3 = Е 1 т и, то

Импульсная характеристика оптимального фильтра. Чтобы определить импульсную характеристику оптимального фильтра, вычислим обратное преобразование Фурье от частотного коэффициента передачи (7.9). Используя уже применяемую ранее формулу для определения импульсной характеристики через коэффициент передачи

Поскольку 5*(со) = -5(со), то, переходя к новой переменной (о 2 = -со, после несложных преобразований запишем

Следовательно, импульсная характеристика оптимального фильтра совпадает с зеркально отраженной относительно оси ординат копией входного сигнала, сдвинутой на интервал? 0 по оси времени. Об этом говорит отрицательный знак при аргументе t в формуле (7.16). На рис. 7.23 показан прин-


Рис. 7.23. u(t) длительностью т и. Поскольку при t t 0 между началом действия сигнала на входе фильтра и моментом образования максимального пика сигнала на его выходе должна быть не менее длительности сигнала т и. Это одно (но недостаточное) из условий физической реализуемости оптимального фильтра, показывающее, что для создания максимального пика сигнала на выходе надо провести обработку фильтром всего входного сигнала u(t).

Фундаментальной особенностью оптимального фильтра является то, что обнаружение с его помощью сигнала в шумах зависит не от формы, а от его энергии. В частности, путем увеличения длительности входного импульса можно надежно обнаруживать сигналы небольшой амплитуды. Однако при этом проигрывают в скоростях обработки информации. Как правило, формы полезного сигнала на входе и выходе согласованного фильтра существенно отличаются друг от друга. В частности, задачей согласованного фильтра для двоичной системы является не восстановление формы сигнала, искаженной шумом, а получение одного отсчета, по которому можно судить о присутствии или отсутствии на входе фильтра сигнала известной формы.

За согласованным фильтром в приемнике может находиться выравнивающий фильтр, или эквалайзер; он необходим только в цифровых системах связи, в которых сигнал может искажаться вследствие межсимвольной интерференции, внесенной каналом. Принимающий и выравнивающий фильтры являются отдельными устройствами, что подчеркивает различие их функций. Впрочем, в большинстве случаев при использовании эквалайзера для выполнения обеих функций (а следовательно, и для компенсации искажения, внесенного передатчиком и каналом) можно включать единый фильтр. Такой составной фильтр называют просто выравнивающим или принимающим и выравнивающим.

Согласованным фильтром может быть пассивный фильтр на линиях задержки, или коррелятор, или специальное цифровое устройство, преобразующее входную смесь сигнал/шум в частотную область, умножающее полученный спектр на спектр, комплексно-сопряженный со спектром входного сигнала, на который настроен оптимальный приемник, и возвращающий результат обратно во временную область. Но в любом случае это будет устройство, АЧХ которого повторяет амплитудный спектр сигнала, а ФЧХ есть зеркальное отражение фазовой характеристики сигнала. Согласованный с неким сигналом фильтр - это линейный четырехполюсник, импульсная характеристика которого является зеркальным отражением этого сигнала.

Отметим, что функцию оптимального фильтра для входного сигнала в приемнике может выполнять коррелятор, что имеет важное практическое значение, поскольку в ряде случаев реализовать коррелятор проще, чем оптимальный фильтр. В возможности выполнять коррелятором функцию оптимального фильтра можно убедиться, сравнив спектры сигналов на выходе оптимального фильтра и коррелятора.

(Документ)

  • Лекции по Прием и обработка сигналов (Лекция)
  • Глинченко А.С. Цифровая обработка сигналов. Часть 1, 2 (Документ)
  • Мишунин В.В. Микропроцессоры и цифровая обработка сигналов (Документ)
  • Сергиенко А.Б. Цифровая обработка сигналов (Документ)
  • Сергиенко A.Б. ЦОС (Цифровая обработка сигналов) (Документ)
  • Рандалл Р.Б. Частотный анализ (Документ)
  • Лекции - Цифровая обработка сигналов (Лекция)
  • n1.doc

    Вопросник

    1. Канал связи и преобразование информации в его элементах.

    2. Классификация сигналов

    3. Динамическое представление сигналов на основе функций включения и дельта–функций.

    4. Спектральное представление сигналов (периодический сигнал).

    5. Спектральное представление сигналов (непериодический сигнал).

    6. Основные свойства преобразований Фурье.

    7. Спектральные плотности модулируемых сигналов

    8. Понятие случайного процесса. Стационарность случайного процесса.

    9. Статистические параметры случайного процесса. Свойства.

    10. Измерение характеристик случайного процесса.

    11. Связь корреляционной и спектральной теории случайного процесса.

    12. Физические системы преобразования информации и их математические модели.

    13. Прохождение детерминированных сигналов через системы преобразования информации.

    14. Прохождение случайных сигналов через системы преобразования информации

    15. Классификация помех. Электрические помехи.

    16. Методы борьбы с электрическими помехами.

    17. Акустические помехи.

    18. Измерение информации. Энтропия.

    19. Энтропия дискретного сигнала

    20. Энтропия непрерывных сигналов.

    21. Энтропия статистически зависимых сигналов.

    22. Информационная модель сигнала в интроскопии и акустике.

    23. Кодирование и передача информации в дискретном канале

    24. Передача сигналов по непрерывному каналу

    25. Согласование характеристик сигнала и канала передачи

    26. Оптимальные фильтры устройств обнаружения дефектов.

    27. Согласованные фильтры

    28. Методы синтеза оптимальных фильтров. Синтез согласованного фильтра для прямоугольного видеоимпульса спектральным методом.

    29. Оптимальная фильтрация по критерию минимума среднеквадратичной ошибки.

    30. Неразрушающий контроль изделий и обнаружение сигналов. Обнаружение сигнала методом статистических решений.

    31. Обнаружение сигналов с использованием критерия Неймана – Пирсона.

    32. Обнаружение сигналов на фоне реверберационной помехи.

    33. Последовательные обнаружители.

    34. Основные параметры и характеристики систем ОИ. Обобщённая методика расчёта систем ОИ.

    35. Варианты задания исходных данных для определения параметра обнаружения

    36. Частотные коэффициенты передачи основных звеньев приборов НК

    37. Методика расчета параметров оптической системы прибора по требуемому отношению сигнал/шум

    38. Выбор полосы пропускания, расчёт пороговой чувствительности, КПД системы первичной обработки информации (на примере оптико-электронного прибора)

    Вопрос 1

    1 Канал связи и преобразование информации в его элементах.

    Информационным называется процесс, возникающий в результате установления связи между двумя объектами материального мира. При этом один из объектов является генератором информации (источником), а другой - приёмником информации (получателем).

    Материальная среда, определяющая взаимодействие между источником и приёмником информации, называется каналом связи.

    Общими элементами большинства каналов связи являются: источник информации, кодирующее устройство, приёмник информации, устройство хранения, обработки и отображения информации.

    Любое устройство НК представляет собой систему преобразования информации. При этом преобразование информации необходимо производить объективно, т.е. без искажений.

    Преобразование информации в элементах каналов связи можно условно разделить на следующие этапы:

    Выбор информативных параметров с учётом поставленных целей и задач. Объект контроля характеризуется всегда большой совокупностью параметров. При реализации этого этапа необходимо определить, какие параметры наиболее важны для достижения поставленной цели, каким образом связаны с качеством объекта.

    Формирование сообщений, т.е. преобразование информации в форму удобную для дальнейшего использования.

    Ввод преобразованной информации в техническое устройство для последующей обработки Данный этап обычно включает следующие операции: считывание информации, образование кодовой комбинации для выбранных информационных элементов, передача кодовой комбинации в канал связи.

    Этап передачи и приёма информации. Процесс передачи информации представляется как некоторое отображение множества сообщений в множество сигналов. Каждому элементу комбинация ставится в соответствие определённый сигнал или их последовательность.

    Хранение и поиск информации. Необходимость этого этапа возникает в тех случаях, когда число приходящих в систему сообщений превышает пропускную способность устройства ввода.

    Переработка информации. Данный этап предусматривает получение статистической характеристики, прогнозирования проведения информационного процесса.

    Отображение информации. Сущность данного этапа заключается в представлении информации в наиболее удобной форме для восприятия.

    Вопрос 2

    2 Классификация сигналов

    Под сигналом понимают процесс изменения во времени физического состояния какого-либо объекта.

    В зависимости от вида модели, которой описывается сигнал (вещественная или комплексная), сигналы подразделяются на вещественные и комплексные.

    Так же различают одномерные и многомерные сигналы. Одномерным называется сигнал, математической моделью которого является она функция времени.

    Под многомерным сигналом понимают: сигнал, образованный совокупностью одномерных сигналов. Многомерные сигналы в практике НК используются достаточно часто, например, оценка качества продукции по нескольким информативным параметрам.

    В зависимости от возможности или невозможности предсказания мгновенных значений сигнала в любой момент времени выделяют детерминированные и случайные сигналы. Детерминированный сигнал – сигнал модель которого позволяет осуществить такое предсказание. Если модель сигнала не позволяет осуществить такое предсказания, то сигнал называют случайным.

    Различают сигналы непрерывные и импульсные.

    Непрерывным наз-т сигнал, значение которого определенно в любой момент времени на отрезке наблюдения сигнала.

    Импульсный сигнал представляет собой колебания в пределах конечного отрезка времени.

    Сигналы разделяют на аналоговые и дискретные.

    Аналоговым наз-т сигнал, значение которого можно измерить в любой момент времени на отрезке наблюдения сигнала.

    В отличие от аналоговых сигналов дискретные сигналы

    Воспроизводят значения только лишь в отдельные моменты времени.

    Особой разновидностью дискретного сигнала является цифровой сигнал. Для цифрового сигнала отсчётные значения представляются в форме чисел.

    В сущности, любой дискретный сигнал является сигналом аналоговым, если рассматривать сам сигнал как физический процесс. Дискретизация сигнала выполняется с определённой целью, например, передача по одному каналу нескольких сигналов одновременно. Такой режим называется режимом разделения времени.

    Вопрос 3

    3. Динамическое представление сигналов на основе функций включения и дельта–функций.

    Преобразование сигналов в системах обработки информации требует располагать информацией не только о мгновенных значениях сигнала, но и знать поведение сигнала на всей временной оси. Способ получения таких моделей сигналов состоит в следующем. Реальный сигнал приближенно представляется суммой элементарных сигналов, возникающих в последовательные моменты времени. При этом, если устремить к 0 длительности элементарных сигналов, то получим точное представление моделируемого (исходного) сигнала.

    Для построения динамических моделей используют ступенчатые функции (ф-ции включения) и прямоугольные импульсы (?-функции).

    1) Функция включения (Хэвисайда) ?(t):

    (1)
    (2)
    (3)

    В технике обработки сигналов используют допущения(2).

    Построим график функции включения (см.2)

    Функция представляет единичн. скачок в момент времени t.

    В произвольный момент времени t0 функция имеет вид(3).

    С помощью функции включения очень удобно строить модели прямоугольных видеоимпульсов.

    2) Динамическое представление сигналов осуществляется с помощью?-функций. Предположим, что есть сигнал, представляющий прямоугольный импульс. Если для такого импульса длительность устремить к нулю, то амплитуда такого импульса будет неограниченно расти. Площадь импульса равна 1/? ?=1 Импульс с такими свойствами

    Называют функцией Дирака(?-функцией) .

    С точки зрения математики?-функция принимает значения:

    С помощью?-функции можно осуществить динамическое представление сигнала в следующем виде:

    Если непрерывную функцию проинтегрировать во времени, предварительно умножив ее на?-функцию, то результат будет соответствовать значению непрерывной функции в точке, где сосредоточена?-функция. Фактически, данная формула показывает фильтрующие свойства?-функции. Это значит, что в любой момент может быть получено мгновенное значение сигнала S(t), но для этого необходима информация о характере поведения сигнала на всей временной оси.

    Практическая реализация динамического представления сигнала осуществлена в приборах, обладающих возможностью измерения мгновенных значений сигнала.

    Вопрос 4

    4. Спектральное представление сигналов (периодический сигнал).

    Наиболее часто для разложения сигналов используют совокупность гармонических колебаний кратной частоты, т.е. cos(nx) и sin(mx). Если какой-либо сигнал представлен в виде суммы гармонических составляющих с кратными частотами, то говорят, что осуществлено спектральное разложение сигналов. При этом совокупность отдельных гармонических составляющих называют спектром сигнала. Гармонические составляющие кратной частоты используют для разложения сигналов по следующим причинам:

    1) гармонические сигналы инвариантны (не чувствительны) относительно преобразований, осуществляемых линейными сигналами. Это значит, что цепь, возбуждённая источником гармонических колебаний имеет на выходе тоже гармонический сигнал.

    2) техника генерирования гармонических сигналов относительно проста. Один и тот же сигнал имеет 2 совершенно равноправные мат. модели: функция во временной области S(t); функция в частотной области.

    Для детерминированных сигналов она обозначается S(?) и называется спектральной плотностью сигнала. Часто мат. модель сигнала представляется во временной области и является сложной и не достаточно наглядной. В то же время описание сигналов в частотной области оказывается простым. Кроме того, спектральное представление сигналов открывает прямой путь к анализу прохождения сигналов через устройства и системы обработки. Периодический сигнал в частотной области м.б. представлен рядом Фурье:

    В большинстве случаев n = m , при этом группа коэффициентов a i вычисляется:




    В соответствии с записанными выражением, периодический сигнал составляет постоянную составляющую и бесконечно большое число периодических составляющих (гармоник). Частота? 1 называется основной частотой последовательности . Все остальные частоты называются кратными частотами . Составляющие сигнала при n =2,3 называются высшими гармониками . Графическое изображение спектрального разложения сигнала называют спектральной диаграммой . Различают амплитудные и фазовые спектральные диаграммы. В случае построения амплитудой спектральной диаграммы по горизонтальной оси в некотором масштабе откладывают частоты гармоник, а по вертикальной – амплитуды гармоник, сосредоточенных на этих частотах. При построении фазо-спектральной диаграммы по вертикальной оси – фазы гармоник, сосредоточенных на соотв. частотах.

    Вопрос 5

    5. Спектральное представление сигналов (непериодический сигнал).

    Наиболее часто для разложения сигнала используют совокупность гармонических колебаний кратной частоты. Если к.-л. сигнал представить в виде суммы гармонических составляющих с кратными частотами, то говорят что осуществлено спектральное разложение сигнала. При этом совокупность отдельных гармонических составляющих называют спектром сигнала. Часто мат. модель сигнала, представленная во временной области является сложной и недостаточно наглядной. В то же время описание сигналов в частотной области оказывается простым. Метод разложения в ряд Фурье позволяет получить спектральное представление для непериодического сигнала. Наибольший интерес среди непериодических сигналов представляют импульсные сигналы. Для получения формулы непериодического сигнала мысленно дополняют временную ось таким же сигналом, а период в полученной последовательности устремляют к бесконечности. В этом случае ряд Фурье выражается в интеграл Фурье, а спектр сигнала становится сплошным.

    (1) (обратное преобразование)

    (2) (прямое преобразование)

    (1) и (2) – пара преобразований Фурье.
    Данные формулы применимы лишь в том случае, если выполняется условие Дирихле, а именно, функция S(t) должна быть абсолютно интегрируемой, а это значит, что

    .

    Т.о. в частотной области непериодический сигнал характеризуется спектральной плотностью, а его модель во временной области связана со спектральной плотностью парой преобразования Фурье.

    Вопрос 6

    6. Основные свойства преобразований Фурье.

    1. Линейность.

    Есть совокупность сигналов S1(t), S2(t),…, SN(t). S1(?) – спектральная плотность сигнала S1(t), S2(?) – сп. плотн. S2(t), SN(?) – сп.плотн. SN(t). При этом линейная комбинация указанных сигналов имеет спектральную плотность равную линейной комбинации спектральных плотностей этих сигалов.

    2. Спектральная плотность сигнала смещённого во времени.

    Сигнал S(t) имеет спектральную плотность S(?), то:

    S(t-t0) ? S(?)·e-j·?·t0.

    3. Зависимость спектральной плотности сигнала от выбора масштаба времени.

    Сигнал S(t) имеет спектральную плотность S(?), то сигнал S(k·t) подверженный изменению масштаба времени будет иметь спектральную плотность
    .

    4. Спектральная плотность произведения двух сигналов.

    Если S1(?) – спектральная плотность сигнала S1(t), S2(?) – сп. плотн. S2(t), то:

    S1(t)∙ S2(t) ?
    (свёртка спектральных плотностей).

    5. Спектральная плотность производной сигнала.

    Если сигнал S(t) имеет спектральную плотность S(?), то производная сигнала S’(t) будет иметь спектральную плотность j?∙ S(?), где j? – оператор дифференцирования.

    6. Спектральная плотность интеграла сигнала.

    Если сигнал S(t) имеет спектральную плотность S(?), то


    где 1/j? – оператор интегрирования.

    Вопрос 7

    7. Спектральные плотности модулируемых сигналов

    В простейшем случае модуляция заключается в том, что один из параметров, характеризующий сигнал во временной области изменяют по определенному закону. Сигнал S(t) является гармоническим, амплитуду – А0, частота – ?0, нач. фаза – ?0.

    В таком колебании все 3 параметра, характеризующие сигнал являются постоянными.


    При модуляции, один из параметров изменяется по заранее известному закону, что с математической точки зрения может быть описано путем умножения изменяемого параметра на величину 1 + mF(t), где F(t) – называют модулирующей функцией, m – глубиной модуляции.

    Предположим, что происходит амплитудная модуляция сигнала S(t), промодулированный сигнал обозначим
    .

    Модулируемый сигнал, зависящий от времени окажется равным:

    Сигнал, полученный с помощью модуляции.

    Первое слагаемое в полученном выражении представляет собой исходное колебание, второе и третье – новые гармоники, которые появились в результате модуляции. Частоты этих гармоник?0–? и?0+? называются боковыми частотами. Т.о. модуляция сигнала ведет к изменению спектра сигнала, причем в большинстве случаев спектр сигнала становится более широким.

    Вопрос 8

    8. Понятие случайного процесса. Стационарность случайного процесса.

    Понятие случайного процесса.

    Теория случайных величин изучает вероятностные явления как фиксированные результаты некоторых физических экспериментов, т.е. изучает физические процессы в статике. Для описания сигналов, которые отображают, развивающиеся во времени, физические процессы методом классической теории вероятности оказалось недостаточно. Подобные задачи изучает особая ветвь в математике, которая называется теория случайных процессов.

    Случайные процессы принято обозначать x(t). Случайный процесс x(t) – это особого вида функция, характеризующая тем, что в любой момент времени ее значение является случайным. Иногда говорят, что x(t) – случайная функция. Имея дело с детерминированными сигналами, мы отображаем их функциональной зависимостью S(t) или осциллограммой. Имея дело со случайным сигналом, приходящегося фиксировать мгновенное значение случайного сигнала и получать при этом единичную реализацию случайного процесса.

    Случайный процесс x(t) представляет собой бесконечное число случайной реализации x i (t), которые образуют статистический ансамбль {x i (t)}.

    Классификация случайных процессов.

    Случайные процессы подразделяют на: стационарные и нестационарные, эргодические и неэргодические.

    Деление случайных процессов на стационарные и нестационарные базируется на понятии плотности вероятности случайных процессов. (*)

    Рассмотрим случайный процесс x(t) заданный статистическим ансамблем x1(t), x2(t)… (рис.). Зафиксируем момент времени t. Указанная процедура называется сечением случайного процесса и она позволяет получить выборку случайных процессов, которая характеризует состояние случайного процесса в момент времени x1. Зафиксируем момент времени t2 и рассмотрим сечение случайного процесса в данный момент времени.

    Для двух случайных величин полученных в момент времени t1 и t2 можно ввести двумерную плотность вероятности p(x1,x2,t1,t2). Предположим, что зафиксировано n случайных измерений. В этом случаи можно говорить, о n-мерной плотности распределения вероятности p(x1,x2,…,xn,t1,t2,…,tn). Физический смысл показывает вероятность реализации случайной величины x1 в момент времени t1; вероятность реализации случайной величины x2 в момент времени t2.

    Случайный процесс называется стационарным, если его n – мерная плотность распределения вероятности не зависит от временного сдвига по оси времени. Для определения стационарности и не стационарности случайного сигнала исследуют источник этого сигнала, и если обнаруживается, что нет явных изменений в параметрах источника сигнала, то генерируемый сигнал считается стационарным.

    Некоторые стационарные процессы обладают интересным свойством. Оно заключается в том, практически каждая реализация случайного процесса ведет себя так, как и весь статистический ансамбль. В результате динамику такого случайного процесса можно изучать по одной из реализаций. Сам же случайный процесс называется эргодическим.

    Вопрос 9

    9. Статистические параметры случайного процесса. Свойства.

    Используются следующие параметры:

    1. Мат. ожид. случ. процесса m x (t)

    2. Дисперсия D x (t)

    3. Кореляц. ф-ция R x (t1,t2)

    Мат. ожид. случ. Процесса - неслучайная ф-ция, значение которой при каждом фиксированном моменте аргументе моменте времени равно мат. ожид. сечения, соотв. этому моменту времени.

    Дисперсия случ. процесса - неслучайная и неотрицательная ф-ция, значение которой при каждом фиксированном моменте времени равно дисперсии сечения, соотв. этому моменту времени.

    Корреляц. ф-ция случ. процесса- неслучайная ф-ция, значение которой при каждой паре фиксированных аргументов равно корреляц. моменту сечений, соотв. данным величинам.

    Статистические параметры могут быть вычислены математически и экспериментально.

    Мат. ожид:

    Дисперсия:

    Корреляц. ф-ция:

    Если корреляционные и взаимокорреляционные функции не зависят от аргументов, то процессы – стационарно связанные.

    Описание процессов с помощью статических характеристик – корреляционная теория сл. процессов.

    Вопрос 10

    10. Измерение характеристик случайного процесса.

    Измерение математического ожидания и дисперсии базируется на следующем принципе: сначала определяется плотность распределения вероятностей, а потом производится интегрирование полученного результата. Предположим, что имеется одна случайная реализация x(t). Оказывается, что одномерная плотность распределения вероятности эргодического случайного процесса пропорциональна времени пребывания случайных реализаций этого процесса на уровне между величиной x и x+∆х.

    Устройство для измерения одномерной плотности распределения вероятности содержит компаратор, на один из входов которого подается случайная реализация x(t), на 2-ой вход уровень сигнала х, формирователь импульсов ФИ, интегрирующий прибор (стрелочный прибор, выполняющий функцию интегрирования).

    Таким образом данное устройство позволяет измерять математическое ожидание случайного процесса. При измерении дисперсии случайного процесса после формирователя импульсов включается емкость С, а в качестве инерционного прибора применяют квадратичный вольтметр, который выполняет функцию возведения результатов измерения в квадрат.

    Прибор для измерения корреляционной функции называется коррелометром. Принцип работы коррелометра следующий (1): мгновенное значение исследуемого сигнала после фильтрации постоянной составляющей разделяют на два канала. В одном из каналов осуществляют задержку сигнала на время?. После этого полученные сигналы перемножают, и результат перемножения измеряют инерционным прибором, осуществляющим интегрирование. Полученный результат соответствует корреляционной функции сигнала.

    Вопрос 11

    11. Связь корреляционной и спектральной теории случайного процесса.

    Представление случайного сигнала в частотной области носит название спектральной теорией случайного процесса. Данная теория для описания случайного процесса использует спец. функцию, которую называют спектральной плотностью мощности случ. Процесса (спектром мощности). Wx(?) – спектр мощности случайного процесса х.

    Посмотрим на аналогию детерминированного и случайного процессов: Sx(?) и Wx(?). Sx(?) и Wx(?) – величины различные. Но между моделями корр. и спектр. cвязаны преобразованиями Фурье. Спектр мощности Wx(?) и Rx(?) связаны между собой парой преобразования Фурье:

    Для пояснения физического смысла Wx(?), положим: значение?=0, в этом случае корреляционная функция окажется равной дисперсии случайного процесса Rx(0)=D(x) , то есть дисперсия есть средняя мощность флуктуации среднего стационарного случайного процесса. Чем шире спектр мощности, тем хаотичнее реализация случайного процесса.

    Wy (? ) > Wx (? ), Wy (? ) – шире. Необходимо отметить, что спектральная плотность мощности не содержит информации о фазовых соотношениях м-ду отдельными реализациями случ. процесса. Это значит, что по спектру мощности нельзя восстановить отдельную реализацию случ. процесса. Рассмотрим случ. процесс, который имеет постоянный спектр мощности Wx (? )= Wx (0)= const .

    Случайный процесс с постоянным спектром мощности называют белым шумом. В природе он не существует. Белым шумом – называется мат. модель, которой удобно заменять на практике широко полостные случайные процессы с целью упрощения вопросов. Особенно выгодны такие замены в тех случаях когда полоса пропускания оказывается существенно уже ширины спектра шума.

    Вопрос 12

    12. Физические системы преобразования информации и их математические модели.

    Системы, применяемые для обработки сигналов разнообразны как по принципам внутреннего устройства, так и по внешним характеристикам, однако в любом случае устройство обработки сигналов всегда представляет собой систему (совокупность блоков и связей между ними).

    В структуре системы всегда можно выделить вход и выход.

    Входной сигнал Uвх(t) и выходной сигнал Uвых(t) связаны между собой системным оператором Т:

    Математической моделью системы называют совокупность системного оператора Т и двух областей Dвх – область допустимых входных сигналов и Dвых – область допустимых выходных сигналов.

    С точки зрения классификации систем выделяют:

    Стационарные и нестационарные

    Линейные и нелинейные

    Сосредоточенные и распределенные

    Статические и динамические

    Системы называются стационарными, если выходная реакция не зависит от того, в какой момент времени поступило входное воздействие

    Иногда стационарные системы называют системами с постоянными параметрами. Если сигнал на выходе Uвых(t) зависит от выбора начала отсчета, то такую систему называют нестационарной или параметрической.

    Система называется линейной если преобразование суммы двух сигналов эквивалентно сумме преобразований каждого сигнала в отдельности

    Если данные условия не выполняются, то сумму называют нелинейной.

    Линейные системы замечательны тем, что для них можно решить задачу о преобразовании сигнала.

    Сосредоточенной называют такую систему, которая содержит соединительные проводники по длине гораздо меньше, чем длина волны распространяющегося по этим проводникам сигнала

    Распределенной называется система, когда длина соединительных проводников превышает длину волны несущего колебания.

    Динамическая система обладает следующим свойством: выходной сигнал определяется не только величиной входного сигнала в рассмотренный момент времени, но и состоянием сигнала в предшествующий момент времени.

    Для статической системы нет зависимости от времени.

    Вопрос 13

    13. Прохождение детерминированных сигналов через системы преобразования информации.

    Импульсной характеристикой системы называют отклик этого устройства на функцию Дирака?(t)

    ,
    .

    В частотной области вводится понятие частотного коэффициента передачи системы, который связан с импульсной характеристикой h(t) этого устройства парой преобразований Фурье.

    - прямое преобразование.

    - обратное преобразование.

    Таким образом любую систему можно обработки сигналов можно рассматривать либо во временной области с помощью импульсной характеристики, либо в частотной области с помощью частотного коэффициента передачи. Оба подхода являются равнозначными, а выбор одного из них диктуется, прежде всего, удобством математических расчётов.

    Частотный коэффициент передачи использует простую интерполяцию: если на вход устройство подаётся гармонический сигнал с частотой  и комплексной амплитудой, U вх, то амплитуда сигнала на выходе окажется равной:

    ,

    K(jw)- отражает внутреннее состояние системы.

    Методика анализа прохождения детерминированного сигнала через систему обработки информации состоит в следующем:

    1) По импульсной характеристике h(t) находят частотный коэффициент передачи системы K(jw):

    2) По модели сигнала во временной области S(t) находят спектральную плотность сигнала S(w):

    .

    3) Сигнал на входе устройства находят путём умножения спектральной плотности на входе на K(jw).

    Вопрос 14

    14. Прохождение случайных сигналов через системы преобразования информации

    Расчёт сигнала на выходе системы в случае прохождения через неё случайного сигнала проводится следующим образом:

    1) для устройства обработки информации по известной импульсной характеристике находим частотный коэффициент передачи (используя прямое преобразование Фурье):

    ;

    2) по корреляционной функции сигнала находим спектр мощности (используя прямое преобразование Фурье):

    ;

    3) спектр мощности на выходе устройства находится следующим образом:

    ;

    4) корреляционную функцию на выходе системы находим, используя обратное преобразование Фурье:

    .
    Вопрос 15

    15. Классификация помех. Электрические помехи.
    По виду воздействия на сигнал различают аддитивные и мультипликативные помехи.

    Помеха n(t), называется аддитивной, если действие этой помехи и полезного сигнала на устройство обработки независимы. Общий сигнал в тракте обработки в случае аддитивной помехи может быть представлен в следующем виде: X(t) = S(t)+n(t)

    Помеха называется мультипликативной, если она модулирует полезный сигнал. Общий сигнал в этом случае оказывается равен: X(t) = a∙?(t)∙S(t),

    Где S(t) – полезный сигнал; ?(t) – мультипликативная помеха; а – постоянный коэффициент, который показывает глубину модуляции (рис2)

    В большинстве случаев при НК имеет место совместное действие мульт-й и аддитивной помехи. Тогда результирующий сигнал можно представить как:

    X(t) = a∙?(t)∙S(t)+n(t)

    Большинство помех при НК порождается электрическими процессами. Эти помехи называются электрическими. Они делятся на внутренние (возникают внутри аппаратуры) и внешние.

    Существуют так же реверберационные помехи – возникают в результате рассеяния зондирующего излучения на неоднородностях в контролируемом материале.

    Электрические помехи можно разделить на 3 класса:

    1) флуктуационные; 2) квазигармонические;

    3) импульсные.

    1) Флуктуационные, представляют собой случайный процесс с нормальным законом распределения плотности вероятности. С физ-й точки зрения, флуктуационные помехи порождаются случайными отклонениями тех или иных физ-х величин от средних значений.

    Флуктуационные помехи возникают в местах соединения отельных участков в цепи обработки сигналов; в различных элементах цепи от теплового шума; в источниках полезных сигналов и различного рода усилителях. Наиболее распространенная причина возникновения – тепловое движение.

    2) К квазигармоническим помехам относятся сигналы посторонних радиостанций, излучение высокочастотных генераторов промышленного и медицинского назначения. Основным свойством помехи является то, что ширина спектра этого сигнала является чрезвычайно узкой.

    3) Импульсные помехи представляют собой последовательность импульсов произвольной формы, произвольной длительности и амплитуды, возникающих в случайные моменты времени. К таким помехам относятся многие виды атмосферных (гроза) и индустриальных воздействий на аппаратуру НК.

    Вопрос 16

    16. Методы борьбы с электрическими помехами.
    Универсальных способов борьбы с эл. помехами не существует. Наиболее распространенные способы борьбы с электрическими помехами, которые применяются в аппаратуре НК:

    1) снижение уровня помех за счёт уменьшения числа источников помех. Этот способ основан на предотвращении возникновения источников помех или их подавлении путём компенсации.

    3) способ основан на том, что помеха и полезный сигнал не коррелированны. Создаётся принципиальная возможность отделения помехи от полезного сигнала. Отделение полезного сигнала от помехи зачастую основано на использовании различных частотных спектров полезного сигнала и помехи. Данный способ получил название фильтрации. Устройства, которые выполняют фильтрацию, называются фильтрами.