Сайт о телевидении

Сайт о телевидении

» » Малый математический факультет. Основы систем счисления

Малый математический факультет. Основы систем счисления

Основные понятия систем счисления

Система счисления - это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления. Основание системы записывается в справа числа в нижнем индексе: ; ; и т. д.

Различают два типа систем счисления:

позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д. Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

где S - основание системы счисления;

Цифры числа, записанного в данной системе счисления;

n - количество разрядов числа.

Пример. Число запишется в форме многочлена следующим образом:

Виды систем счисления

Римская система счисления является непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

III

VII

VIII

XIII

XVIII

XIX

XXII

XXXIV

XXXIX

XCIX

200

438

649

999

1207

CDXXXVIII

DCXLIX

CMXCIX

MCCVII

2045

3555

3678

3900

3999

MMXLV

MMMDLV

MMMDCLXXVIII

MMMCM

MMMCMXCIX

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления – в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления, её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII - ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы - триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная. Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

001

010

011

100

101

110

111

1000

1001

1010

1011

1100

1101

D http://viagrasstore.net/generic-viagra-soft/

1110

1111

10000

Правила перевода чисел из одной системы счисления в другую

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 4. Степени числа 2

n (степень)

1024

Пример. Число перевести в десятичную систему счисления.

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 5. Степени числа 8

n (степень)

Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Методический комментарий к уроку

Цели учителя: Показать учащимся методы интеграции знаний из различных источников, создать условия для продуктивной работы в группах.

Цели учащихся: Познакомиться с историей появления систем счисления, узнать принципы построения различных систем счисления и области их использования, получить необходимые навыки командной работы с различными источниками информации.

На уроке математике в 5-м классе во время выполнения задания, связанного с разложением по разрядам многозначных чисел, у учащихся возникли вопросы: “Почему мы считаем десятками? Почему нельзя считать по-другому? Есть ли другие способы счёта?”. Учителем было предложено найти ответы на данные вопросы путём поиска, анализа и обобщения информации по данной теме в течение недели, работая в малых группах, сформированных из учащихся класса по желанию. Результаты данной работы должны быть оформлены и представлены на уроке математике через неделю. По окончании урока класс разбился на следующие творческие группы:

  • Системы счисления (общие понятия) – 5 человек
  • Двоичная система – 7 человек (этот вопрос вызвал наибольший интерес)
  • Шестидесятеричная система– 5 человек
  • Десятичная система– 5 человек
  • Другие системы счисления – 3 человека
  • Перевод их одной системы в другую – 5 человек.

В результате поисковой деятельности учащихся получился следующий урок:

“Числа не управляют миром, но показывают, как управляется мир”

(И-В Гёте)

Группами учащихся были представлены результаты поисковой и аналитической работы.

I – Общие понятия

Системой счисления называется совокупность приёмов обозначения чисел – язык, алфавитом которого являются символы (цифры), а синтаксисом – правило, позволяющее сформулировать запись числа однозначно.

Число – это некоторая абстрактная сущность для описания количества

Цифра – это знак, используемый для записи чисел. Цифры бывают разные, самыми распространёнными являются арабские цифры; менее распространёнными римские цифры (можно увидеть на циферблате часов или в обозначении века)

Основание – количество цифр, используемых в системе счисления.

Примеры чисел в различных системах счисления:

11001 2 – число в двоичной системе счисления

221 3 – число в троичной системе счисления

31 8 – число в восьмеричной системе счисления

25 10 – число в десятичной системе счисления

В старых книгах по арифметике, кроме 4 арифметических действий, упоминается и пятое – нумерация. Нумерация (счисление) была одной из первых проблем, с которой столкнулись при построении арифметики.

Существует множество способов записи чисел с помощью цифр. Эти способы можно разделить на три группы:

  • позиционные системы счисления
  • смешанные системы счисления
  • непозиционные системы счисления

Денежные знаки – пример смешанной системы счисления. Сейчас в России используются монеты и купюры следующих номиналов: 1коп., 5коп., 10коп., 50коп., 1руб., 2руб.,5руб., 10руб., 50руб., 100руб., 500руб., 1000руб., 5000руб. Чтобы получить некоторую сумму в рублях, надо использовать некоторое количество денежных знаков различного достоинства. Предположим, что мы покупаем пылесос, который стоит 6379 рублей. Чтобы заплатить за покупку потребуется 6 купюр по 1000 рублей, 3 купюры по 100 рублей, 1 пятидесятирублёвая купюра, две десятки, одна пятирублёвая и две монеты по 2 рубля. Если мы запишем количество купюр и монет, начиная с 100 рублей и заканчивая одной копейкой, заменяя нулями пропущенные номиналы, то мы получим число, представленное в смешанной системе счисления: в нашем случае – 603121200000.

В непозиционных системах счисления величина числа не зависит от положения цифр в записи числа. Если бы мы перемешали цифры в числе 603121200000, то мы бы не смогли понять, сколько стоит пылесос; в непозиционной системе цифры можно переставлять, при этом сумма не изменится. Примером непозиционной системы является римская система. Такие системы строятся по принципу аддитивности (англ. аdd. – сумма). Количественный эквивалент числа определяется как сумма цифр. Например:

В позиционных системах счисления всегда важен порядок расположения цифр в записи числа. (25 и 52 – разные числа)

Любая система счисления, предназначенная для практического использования, должна обеспечивать:

  • возможность представления числа в заданном диапазоне чисел
  • однозначность представления
  • краткость и простоту записи
  • лёгкость овладения системой, а так же простота и удобство оперирования ею

II – Двоичная система счисления

Двоичная система счисления – это позиционная система счисления с основанием 2. В этой системе счисления натуральные числа записываются с помощью двух символов: 1 и 0. Цифра двоичной системы - бит. Восемь цифр – байт.

Двоичная система счисления была придумана математиками и философами ещё в XVII-XIX веках. Выдающийся математик Лейбниц говорил: “Вычисление с помощью двоек…является для науки основным и порождает новые открытия… При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок”. Позже двоичная система была забыта, и только в 1936-1938 годах американский инженер и математик Клод Шеннон нашёл замечательное применение двоичной системы при конструировании электронных схем.

Двоичная система используется в цифровых устройствах, поскольку является наиболее простой.

Преимущества двоичной системы:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. Две цифры легко представлены физическими явлениями: есть ток – нет тока; индукция магнитного поля больше пороговой величины или нет т.д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать
  • Двоичная арифметика является довольно простой.
  • Возможно применение аппарата логики для выполнения побитовых операций

Для преобразования из двоичной системы в десятичную используется таблица степеней числа 2.

III – Шестидесятеричная система счисления

В современное время шестидесятеричная система счисления используется для измерения времени, углов.

В представлении времени используются три позиции: часы, минуты, секунды, так как для каждой позиции приходится использовать 60 цифр, а у нас только 10, то для каждой шестидесятеричной позиции используются две десятичные цифры (00, 01, …), позиции разделяются двоеточием. h:m:s.

Рассмотрим действия в шестидесятеричной системе счисления на двух задачах:

  1. Пирог нужно печь в духовке 45 минут. Сколько секунд потребуется?
  2. Нужно испечь 10 пирогов. Сколько потребуется времени?

Чтобы производить вычисления в шестидесятеричной системе счисления нужно знать таблицы сложения и умножения шестидесятеричных чисел. Каждая таблица очень большая, она размером 60*60, мы то обычную таблицу умножения еле запомнили, а уж выучить шестидесятеричную таблицу нам будет ещё гораздо сложнее. Как же быть? Можно решать эти задачи в десятичной системе счисления, а потом результат перевести в шестидесятеричную.

45 минут=0*3600+45*60+0= 2700 секунд

2700*10=27000 секунд потребуется для выпечки 10 пирогов.

27000/60=450 (остаток 0)

450/60=7 (остаток 30)

7/60=0 (остаток 7) Получилось 07:30:00

IV – Десятичная система счисления

Представление чисел с помощью арабских цифр – самая распространённая позиционная система счисления, она называется “десятичной системой счисления”. Десятичной она называется потому, что использует десять цифр: 0,1,2,3,4,5,6,7,8,9. Десятичная система счисления – наиболее известное достижение индийской математики (595год). Система с основанием 10 проникла по караванным путям из Индии во многие области Ближнего Востока. Постепенно эту систему всё шире стали применять в арабском мире, хотя одновременно в ходу оставались и другие системы. “Книга абака” Леонардо Пизанского (1202 год) была одним из источников для проникновения индийско-арабской системы нумерации в Западную Европу. Эта книга была грандиозным по тем временам трудом, в печатном виде она насчитывала 460 страниц. Её автор известен ещё и под именем Фибоначчи. Его книга представляла математическую энциклопедию своего времени. Десятичная система получила распространение и признание в Европе только в эпоху Возрождения.

V – Другие системы счисления

Шестнадцатеричная система счисления – используются следующие знаки для записи чисел: 0, 1,2,3,4,5,6,7,8,9, А, В, С,D, E, F.

Двоично-десятичная система счисления. В такой системе каждая десятичная цифра кодируется определённой комбинацией цифр двоичной системы. Обозначение каждой десятичной цифры называется тетрадой. Пример:

125 10 =000100100101 2-10 (3 тетрады)

0000=1 0100=4 1000=8

0001=1 0101=5 1001=9

Пятеричная система счисления – Первые математики умели считать лишь по пальцам одной руки, а если предметов было больше, то говорили так: “пять +один” и т.д. Иногда за основу принимали число 20 – число пальцев на руках и ногах. Из 307 систем счисления первобытных американских народов 146 были десятичными, 106 – пятеричными и десятичными. В более характерной форме система с основанием 20 существовала у майя в Мексике и у кельтов в Европе.

VI – Перевод из одной системы в другую

Связаны ли системы счисления между собой? Возможно, ли перевести число из одной системы в другую? Существует два основных правила перевода из одной системы в другую:

Перевод из любой другой в десятичную систему осуществляется по формулам:

11001 2 – 1*2 4 +1*2 3 +0*2 2 +0*2 1 +1*2 0 =1*16+1*8+0*4+0*2+ 1*1=25 10

221 3 -2*3 2 +2*3 1 +1*3 0 =2*9+2*3+1*1=25 10

31 8 – 3*8 1 +1*8 0 =3*8+1*1=25 10

25 10 – 2*10 1 +5*10 0 =2*10+5*1=25 10

Перевод числа из десятичной системы в систему с любым основанием осуществляется по алгоритму:

25 10 перевести в число в двоичной системе

25/2=12 (остаток 1)

12/2=6 (остаток 0)

6/2=3 (остаток 0)

3/2=1 (остаток 1)

1/2=0 (остаток 1) Получили число 11001 2

25 10 перевести в число в троичной системе

25/3=8 (остаток 1)

8/3=2 (остаток 2)

2/3=0 (остаток 2) Получили 221 3

25 10 перевести в число в восьмеричной системе

25/8=3 (остаток 1)

3/8=0 (остаток 3) Получили 31 8

После представления результатов работы творческих групп были оценены все системы счисления по указанным в начале критериям и все пришли к выводу, что в результате исторического развития математики самая удобная система (десятичная) стала самой распространённой. При этом были горячие сторонники двоичной системы, считавшие, что она очень важна для электроники.

Закончен урок был синквейном.

Система счисления – удобная, быстрая, помогает, считает, записывает

“Счёт и вычисления – основа порядка в голове” (И. Песталоцци)

Источники информации

  1. Д.Я. Стройк “Краткий очерк истории математики” (“Наука”, Москва, 1990 г.).
  2. Н.Я. Виленкин, Л.П. Шибасов, З.Ф. Шибасова “За страницами учебника математики” (“Просвещение”, Москва, 2008).
  3. А.В. Дорофеева “Страницы истории на уроках математики” (“Просвещение”, Москва, 2007).
  4. Интернет – ресурсы “Википедия”.

Представление чисел и команд в ЭВМ (INFlesson5.doc).

Мысль выражать числа десятью знаками, придавая им, кроме значения по форме, ещё значение по месту, настолько проста, что именно из-за этой простоты трудно понять, насколько она удивительна. Как нелегко прийти к этому методу, мы видим на примере величайших гениев греческой учёности Архимеда и Апполония, от которых эта мысль осталась скрытой.

Пьер Симон Лаплас

Изучая способы представления числовой информации необходимо знакомиться с правилами перевода одного представления числа в другое, пытаться понять, почему одно и то же число в различных ситуациях необходимо представлять по-разному. Приёмами представления чисел занимается специальный раздел теории чисел «Системы счисления».

Введено еще одно важное понятие – система счисления. Зачем она нужна? Что это вообще такое? Системы счисления – это системы, созданные человеком. Называют такие системы искусственными в отличие отестественных систем, созданных природой. К естественным (природным) системам относятся галактики, наша Солнечная система, человек как единое целое и так далее. К искусственным системам относятся города, заводы, система образования, национальные языки, то есть всё, что сделано людьми.

Искусственные системы можно разделить на

материальные: автомобили, самолёты, дома, города, плотины и т.д.;

общественные , то есть разные объединения людей: парламент, система народного образования, шахматный клуб и т.д.;

информационные: национальные языки, компьютерная сеть Интернет, системы счисления и т.д.

Каждая искусственная система создаётся с определённой целью. Можно утверждать, что лучше та искусственная система, которая наилучшим образом обеспечивает достижение цели её создания.

Целью создания системы счисления является выработка наиболее удобного способа записи чисел. Система счисления позволяет отображать в компактной форме количественные сведения об объектах и манипулировать ими, используя достаточно простые правила.

Первые девять натуральных чисел мы обозначаем специальными знаками:

1, 2, 3, 4, 5, 6, 7, 8, 9.

Поступать таким же образом со всеми встречающимися на практике числами, т.е. обозначать специальными знаками все встречающиеся числа, было бы неудобно. Даже если бы наши потребности ограничивались счётом в пределах тысячи, надо было бы запомнить тысячу специальных знаков. Естественно, что уже давно люди стали выбирать тот или иной ряд "ключевых", основных чисел и только их обозначать специальными знаками.

Системы счисления – это гениальное изобретение человечества. Для того чтобы сообщить о том, что сегодня две тысячи седьмой год на естественном языке, я вынужден использовать 16 символов (без учёта пробелов). С помощью языка чисел, можно то же самое изобразить четырьмя символами. Получается, что цифры представляют собой коды соответствующих слов, что подтверждается и тем, что номер года, записанный словами и числом, читается нами одинаково. Числа на разных естественных языках произносятся различным образом, а их запись и правила выполнения арифметических операций над ними одинаковы.

Понятие числа является фундаментальным как для математики, так и для информатики. Но если в математике наибольшее внимание уделяется методам обработки чисел, то для информатики нельзя обойти стороной методы представления чисел, так как именно они определяют необходимые ресурсы памяти, скорость и погрешность вычислений.

1. Система счисления – это способ изображения чисел и соответствующие ему правила действий над числами.

Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные.

1.1 Непозиционные системы счисления.

Непозиционными системами счисления пользовались древние египтяне,

греки, римляне и некоторые другие народы древности. В непозиционных системах счисления от положения знака в записи числа не зависит величина, которую он (знак) обозначает.

До нас дошла римская система записи чисел (римские цифры), которая в некоторых случаях применяется до сих пор в нумерации (века, тома, главы книги). В римской системе в качестве цифр используются латинские буквы:

1 5 10 50 100 500 1000

Например, число ССXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если слева записана меньшая цифра, а справа – большая, то их значения вычитаются.

VI = 5 + 1 = 6, а IV = 5 – 1 = 4.

MCMXCVII = 1000 + (- 100 + 1000) + (- 10 + 100) + 5 + 1 + 1 = 1997.

Непозиционные системы счисления были более или менее пригодны для выполнения сложения и вычитания, но совсем не удобны при умножении и делении.

1.2 Позиционные системы счисления (ПСС).

Позиционные системы счисления удобны тем, что позволяют записывать сколь угодно большие числа с помощью небольшого количества цифр. Немаловажным преимуществом позиционных систем счисления являются достаточно простые алгоритмы выполнения арифметических операций над числами.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её позиции.

Количество используемых цифр называется основанием ПСС.

Система счисления, применяемая в современной математике, является позиционной десятичной системой. Её основание равно десяти, так как запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Многие из нас эти значки, известные с детства, связывают с понятием "цифра". Тем не менее, в качестве цифр мы можем использовать любые значки. Да и цифр не обязательно должно быть десять.

Хотя десятичную систему принято называть арабской, но зародилась она в Индии, в V веке. В Европе об этой системе узнали в XII веке из арабских научных трактатов, которые были переведены на латынь. Этим и объясняется название "арабские цифры".

Позиционный тип десятичной системы легко понять на примере любого многозначного числа. Например, в числе 333 первая цифра означает три сотни, вторая – три десятка, третья – три единицы. Одна и та же цифра в зависимости от позиции в записи числа обозначает разные величины.

333 = 3 100 + 3 10 + 3.

Всякое десятичное число можно представить как сумму произведений составляющих его цифр на соответствующие степени десятки. То же самое относится и к десятичным дробям.

26, 387 = 2 10 1 + 6 10 0 + 3 10 -1 + 8 10 -2 + 7 10 -3 .

Это позволяет осуществить перевод чисел с основанием не равным 10 к десятичному представлению.

Для осуществления такого перевода необходимо записать исходное число в виде суммы произведений цифр числа на соответствующие степени основания и вычислить значение полученного числового выражения по правилам десятичной арифметики.

1. 432,32 5 → A 10 .

432,32 5 = 4*5 2 + 3*5 1 + 2*5 0 + 3*5 -1 + 2*5 -2 = 100 + 15 + 2 + + =

2. DF,4A 16 → A 10

DF,4A 16 = 13*16 1 + 15*16 0 + 4*16 -1 + A*16 -2 = 208 + 15 +

Число «десять» - не единственно возможное основание позиционной системы. Известный русский математик Н.Н.Лузин так выразился по этому поводу: "Преимущества десятичной системы не математические, а зоологические. Если бы у нас на руках было не десять пальцев, а восемь, то человечество пользовалось бы восьмеричной системой".

Для записи чисел в позиционной системе с основанием n (n – обозначение основания ПСС) нужно иметь алфавит из n цифр. Обычно для этого при n ≤ 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют латинские буквы.

Приведем примеры алфавитов нескольких систем:

Основание системы, к которой относится число, обозначается подстрочным индексом к этому числу.

1011001 2 , 3671 8 , 3B8F 16 .

1.3 Перевод десятичных чисел в ПСС с основанием, не равным 10.

1.3.1 Перевод целых чисел.

Основание новой системы счисления выразить в десятичной системе

счисления и все последующие действия производить в десятичной системе счисления;

Последовательно выполнять деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;

Полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

Составить число в новой системе счисления, записывая его, начиная с последнего частного.

1.3.2 Перевод дробных чисел.

Основание новой системы счисления выразить в десятичной системе и все последующие действия выполнять в десятичной системе счисления;

Последовательно умножать данное число и получаемые дробные части произведений на основание новой системы счисления до тех пор, пока дробная часть произведения не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;

Полученные целые части произведений, являющихся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

Составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Примеры перевода конкретных десятичных чисел представлены в приложении 1.

Приложение 1.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16

Системой счисления называется совокупность приемов наименования и записи чисел. В любой системе счисления для представления чисел выбираются некоторые символы (их называют цифрами ), а остальные числа получаются в результате каких-либо операций над цифрами данной системы счисления.

Система называется позиционной , если значение каждой цифры (ее вес) изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число.

Число единиц какого-либо разряда, объединяемых в единицу более старшего разряда, называют основанием позиционной системы счисления . Если количество таких цифр равно P , то система счисления называется P -ичной. Основание системы счисления совпадает с количеством цифр, используемых для записи чисел в этой системе счисления.

Запись произвольного числа x в P -ичной позиционной системе счисления основывается на представлении этого числа в виде многочлена

x = a n P n + a n -1 P n -1 + ... + a 1 P 1 + a 0 P 0 + a -1 P -1 + ... + a -m P -m

Арифметические действия над числами в любой позиционной системе счисления производятся по тем же правилам, что и десятичной системе, так как все они основываются на правилах выполнения действий над соответствующими многочленами. При этом нужно только пользоваться теми таблицами сложения и умножения, которые соответствуют данному основанию P системы счисления.

При переводе чисел из десятичной системы счисления в систему с основанием P > 1 обычно используют следующий алгоритм:

1) если переводится целая часть числа, то она делится на P , после чего запоминается остаток от деления. Полученное частное вновь делится на P , остаток запоминается. Процедура продолжается до тех пор, пока частное не станет равным нулю. Остатки от деления на P выписываются в порядке, обратном их получению;

2) если переводится дробная часть числа, то она умножается на P , после чего целая часть запоминается и отбрасывается. Вновь полученная дробная часть умножается на P и т.д. Процедура продолжается до тех пор, пока дробная часть не станет равной нулю. Целые части выписываются после запятой в порядке их получения. Результатом может быть либо конечная, либо периодическая дробь в системе счисления с основанием P . Поэтому, когда дробь является периодической, приходится обрывать умножение на каком-либо шаге и довольствоваться приближенной записью исходного числа в системе с основанием P .

Кодирование чисел

Чтобы использовать числа, нужно их как-то называть и записывать, нужна система нумерации. Различные системы счёта и записи чисел тысячелетиями сосуществовали и соревновались между собой, но к концу "докомпьютерной эпохи" особую роль при счёте стало играть число "десять", а самой популярной системой кодирования оказалась позиционная десятичная система. В этой системе значение цифры в числе зависит от её места (позиции) внутри числа. Десятичная система счисления пришла из Индии (не позднее VI века нашей эры). Алфавит этой системы: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} - всего 10 цифр, таким образом основание системы счисления - 10. Число записывается как комбинация единиц, десятков, сотен, тысяч и так далее. Пример: 1998=8*10 0 + 9*10 1 + 9*10 2 + 1*10 3 .

В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, но информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция). Самая правая цифра числа показывает число единиц, вторая справа - число десятков, следующая - число сотен и т.д.

333 10 = 3*100 + 3*10+3*1 = 300 + 30 + 3

Заметим, что выбор числа 10 в качестве основания системы счисления объясняется традицией, а не какими-то замечательными свойствами числа 10. Вообще, представление числа N в р-ричной системе счисления, это:

N=a n *p n +a n-l *p n-l +...+a l *p l +a o , где а ¹ 0, а i Î {0, 1, 2, ..., а i }.

В Вавилоне, например, использовалась 60-ричная система счисления, алфавит содержал цифры от 1 до 59, числа 0 не было, таблицы умножения были очень громоздкими, поэтому очень скоро она была забыта, но отголоски её былой распространённости можно наблюдать и сейчас - деление часа на 60 минут, деление круга на 360 градусов.

Двоичная система счисления

Двоичная система счисления была придумана математиками и философами ещё до появления компьютеров (XVII - XIX вв.). Выдающийся математик Лейбниц говорил: "Вычисление с помощью двоек... является для науки основным и порождает новые открытия... При сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок". Позже двоичная система была забыта, и только в 1936 - 1938 годах американский инженер и математик Клод Шеннон нашёл замечательные применения двоичной системы при конструировании электронных схем. Рассмотрим пример представления числа в двоичной системе счисления:

Пример 2.1.1. Переведём число 2000 в двоичную систему.

1. Делим 2000 на основание новой системы счисления - 2:

2000:2=1000(0 - остаток),

2. Собираем последнее частное от деления (всегда равно 1) и остатки от деления и записываем их по порядку, начиная снизу:

2000 10 ==11111010000 2

Для проверки переведём полученное число в десятичную систему счисления, для этого:

1. Выделим двоичные разряды числа, то есть, степени числа 2, начиная с 0-й:

2. Запишем сумму произведений 0 и 1 на соответствующую степень числа 2 (см. представление числа в р-ричной системе счисления):

0*2 0 +0*2 1 +0*2 2 +0*2 3 +l*2 4 +0*2 5 +l*2 6 +l*2 7 +l*2 8 +l*2 9 +l*210= 16+64+128+256+512+1024=2000

Существуют системы счисления, родственные двоичной. При работе с компьютерами иногда приходится иметь дело с двоичными числами, так как двоичные числа заложены в конструкцию компьютера. Двоичная система удобна для компьютера, но неудобна для человека - слишком длинные числа неудобно записывать и запоминать. На помощь приходят системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная.

Например, в шестнадцатеричной системе для записи чисел предназначены 10 арабских цифр и буквы латинского алфавита {А, В, С, D, Е, F}. Чтобы записать число в этой системе счисления, удобно воспользоваться двоичным представлением числа. Возьмём для примера то же число - 2000 или 11111010000 в двоичной системе. Разобьём его на четвёрки знаков, двигаясь справа налево, в последней четвёрке слева припишем незначащий 0, чтобы количество знаков в триадах было по четыре: 0111 1101 0000. Начнём перевод - числу 0111 в двоичной системе соответствует число 7 в десятичной (7 10 =1*2 0 +1*2 1 +1*2 2), в шестнадцатеричной системе счисления цифра 7 есть; числу 1101 в двоичной системе соответствует число 13 в десятичной (13=1*2 0 + 0*2 1 + 1*2 2 + 1*2 3), в шестнадцатеричной системе этому числу соответствует цифра D, и, наконец, число 0000 - в любой системе счисления 0. Запишем теперь результат:

11111010000 2 = 7D0 16 .

ДВЕНАДЦАТИРИЧНАЯ И ВОСЬМЕРИЧНАЯ СИСТЕМЫ СЧИСЛЕНИЯ

Хотя десятичная система счисления является наиболее широко применимой, это отнюдь не означает, что она самая лучшая. Широкое распространение во многом объясняется тем анатомическим обстоятельством, что у нас на руках и ногах по десять пальцев. Что же касается позиционного принципа и цифровых обозначений, то они с равным успехом могут быть приспособлены к системе счисления с любым основанием, независимо от того, равно ли оно 2, 10 или какому-нибудь другому целому положительному числу, кроме единицы. Например, подставив в полиномиальное представление 7x 2 + 6x 1 + 5x 0 + 4x –1 + 3x –2 вместо x значение 10, мы получим число 765,43 в нашей обычной десятичной системе. Но без малейшего ущерба для позиционного принципа обозначения целых чисел и дробей вместо x можно подставить и любое другое целое положительное число. Вместо числа 10 в качестве основания системы счисления чаще других предлагалось использовать числа 8 и 12. Системы, получающиеся при таких заменах, известны под названием восьмеричной и двенадцатеричной. В восьмеричной системе вместо переменной x в полиномиальном представлении следует подставить 8, и тогда число, равное в десятичной системе 765,43, в восьмеричной системе окажется равным (8 2) + 6(8 1) + 5(8 0) + 4(8 –1) + 3(8 –2), т.е. числу. В двенадцатеричной системе то же самое полиномиальное представление при x = 12 дает (12 2) + 6(12 1) + 5(12 0) + 4(12 –1) + 3(12 –2), или в наших обычных обозначениях. Что касается вычислений, то они во всех трех системах счисления, десятичной, восьмеричной и двенадцатиричной, производятся практически одинаково и с одной и той же легкостью. Различие в основном заключается в таблицах сложения и умножения, поскольку они изменяются от одной системы счисления к другой. Например, сумма семь плюс семь равна сумме восемь плюс шесть в восьмеричной системе, десять плюс четыре – в десятичной и двенадцать плюс два – в двенадцатиричной. Символически эти суммы и произведения можно записать следующим образом:

Мы видим, что переход от десятичной системы к восьмеричной или двенадцатиричной действительно требует полного пересмотра таблиц сложения и умножения; это объясняет, почему предложения о переходе к этим системам счисления не получили широкого признания. Преимущества, которые сулит этот переход, сводятся на нет сопряженными с ним трудностями. Главные преимущества восьмеричной и двенадцатиричной систем счисления связаны с делимостью их оснований. Рассматривая только целые числа, меньшие половины основания (поскольку ни одно число не может быть делителем основания, если это число больше половины основания, но меньше его), нетрудно понять, что число 10 имеет два неделителя – числа 3 и 4, тогда как в восьмеричной системе единственный неделитель, меньший половины основания, есть число 3, а в двенадцатиричной системе единственный неделитель основания равен числу 5. Иначе говоря, преимущество числа 12 как основания системы счисления заключается в том, что оно имеет делителями числа 2, 3, 4 и 6, тогда как число 10 имеет делителями числа 2 и 5. Число 8 имеет делителями только числа 2 и 4, однако его основное преимущество перед другими в том, что непрерывное деление пополам неизменно приводит к «одноместному» дробному представлению в полиномиальной форме. Например, если 8 разделить на 2 10 , то результат окажется в точности равным (0,004) 8 , тогда как если 12 разделить на 2 10 , то получится (приближенно) (0,0183) 12 , а при делении на 2 10 числа 10 результат (также приближенный) будет равным (0,0097656) 10 .