Сайт о телевидении

Сайт о телевидении

» » Эл пельтье. Как сделать элемент для кулера питьевой воды? Установка модуля на конденсатор

Эл пельтье. Как сделать элемент для кулера питьевой воды? Установка модуля на конденсатор

Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.

Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.

Что это такое?

Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.

В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.

На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.

Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.

Устройство и принцип работы

Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.


Обозначения:

  • А – контакты для подключения к источнику питания;
  • B – горячая поверхность элемента;
  • С – холодная сторона;
  • D – медные проводники;
  • E – полупроводник на основе р-перехода;
  • F – полупроводник n-типа.

Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.


Рис. 3. А – горячая сторона термоэлемента, В – холодная

Технические характеристики

Характеристики термоэлектрических модулей описываются следующими параметрами:

  • холодопроизводительностью (Q max), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
  • максимальным температурным перепадом между сторонами элемента (DT max), параметр приводится для идеальных условий, единица измерения – градусы;
  • допустимая сила тока, необходимая для обеспечения максимального температурного перепада – I max ;
  • максимальным напряжением U max , необходимым для тока I max , чтобы достигнуть пиковой разницы DT max ;
  • внутренним сопротивлением модуля – Resistance, указывается в Омах;
  • коэффициентом эффективности – СОР (аббревиатура от английского – coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.

Маркировка

Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.


Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706

Маркировка разбивается на три значащих группы:

  1. Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
  2. Количество термопар в модуле, изображенном на фото их 127.
  3. Величина номинального тока в Амперах, у нас – 6 А.

Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.

Применение

Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:

  • мобильных холодильных установок;
  • небольших генераторов для выработки электричества;
  • систем охлаждения в персональных компьютерах;
  • кулеры для охлаждения и нагрева воды;
  • осушители воздуха и т.д.

Приведем детальные примеры использования термоэлектрических модулей.

Холодильник на элементах Пельтье

Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:

  • простота конструкции;
  • устойчивость к вибрации;
  • отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
  • низкий уровень шума;
  • небольшие габариты;
  • возможность работы в любом положении;
  • длительный срок службы;
  • небольшое потребление энергии.

Такие характеристики идеально подходят для мобильных установок.

Элемент Пельтье как генератор электроэнергии

Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву. Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником. К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.

Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.

Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии. Тем не менее, термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов. Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.


Для охлаждения процессора

Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров. Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна. Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.

Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.

Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.

Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.

Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.


Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.

Кондиционер на элементах Пельтье

Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело – охладить небольшой объем холодильной камеры, другое – помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (в 3-4 раза) потреблять электроэнергии, чем оборудование, работающее на хладагенте.

Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.

В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.

Для охлаждения воды

Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:

  • вода не охлаждается ниже 10-12°С;
  • на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
  • устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
  • не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.
Настольный кулер для воды с использованием элемента Пельтье

Осушитель воздуха на элементах Пельтье

В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.


Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.

Как подключить?

С подключением модуля проблем не возникнет, на провода выходов необходимо подать постоянное напряжение, его величина указанна в даташит элемента. Красный провод необходимо подключить к плюсу, черный – к минусу. Внимание! Смена полярности меняет местами охлаждаемую и нагреваемую поверхности.

Как проверить элемент Пельтье на работоспособность?

Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.

Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:

  1. подключаем щупы к выводам модуля;
  2. подносим зажженную зажигалку к одной из сторон;
  3. наблюдаем за показаниями прибора.

В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.

Как сделать элемент Пельтье своими руками?

Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.


Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.


На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств. Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой. В этом случае элемент гарантировано не нагреется выше температуры 100 °С.

Термопреобразователь (модуль Пельтье) работает по принципу, обратному действию термопары, - появлению разности температур, когда протекает электрический ток.

Как работает элемент Пельтье?

Довольно просто применять модуль Пельтье, принцип работы которого заключается в выделении или поглощении тепла в момент контакта разных материалов при прохождении через него энергетического потока электронов перед контактом и после него отличается. Если на выходе она меньше, значит, там выделяется тепло. Когда электроны в контакте тормозятся электрическим полем, они передают кинетическую энергию кристаллической решетке, разогревая ее. Если они ускоряются, тепло поглощается. Это происходит за счет того, что часть энергии забирается у кристаллической решетки и происходит ее охлаждение.

В значительной степени это явление присуще полупроводникам, что объясняется большой разностью зарядов.

Модуль Пельтье, применение которого является темой нашего обзора, используется при создании термоэлектрических охлаждающих устройств (ТЭМ). Простейшее из них состоит из двух полупроводников p- и n-типов, последовательно соединенных через медные контакты.

Если электроны движутся от полупроводника "p" к "n", на первом переходе с металлической перемычкой они рекомбинируют с выделением энергии. Следующий переход из полупроводника "p" в медный проводник сопровождается "вытягиванием" электронов через контакт электрическим полем. Данный процесс приводит к поглощению энергии и охлаждению области вокруг контакта. Аналогичным образом происходят процессы на следующих переходах.

При расположении нагреваемых и охлаждаемых контактов в разных параллельных плоскостях получится практическая реализация способа. Полупроводники изготавливаются из селена, висмута, сурьмы или теллура. Модуль Пельтье вмещает большое количество термопар, размещенных между керамическими пластинами из нитрида или оксида алюминия.

Факторы, влияющие на эффективность ТЭМ

  • Сила тока.
  • Количество термопар (до нескольких сотен).
  • Типы полупроводников.
  • Скорость охлаждения.

Больших величин достигнуть пока не удалось из-за низкого КПД (5-8 %) и высокой стоимости. Чтобы ТЭМ успешно работал, надо обеспечить эффективный отвод тепла с нагреваемой стороны. Это создает сложности в практическом воплощении способа. Если изменить полярность, холодная и горячая стороны меняются друг с другом.

Достоинства и недостатки модулей

Потребность в ТЭМ появилась с возникновением электронных устройств, нуждающихся в миниатюрных системах охлаждения. Преимущества модулей следующие:

  • компактность;
  • отсутствие подвижных соединений;
  • модуль Пельтье принцип работы имеет обратимый при смене полярности;
  • простота каскадных соединений для повышения мощности.

Главным недостатком модуля является низкий КПД. Это проявляется в больших затратах мощности при достижении требуемого эффекта охлаждения. Кроме того, он обладает высокой стоимостью.

Применение ТЭМ

Пельтье модуль применяется преимущественно для охлаждения микросхем и небольших деталей. Начало было положено для охлаждения элементов военной техники:

  • микросхемы;
  • инфракрасные детекторы;
  • элементы лазеров;
  • кварцевые генераторы.

Термоэлектрический модуль Пельтье постепенно стал применяться в бытовой технике: для создания холодильников, кондиционеров, генераторов, терморегуляторов. Главным его назначением является охлаждение небольших объектов.

Охлаждение процессора

Основные компоненты компьютеров постоянно совершенствуются, что приводит к росту тепловыделения. Вместе с ними развиваются системы охлаждения с применением новаторских технологий, с современными средствами контроля. Модуль Пельтье применение в данной сфере нашел прежде всего в охлаждении микросхем и других радиодеталей. С форсированными режимами разгона микропроцессоров традиционные кулеры уже не справляются. А увеличение частоты работы процессоров дает возможность повысить их быстродействие.

Увеличение скорости вращения вентилятора приводит к значительному шуму. Его устраняют за счет использования модуля Пельтье в комбинированной системе охлаждения. Таким путем передовые фирмы быстро освоили производство эффективных охлаждающих систем, которые стали пользоваться большим спросом.

С процессоров тепло обычно отводится кулерами. Воздушный поток может засасываться снаружи или поступать изнутри системного блока. Главная проблема состоит в том, что температура воздуха порой оказывается недостаточной для теплоотвода. Поэтому ТЭМ стали использовать для охлаждения потока воздуха, поступающего в системный блок, тем самым повышая эффективность теплообмена. Таким образом, встроенный воздушный кондиционер является помощником традиционной системы охлаждения компьютера.

С обеих сторон модуля крепятся алюминиевые радиаторы. Со стороны холодной пластины нагнетается воздух на охлаждение к процессору. После того как он заберет тепло, его выдувает другой вентилятор через радиатор горячей пластины модуля.

Современный ТЭМ управляется электронным устройством с датчиком температуры, где степень охлаждения пропорциональна разогреву процессора.

Активизация охлаждения процессоров создает также некоторые проблемы.

  1. Простые охлаждающие модули Пельтье предназначены для непрерывной работы. При пониженном энергопотреблении также уменьшается тепловыделение, что может вызвать переохлаждение кристалла и последующее зависание процессора.
  2. Если работа кулера и холодильника не будет должным образом согласована, последний может перейти в режим нагрева вместо охлаждения. Источник дополнительного тепла вызовет перегрев процессора.

Таким образом, для современных процессоров нужны передовые технологии охлаждения с контролем работы самих модулей. Подобные изменения режимов работы не происходят с видеокартами, которые также требуют интенсивного охлаждения. Поэтому для них ТЭМ подходит идеально.

Автохолодильник своими руками

В середине прошлого века отечественная промышленность пыталась освоить выпуск малогабаритных холодильников, основанных на эффекте Пельтье. Существующие технологии того времени не позволили этого сделать. Сейчас сдерживающим фактором преимущественно является высокая цена, но попытки продолжаются, и успехи здесь уже достигнуты.

Широкое производство термоэлектрических устройств позволяет создать своими руками небольшой холодильник, удобный для использования в автомобилях. Его основой является "сэндвич", который делается следующим образом.

  1. На верхний радиатор наносится слой теплопроводной пасты типа КПТ-8 и приклеивается Пельтье модуль с одной стороны керамической поверхности.
  2. Аналогично к нему крепится с нижней стороны другой радиатор, предназначенный для помещения в камеру холодильника.
  3. Все устройство плотно сжимается и просушивается в течение 4-5 часов.
  4. На обоих радиаторах устанавливаются кулеры: верхний будет отводить тепло, а нижний - выравнивать температуру в камере холодильника.

Корпус холодильника делается с теплоизолирующей прокладкой внутри. Важно, чтобы он плотно закрывался. Для этого можно использовать обычный пластиковый ящик для инструментов.

Питание 12 В подается из системы автомобиля. Его можно сделать и от сети 220 В переменного тока, с блоком питания. Схема преобразования переменного тока в постоянной применяется самая простая. Она содержит выпрямительный мост и сглаживающий пульсации конденсатор. При этом важно, чтобы на выходе они не превышали величину 5 % от номинального значения, иначе эффективность устройства снижается. У модуля имеются два вывода из цветных проводов. К красному всегда подключается "плюс", к черному - "минус".

Мощность ТЭМ должна соответствовать объему бокса. Первые 3 цифры маркировки означают количество пар полупроводниковых микроэлементов внутри модуля (49-127 и более). выражается двумя последними цифрами маркировки (от 3 до 15 А). Если мощности недостаточно, надо приклеить на радиаторы еще один модуль.

Обратите внимание! Если сила тока будет превосходить мощность элемента, он будет нагреваться с обеих сторон и быстро выйдет из строя.

Модуль Пельтье: генератор электрической энергии

ТЭМ можно использовать для выработки электроэнергии. Для этого надо создать перепад температуры между пластинами, и расположенные между ними термопары будут вырабатывать электрический ток.

Для практического использования нужен ТЭМ не менее чем на 5 В. Тогда с его помощью можно будет заряжать мобильный телефон. Из-за низкого КПД модуля Пельтье потребуется повышающий преобразователь постоянного напряжения. Для сборки генератора понадобятся:

  • 2 модуля Пельтье ТЕС1-12705 с размером пластин 40х40 мм;
  • преобразователь ЕК-1674;
  • алюминиевые пластины толщиной 3 мм;
  • кастрюля для воды;
  • термостойкий клей.

Между пластинами помещаются два модуля на клей, а затем вся конструкция фиксируется на дне кастрюли. Если ее заполнить водой и поставить на огонь, получится необходимая разность температуры, вырабатывающая ЭДС порядка 1,5 В. Подключив модули к повышающему преобразователю, можно повысить напряжение до 5 В, необходимых для зарядки аккумулятора телефона.

Чем больше разница температуры между водой и нижней подогреваемой пластиной, тем генератор работает эффективней. Поэтому надо стараться снижать нагрев воды разными способами: сделать ее проточной, почаще заменять свежей и т. п. Действенным средством увеличения разности температур является каскадное включение модулей, когда они накладываются слоями один на другой. Увеличение габаритных размеров устройства позволяет поместить между пластинами больше элементов и тем самым увеличить общую мощность.

Производительности генератора будет достаточно для зарядки небольших аккумуляторов, работы светодиодных ламп или радиоприемника. Обратите внимание! Для создания термогенераторов потребуются модули, способные работать при 300-400 0 С! Остальные подойдут только для пробных испытаний.

В отличие от других средств альтернативного получения электроэнергии они могут работать во время движения, если создать что-то типа каталитического нагревателя.

Отечественные модули Пельтье

ТЭМ своего производства появились у нас на рынке не так давно. Они отличаются высокой надежностью и имеют хорошие характеристики. Модуль Пельтье, который пользуется широким спросом, имеет размеры 40х40 мм. Он рассчитан на максимальный ток 6 А и напряжение до 15 В.

Отечественный модуль Пельтье купить можно за небольшую цену. При 85 Вт он создает температурный перепад 60 0 С. Вместе с кулером он способен защитить от перегрева процессор с рассеиваемой мощностью 40 Вт.

Характеристики модулей ведущих фирм

Зарубежные устройства представлены на рынке в большем разнообразии. Для защиты процессоров ведущих фирм применяется в качестве холодильника РАХ56В модуль Пельтье, цена которого в комплекте с вентилятором составляет $35.

При размерах 30х30 мм он поддерживает температуру процессора не выше 63 0 С при выделяемой мощности 25 Вт. Для питания достаточно напряжения 5 В, а ток не превышает 1,5 А.

Хорошо подходит под охлаждение процессора модуль Пельтье РА6ЕХВ, обеспечивающий нормальный температурный режим при мощности рассеивания 40 Вт. Площадь его модуля составляет 40х40 мм, а потребляемый ток - до 8 А. Кроме внушительных размеров - 60х60х52,5 мм (вместе с вентилятором) - устройство требует наличия вокруг него свободного пространства. Цена его составляет $65.

Когда применяется модуль Пельтье, технические характеристики у него должны соответствовать потребностям охлаждаемых устройств. Недопустимо, чтобы у них была слишком низкая температура. Это может привести к конденсации влаги, которая губительно действует на электронику.

Модули для изготовления генераторов, такие как отличаются большей мощностью - 72 Вт и 108 Вт соответственно. Их различают по маркировке, всегда наносимой на горячую сторону. Максимальная допускаемая температура горячей стороны у них составляет 150-160 0 С. Чем больше температурный перепад между пластинами, тем выше получается напряжение на выходе. Устройство работает при максимальном температурном перепаде 600 0 С.

Модуль Пельтье купить можно недорого - порядка $10 и менее за штуку, если хорошо поискать. Довольно часто продавцы значительно завышают цены, но можно найти в несколько раз дешевле, если приобретать на распродаже.

Заключение

Эффект Пельтье нашел применение в настоящее время в создании небольших холодильников, необходимых современной технике. Обратимость процесса дает возможность изготовить микроэлектростанции, востребованные для зарядки аккумуляторов электронных устройств.

В отличие от других средств альтернативного получения электроэнергии, они могут работать во время движения, если установить каталитический нагреватель.

Элемент Пельтье это термоэлектрический преобразователь, который создает разность температур на своих поверхностях при протекании электрического тока. Принцип действия основан на эффекте Пельтье – возникновении разности температур в месте контакта проводников под действием электрического тока.

Устройство и принцип действия элемента Пельтье.

Думаю, что только знатоки физики могут понять, как на самом деле работает элемент Пельтье. Для практиков главное, что существует минимальная единица модуля – термопара, представляющая из себя два соединенных проводника p и n типа.

При пропускании через термопару тока, происходит поглощение тепла на контакте n-p и выделение тепла на p-n контакте. В результате, участок полупроводника, примыкающий к n-p переходу, будет охлаждаться, а противоположный участок – нагреваться. Если поменять полярность тока, то на оборот, n-p участок будет нагреваться, а противоположный – охлаждаться.

Существует и обратный эффект. При нагревании одной из сторон термопары, вырабатывается электрический ток.

Для практического применения энергии поглощения тепла одной термопары недостаточно. В термоэлектрическом модуле используется много термопар. Электрически их соединяют последовательно. А конструктивно – так, что охлаждающие и нагревающие переходы расположены на разных сторонах модуля.

Термопары установлены между двух керамических пластин. Соединяются они медными шинами. Количество термопар может доходить до нескольких сотен. От их количества зависит мощность модуля.

Разность температур между горячей и холодной стороной модуля Пельтье может достигать 70 °C.

Надо понимать, что термоэлектрический модуль Пельтье снижает температуру одной стороны, относительно другой. Т.е. чтобы холодная сторона имела низкую температуру, необходимо отводить тепло от горячей поверхности, снижая ее температуру.

Для увеличения перепада температур, возможно последовательное (каскадное) соединение модулей.

Применение.

Термоэлектрические модули Пельтье применяются:

  • в небольших бытовых и автомобильных холодильниках;
  • в охладителях воды;
  • в системах охлаждения электронных приборов;
  • в термоэлектрических генераторах.

Я, используя элемент Пельтье, сделал .

Достоинства и недостатки модулей Пельтье.

Как-то неправильно сравнивать элементы Пельтье с компрессорными охлаждающими установками. Совсем разные устройства – большая механическая система с компрессором, газом, жидкостью и маленький полупроводниковый компонент. А больше сравнивать не с чем. Поэтому достоинства и недостатки модулей Пельтье весьма условное понятие. Есть области, в которых они не заменимы, а в других случаях их применение совершенно нецелесообразно.

К достоинству элементов Пельтье можно отнести:

  • отсутствие механически движущихся частей, газов, жидкостей;
  • бесшумная работа;
  • небольшие размеры;
  • возможность обеспечивать как охлаждение, так и нагревание;
  • возможность плавного регулирования мощности охлаждения.

Недостатки:

  • низкий кпд;
  • необходимость в источнике питания;
  • ограниченное число старт-стопов ;
  • высокая стоимость мощных модулей.

Параметры элементов Пельтье.

  • Qmax (Вт) – холодопроизводительность, при максимально-допустимом токе и разности температур между горячей и холодной сторонами равной 0. Считается, что вся тепловая энергия поступающая на холодную поверхность, мгновенно, без потерь передается на горячую.
  • Delta Tmax (град) - максимальная разность температур между поверхностями модуля при идеальных условиях: температура горячей стороны – 27 °C и холодная сторона с нулевой отдачей тепла.
  • Imax (А) – ток, обеспечивающий перепад температур delta Tmax.
  • Umax (В) – напряжение, при токе Imax и разности температур delta Tmax.
  • Resistance (Ом) – сопротивление модуля постоянному току.
  • COP (Сoefficient Of Рerformance) – коэффициент, отношение мощности охлаждения к электрической мощности, потребляемой модулем. Т.е. подобие кпд. Обычно 0.3-0.5.

Эксплуатационные требования к элементам Пельтье.

Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.

  • Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор . Иначе:
    • Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
    • Допустимый нагрев горячей стороны как правило + 80 °C (в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
    • При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
  • Важен надежный тепловой контакт модуля с радиатором охлаждения.
  • Источник питания для модуля должен обеспечивать ток с пульсациями не более 5% . При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
  • Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
  • К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
  • Недопустимо , для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию .
  • Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность , т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
  • Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В , или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
  • Модули имеют герметичное исполнение, их можно использовать даже в воде.
  • Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.

Мною был разработан для холодильника, удовлетворяющим всем этим требованиям. Он:

  • Вырабатывает питание для элемента Пельтье с пульсациями не более 2%.
  • Стабилизирует на модуле электрическую мощность, т.е. произведение тока на напряжение.
  • Обеспечивает плавное включение модуля.
  • Регулировка температуры происходит по принципу аналогового регулирования, т.е. плавного изменения мощности на элементе пельтье.
  • Контроллер разработан для холодильника, поэтому математика регуляторов учитывает инерционность охлаждения воздуха в камере.
  • Обеспечивает контроль температуры горячей стороны модуля и управление вентилятором.
  • Имеет высокий кпд, широкие функциональные возможности.

Термоэлектрический модуль Пельтье TEC1-12706.

Это самый распространенный тип элемента Пельтье. Используется во многих бытовых приборах. Не дорогой, с неплохими параметрами. Хороший вариант для изготовления маломощных холодильников, охладителей воды и т.п.

Характеристики модуля TEC1-12706 привожу в переводе на русский из документации компании производителя – HB Corporation.

Технические параметры TEC1-12706.

Графические характеристики.

0 Рубрика: . Вы можете добавить в закладки.

Явление возникновения термо-ЭДС было открыто немецким физиком Томасом Иоганном Зеебеком в далеком в 1821 году. А заключается это явление в том, что в замкнутой электрической цепи, состоящей из соединенных последовательно разнородных проводников, при условии что их контакты находятся в условиях различных температур, возникает ЭДС.

Данный эффект, названный по имени его первооткрывателя эффектом Зеебека, называют теперь просто термоэлектрическим эффектом .

Если цепь состоит всего из пары разнородных проводников, то такая цепь называется . В первом приближении можно утверждать, что величина термо-ЭДС зависит лишь от материала проводников и от температур холодного и горячего контактов. Таким образом, в небольшом интервале температур термо-ЭДС пропорциональна разности температур холодного и горячего контактов, а коэффициент пропорциональности в формуле называется коэффициентом термо-ЭДС.

Так например, при разности температур в 100°С, при температуре холодного контакта 0°С, пара медь-константан обладает термо-ЭДС величиной в 4,25мВ.

Между тем, термоэлектрический эффект имеет в своей основе три составляющих:

Первый фактор — различие у разных веществ зависимости средней энергии электронов от температуры. В результате, если при нагреве проводника на одном его конце температура выше, то там электроны приобретают большие скорости, чем электроны на холодном конце проводника.

Кстати, у полупроводников с нагревом растет и концентрация электронов проводимости. Электроны с высокой скоростью устремляются к холодному концу, и там происходит накопление отрицательного заряда, а на горячем конце получается нескомпенсированный положительный заряд. Так возникает составляющая термо-ЭДС, называемая объемной ЭДС.

Второй фактор — у разных веществ контактная разность потенциалов зависит от температуры по-разному. Это связано с различием энергии Ферми у каждого из проводников, сведенных в контакт. Контактная разность потенциалов, возникающая при этом, оказывается пропорциональной разности энергий Ферми.

Получается электрическое поле в тонком приконтактном слое, причем разность потенциалов с каждой стороны (у каждого из сведенных в контакт проводников) будет одинаковой, и при обходе цепи по замкнутому контуру, результирующее электрическое поле будет равно нулю.

Но если температура одного из проводников будет отличаться от температуры другого, то в связи с зависимостью энергии Ферми от температуры, изменится и разность потенциалов. В результате возникнет контактная ЭДС — вторая составляющая термо-ЭДС.

Третий фактор — фононное увеличение ЭДС . При условии, что в твердом теле имеет место температурный градиент, количество фононов (фонон - квант колебательного движения атомов кристалла), движущихся в направлении от горячего конца к холодному будет преобладать, в результате чего вместе с фононами большое количество электронов будет увлекаться в сторону холодного конца, и там станет накапливаться отрицательный заряд, пока процесс не придет в равновесие.

Это дает третью составляющую термо-ЭДС, которая в условиях низких температур может в сотни раз превосходить две упомянутые выше составляющие.

В 1834 году французский физик Жан Шарль Пельтье открыл обратный эффект. Он обнаружил, что при прохождении электрического тока через контакт (спай) двух разнородных проводников выделяется или поглощается тепло.

Количество поглощаемого или выделяемого тепла связано с видом спаянных веществ, а также с направлением и величиной протекающего через спай электрического тока. Коэффициент Пельтье в формуле численно равен коэффициенту термо-ЭДС, умноженному на абсолютную температуру. Это явление известно теперь как .

В сути эффекта Пельтье в 1838 году разобрался русский физик Эмилий Христианович Ленц. Он экспериментально проверил эффект Пельтье, поместив каплю воды на место спая образцов сурьмы и висмута. Когда Ленц пропускал через цепь электрический ток, вода превращалась в лед, но когда ученый изменил направление тока на противоположное, лед быстро растаял.

Ученый установил таким образом, что при протекании тока не только выделялось джоулево тепло, но происходило также поглощение или выделение дополнительного тепла. Это дополнительное тепло получило название «тепло Пельтье».

Физическая основа эффекта Пельтье заключается в следующем. Контактное поле в месте спая двух веществ, созданное контактной разностью потенциалов, либо препятствует прохождению пропускаемого через цепь тока, либо способствует ему.

Если ток пропускается против поля, то требуется работа источника, который должен затратить энергию на преодоление контактного поля, в результате чего и происходит нагрев места спая. Ежели ток направлен так, что контактное поле поддерживает его, то работу совершает контактное поле, и энергия отнимается у самого вещества, а не расходуется источником тока. В результате вещество в месте спая охлаждается.

Наиболее выразителен эффект Пельтье у полупроводников, благодаря чему стали возможными модули Пельтье или термоэлектрические преобразователи .

В основе элемента Пельтье два полупроводника, контактирующие между собой. Эти полупроводники отличаются энергией электронов в зоне проводимости, поэтому при протекании тока через место контакта, электроны вынуждены приобретать энергию, чтобы смочь перейти в другую зону проводимости.

Так, при перемещении в более высокоэнергетическую зону проводимости другого полупроводника, электроны поглощают энергию, охлаждая место перехода. При обратном направлении тока электроны отдают энергию, и происходит нагрев дополнительно к джоулеву теплу.

Полупроводниковый модуль Пельтье состоит из нескольких пар , имеющих форму маленьких параллелепипедов. Обычно в качестве полупроводников используют теллурид висмута и твердый раствор кремния и германия. Полупроводниковые параллелепипеды соединены между собой попарно медными перемычками. Эти перемычки служат контактами для теплообмена с керамическими пластинками.

Перемычки расположены так, что с одной стороны модуля только перемычки обеспечивающие переход n-p, а с другой стороны — только перемычки обеспечивающие переход p-n. В результате, при подаче тока, одна сторона модуля нагревается, другая — охлаждается, а если полярность питания сменить на противоположную, то сторона нагрева и охлаждения соответственно поменяются местами. Таким образом, при прохождении тока происходит перенос тепла с одной стороны модуля на другую, и возникает разность температур.

Если теперь одну сторону модуля Пельтье нагревать, а другую охлаждать, то в цепи возникнет термо-ЭДС, то есть будет реализован эффект Зеебека. Очевидно, эффект Зеебека (термоэлектрический эффект) и эффект Пельтье — две стороны одной медали.

Сегодня можно легко приобрести модули Пельтье по относительно доступной цене. Наиболее популярны модули Перьтье типа ТЕС1-12706, содержащие 127 термопар, и рассчитанные на питание 12 вольт.

При максимальном потреблении в 6 ампер, достижима разница температур в 60°С, при этом заявляемый производителем безопасный диапазон рабочих температур — от -30°С до +70°С. Размер модуля 40мм х 40мм х 4мм. Модуль может работать как в режиме охлаждения-нагревания, так и в .

Есть и более мощные модули Пельтье, например TEC1-12715, рассчитанный на 165 Вт. При питании напряжением от 0 до 15,2 вольт, с силой тока от 0 до 15 ампер, данный модуль способен развить разность температур в 70 градусов. Размер модуля также 40мм х 40мм х 4мм, однако диапазон безопасных рабочих температур шире - от -40°С до +90°С.

В таблице ниже приведены данные по модулям Пельтье, широко доступным сегодня на рынке:

Андрей Повный

Впервые я столкнулся с элементами Пельтье (ЭП) несколько лет назад, когда разрабатывал устройство охлаждения воды в аквариуме. Сегодня ЭП стали еще более доступными, а сфера их применения существенно расширилась. К примеру, в охладителях воды , которые часто можно встретить в офисах, используются ЭП. Там они в форме квадрата 4x4 см (рис.2) с помощью специальной термопасты и стяжных винтов закреплены между радиатором охлаждения и корпусом водяного резервуара, “холодной” поверхностью к резервуару. Распространены и другие ЭП.

Рис. 2 Элемент Пельтье

Воснове работы элемента Пельтье лежит эффект, открытый французским часовщиком Жаном Пельтье. В1834 г. Пельтье обнаружил, что при протекании постоянного тока в цепи, состоящей из разнородных проводников, в местах контактов (спаях) проводников поглощается или выделяется тепло (в зависимости от направления тока). Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и пропорциональна проходящему току. Элемент Пельтье обратим. Если приложить к нему разность температур, в цепи потечет ток.

Классическая теория объясняет явление Пельтье тем, что электроны, переносимые током из одного металла в другой, ускоряются или замедляются под действием внутренней контактной разности потенциалов между металлами. В первом случае кинетическая энергия электронов увеличивается, а затем выделяется в виде тепла. Во втором случае кинетическая энергия электронов уменьшается, и эта убыль энергии пополняется за счет тепловых колебаний атомов второго проводника. В результате, происходит охлаждение.

Наиболее сильно эффект Пельтье наблюдается в случае исполь зования полупроводников (р- и n-типа проводимости). В зависимости от направления электрического тока через р-n-переходы вследствие взаимодействия зарядов, представленных электронами (n) и дырками (р), и их рекомбинации энергия либо поглощается, либо выделяется.

Рис. 3 Эффект Пельтье

Эффект Пельтье лежит в основе работы термоэлектрического модуля (ТЭМ). Единичным элементом ТЭМ является термопара, состоящая из одного проводника (ветки) p-типа и одного проводника n-типа. При последовательном соединении нескольких таких термопар теплота (Q c), поглощаемая на контакте типа n-р, выделяется на контакте типа p-n (Q h). В результате, происходит нагрев (Т h) или охлаждение (Т с) участка полупроводника, непосредственно примыкающего к р-п-переходу (рис.3), и возникает разность температур (AT=T h -T c) между его сторонами: одна пластина охлаждается, а другая нагревается. Традиционно сторона, к которой крепятся провода, горячая, и она изображается снизу.

Рис. 4

Термоэлектрический модуль представляет собой совокупность таких термопар (рис.4), обычно соединенных между собой последовательно по току и параллельно по потоку тепла. Термопары помещаются между двух керамических пластин (рис.5). Ветки напаиваются на медные проводящие площадки (шинки), которые крепятся к специальной теплопроводящей керамике, например, из оксида

Рис. 5 Термоэлектрический модуль Пельтье

алюминия. Количество термопар может варьироваться в широких пределах (от нескольких единиц до нескольких сотен), что позволяет создавать ТЭМ с холодильной мощностью от десятых долей ватта до сотен ватт. Наибольшей термоэлектрической эффективностью среди промышленно используемых материалов обладает теллурид висмута, в который для получения необходимого типа и параметров проводимости добавляют специальные присадки (селен и сурьму).

Рис. 6

Типичный модуль (рис.6) обеспечивает значительный температурный перепад, который составляет несколько десятков градусов. При соответствующем принудительном охлаждении нагревающейся поверхности вторая поверхность-холодильник позволяет достичь отрицательных значений температуры. Для увеличения разности температур возможно каскадное включение термоэлектрических модулей Пельтье (рис.7) при обеспечении их достаточного охлаждения. Устройства охлаждения на основе модулей Пельтье часто называют “активными холодильниками Пельтье” или просто “кулерами Пельтье”.

Рис. 7, каскадное включение термоэлектрических модулей Пельтье

Использование модулей Пельтье в активных кулерах делает их более эффективными по сравнению со стандартными кулерами на основе радиаторов и вентиляторов. Однако в процессе конструирования и использования кулеров с модулями Пельтье необходимо учитывать ряд специфических особенностей, вытекающих из конструкции модулей и их принципа работы.

Большое значение имеет мощность модуля Пельтье, которая, как правило, зависит от его размеров. Модуль малой мощности не обеспечит необходимого охлаждения, что может привести к нарушению работы защищаемого элемента вследствие его перегрева. Однако применение модулей слишком большой мощности может вызвать понижение температуры охлаждающего радиатора до

Рис. 8, активный кулер, на основе полупроводникового модуля Пельтье

уровня конденсации влаги из воздуха, что опасно для электронных устройств. Модули Пельтье в процессе работы выделяют сравнительно большое количество тепла. По этой причине следует применять в составе кулера мощный вентилятор. На рис.8 показан активный кулер, в котором использован полупроводниковый модуль Пельтье.

Подаваемое на модуль напряжение определяется количеством пар ветвей в модуле. Наиболее распространенными являются 127-парные модули, максимальное напряжение для которых составляет примерно 16 В. Но на эти модули обычно подается напряжение питания 12 В, т.е. примерно 75% U max . Такой выбор напряжения питания в большинстве случаев является оптимальным: позволяет обеспечить достаточную мощность охлаждения при приемлемой экономичности. При повышении напряжения питания более 12 В увеличение холодильной мощности незначительно, а потребляемая мощность резко увеличивается. При понижении напряжения питания экономичность растет, поскольку холодильная мощность также уменьшается, но линейно.

Табл.1 элемент Пельтье, характеристики

Тип модуля

Характеристики

I max ,A

U max ,B

Q max ,Bт

Размеры, мм

А-ТМ8,5-27-1 ,4

| 15,4

72,0

40x40x3,7

А-ТМ8,5-127-1,4HR1

15,4

72,0

40x40x3,4

А-ТМ8,5-127-1,4HR2

15,4

72,0

140x40x3,7

А-ТМб.0-127-1,4

15,4

53,0

40x40x4,2

А-ТМ6,0-127-1.4HR1

15,4

53,0

40x40x3,8

А-ТМ6,0-127-1,4HR2

15,4

53,0

40x40x4,2

А-ТМЗ,9-127-1,4

15,4

35,0

40x40x5,1

А-ТМЗ,9-127-1,4HR1

15,4

35,0

40x40x4,8

А-ТМЗ,9-127-1,4HR2

15,4

35,0

40x40x5,1

A-TM3,9-127-1,4

15,4

34,0

30x30x3,9

А-ТМЗ,9-127-1,4HR1

15,4

34,0

30x30x3,9

А-ТМЗ,9-127-1,4HR2

15,4

34,0

30x30x3,9

А-ТМ37,5-49-3,0

37,5

130,0

40x40x4,3

A-TM37,5-49-3,0HR1 i

15,4

72,0

40x40x4,3

A-TM6,0-31-1,4

3,75

12,5

20x20x4,2

A-TM6,0-31-1,4HR1

3,75

12,5

20x20x4,2

Примечание: модули с маркировной HR1 и HR2 отличаются повышенной надежностью.

Для модулей с другим числом пар ветвей (отличным от 127) напряжение можно выбирать по тому же принципу: 75% от U max , но при этом необходимо учитывать особенности конкретного устройства, прежде всего, условия теплоотвода с горячей стороны и возможности источников питания. Например, на модули серии “ДРИФТ” (199 термоэлектрических пар) рекомендуется подавать напряжение от 12 до 18 В.

При эксплуатации важен надежный термический контакт между теплообменником и радиатором, поэтому ТЭМ крепится с использованием термопроводящей пасты (например, КПТ-8). Если нет специальной термопасты, можно с успехом применить фармакологические средства, купленные в аптеке, например, пасту Лассари или салицилово-цинковую пасту.

Поскольку максимальная температура на горячей стороне ТЭМ достигает +80°С (в высокотемпературных охладителях фирмы Supercool - +150°С), важно, чтобы ЭП охлаждался правильно. Горячая поверхность ТЭМ должна быть обращена к радиатору, с другой стороны которого установлен вентилятор охлаждения (поток воздуха направляется от радиатора). Вентилятор и ТЭМ в соответствии с полярностью подключаются к источнику питания, который может быть простейшим: понижающий трансформатор, выпрямитель на диодах и сглаживающий оксидный конденсатор. Но пульсации питающего напряжения не должны превышать 5%, в противном случае эффективность ТЭМ уменьшается. Лучше, если вентилятор и ТЭМ управляются электронным устройством на основе компаратора и датчика температуры. Как только температура охлаждаемого объекта повышается свыше установленного порога, автоматически включаются охладитель и вентилятор, и начинается охлаждение. Степень охлаждения (или нагрева) пропорциональна проходящегому через ТЭМ току, что позволяет с высокой точностью регулировать температуру “обслуживаемого” объекта.

Термоэлектрические модули загерметизированы, так что их можно применять даже в воде. Керамичес кая поверхность ТЭМ зашлифована, к ламелям (выводам) припаяны черный (“-”) и красный (“+”) провода. Если ТЭМ (рис.2) расположить выводами к себе так, чтобы черный провод был слева, а красный справа, сверху будет холодная сторона, а снизу - горячая. Маркировка обычно наносится на горячую сторону.

Табл.2

Температура воздействия, 0С

Место воздействия (сторона 1 или 2)*

Время воздействия, сек

Сотротивление (по прошествии времени воздействия), кОм

Постоянное

Нагрев зажигалкой

Нагрев зажигалкой**

>2000

5 (в холодильнике)

20 (на улице зимой)

36 после охлаждения в холодильнике (-5)

36 после охлаждения на улице (-20)

100 (кипящая вода)

Топка русской печи (открытое пламя)

0,06

Примечания:

* - сторона 1 - сторона с нанесенной маркировкой, сторона 2 - обратная сторона (относительно маркировки).

** При нагреве тыльной стороны в течение 4 с зажигалкой с открытым пламенем, касавшимся поверхности ЗП, на выводах был зафиксирован ток 200 мкА.

Наиболее "ходовые" типы модулей Пельтье - это однокаскадные модули максимальной мощностью до 65 Вт (12 В) и 172 Вт (24 В). Обозначения модулей расшифровываются следующим образом: первое число - это количество термопар в модуле, второе - ширина сторон ветки (в мм), третье - высота ветки (в мм). Например, ТВ-127-1,4-1,5 - модуль, состоящий из 127 пар термоэлектрических веток, размеры которых 1,4x1,4x1,5 мм. Размеры модулей - 40x40 мм, толщина - около 4 мм. Стандартные однокаскадные модули выпускаются с максимальной мощностью до 70 Вт (12 В) и 172 Вт (24 В). Типовые параметры ТЭМ приведены в табл.1.

Табл.3 Параметры термоэлектрического генератора



Рис. 9 термоэлектрический генератор

В экспериментах с ТЭМ я проверил изменение его сопротивления в разных режимах. К выводам (ламелям) модуля подключался тестер М830 в режиме измерения сопротивления. Результаты сведены в табл.2. При температурном воздействии, большем чем комнатная температура, на сторону ТЭМ с маркировкой, его сопротивление уменьшалось, на оборотную сторону - пропорционально увеличивалось (в строках 2 и 3 таблицы показана реакция на прикосновение ребром ладони к поверхности ТЭМ, температура указана приблизительно 36°С).

Учитывая обратимость элементов Пельтье , на их основе можно разрабатывать источники электропитания. Например, термоэлектрический генератор “В25-12(М)” компании “Криотерм” (рис.9) позволяет заряжать аккумуляторы мобильных телефонов, цифровых фотоаппаратов, смотреть телевизор, продолжительное время работать на ноутбуке и пр. Единственное требование - нужна нагретая поверхность размерами 20x25 см. Параметры генератора приведены в табл.3 .

А.Кашкаров.