Сайт о телевидении

Сайт о телевидении

» » С помощью критерия пирсона. Проверка гипотезы о нормальном распределении

С помощью критерия пирсона. Проверка гипотезы о нормальном распределении

Лабораторная работа №6. Проверка гипотезы о нормальном распределении выборки по критерию Пирсона.

Лабораторная работа выполняется в Excel 2007.

Цель работы – дать навыки первичной обработки данных, построении гистограмм, подборе подходящего закона распределения и вычислении его параметров, проверка согласия между эмпирическим и гипотетическим законом распределения по критерию хи-квадрат Пирсона средствами Excel.

1. Формирование выборки нормально распределенных случайных чисел с заданными значениями математического ожидания и среднего квадратического отклонения.

Данные → Анализ данных → Генерация случайных чисел → ОК .

Рис. 1. Диалоговое окно Анализ данных

В появившемся окне Генерация случайных чисел ввести:

Число переменных: 1 ;

Число случайных чисел: 100 ;

Распределение: Нормальное .

Параметры:

Среднее = 15 (математическое ожидание);

Стандартное отклонение = 2 (среднее квадратическое отклонение);

Случайное рассеивание: не заполнять (или заполнить по указанию преподавателя );

Выходной интервал: адрес первой ячейки столбца массива случайных чисел - $ A $1 . ОК .

Рис. 2. Диалоговое окно Генерация случайных чисел с заполненными полями ввода

В результате выполнения операции Генерация случайных чисел появится столбец $ A $1: $A$100 , содержащий 100 случайных чисел.

Рис. 3. Фрагмент листа Excel первых нескольких случайных чисел $A$1: $A$100.

2. Определение параметров выборки, описательные статистики

В главном меню Excel выбрать: Данные → Анализ данных → Описательная статистика → ОК .

В появившемся окне Описательная статистика ввести:

Входной интервал – 100 случайных чисел в ячейках $ A $1: $ A $100 ;

Группирование - по столбцам;

Выходной интервал – адрес ячейки, с которой начинается таблица Описательная статистика - $ C $1 ;

Итоговая статистика – поставить галочку. ОК.

Рис. 4. Диалоговое окно Описательная статистика с заполненными полями ввода.

На листе Excel появится таблица – Столбец 1

Рис. 5. Таблица Столбец 1 с данными процедуры Описательная статистика .

Таблица содержит описательные статистики, в частности:

Среднее – оценка математического ожидания;

Стандартное отклонение – оценка среднего квадратического отклонения;

Эксцесс и Асимметричность – оценки эксцесса и асимметрии.

Приблизительное равенство нулю оценок эксцесса и асимметрии, и приблизительное равенство оценки среднего оценке медианы дает предварительное основание выбрать в качестве основной гипотезы H 0 распределения элементов генеральной совокупности - нормальный закон.

Интервал – размах выборки;

Минимум минимальное значение случайной величины в выборке;

Максимум – максимальное значение случайной величины в выборке.

В ячейке F 15 - длина частичного интервала h , вычисленная следующим образом:

Число интервалов группировки k в Excel вычисляется автоматически по формуле

где, скобки означают – округление до целой части числа в меньшую сторону.

В рассматриваемом варианте n = 100 , следовательно, k = 11 . Действительно:

Эта формула занесена в ячейку F 15: =($D$13-$D$12)/10

Результаты процедуры Описательная статистика потребуются в дальнейшем при построении теоретического закона распределения.

​ Критерий χ 2 Пирсона – это непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

1. История разработки критерия χ 2

Критерий хи-квадрат для анализа таблиц сопряженности был разработан и предложен в 1900 году английским математиком, статистиком, биологом и философом, основателем математической статистики и одним из основоположников биометрики Карлом Пирсоном (1857-1936).

2. Для чего используется критерий χ 2 Пирсона?

Критерий хи-квадрат может применяться при анализе таблиц сопряженности , содержащих сведения о частоте исходов в зависимости от наличия фактора риска. Например, четырехпольная таблица сопряженности выглядит следующим образом:

Исход есть (1) Исхода нет (0) Всего
Фактор риска есть (1) A B A + B
Фактор риска отсутствует (0) C D C + D
Всего A + C B + D A + B + C + D

Как заполнить такую таблицу сопряженности? Рассмотрим небольшой пример.

Проводится исследование влияния курения на риск развития артериальной гипертонии. Для этого были отобраны две группы исследуемых - в первую вошли 70 человек, ежедневно выкуривающих не менее 1 пачки сигарет, во вторую - 80 некурящих такого же возраста. В первой группе у 40 человек отмечалось повышенное артериальное давление. Во второй - артериальная гипертония наблюдалась у 32 человек. Соответственно, нормальное артериальное давление в группе курильщиков было у 30 человек (70 - 40 = 30) а в группе некурящих - у 48 (80 - 32 = 48).

Заполняем исходными данными четырехпольную таблицу сопряженности:

В полученной таблице сопряженности каждая строчка соответствует определенной группе исследуемых. Столбцы - показывают число лиц с артериальной гипертонией или с нормальным артериальным давлением.

Задача, которая ставится перед исследователем: имеются ли статистически значимые различия между частотой лиц с артериальным давлением среди курящих и некурящих? Ответить на этот вопрос можно, рассчитав критерий хи-квадрат Пирсона и сравнив получившееся значение с критическим.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента - мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
  2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе...). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
  3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений "до-"после". В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
  4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение от 5 до 9, критерий хи-квадрат должен рассчитываться с поправкой Йейтса . Если хотя бы в одной ячейке ожидаемое явление меньше 5, то для анализа должен использоваться точный критерий Фишера .
  5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек.

4. Как рассчитать критерий хи-квадрат Пирсона?

Для расчета критерия хи-квадрат необходимо:

Данный алгоритм применим как для четырехпольных, так и для многопольных таблиц.

5. Как интерпретировать значение критерия хи-квадрат Пирсона?

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

6. Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

  1. Рассчитываем ожидаемые значения для каждой ячейки:
  2. Находим значение критерия хи-квадрат Пирсона:

    χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

  3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.
  4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.

В сегодняшней статье речь пойдет о том, как переменные могут быть связаны друг с другом. С помощью корреляции мы сможем определить, существует ли связь между первой и второй переменной. Надеюсь, это занятие покажется вам не менее увлекательным, чем предыдущие!

Корреляция измеряет мощность и направление связи между x и y. На рисунке представлены различные типы корреляции в виде графиков рассеяния упорядоченных пар (x, y). По традиции переменная х размещается на горизонтальной оси, а y - на вертикальной.

График А являет собой пример положительной линейной корреляции: при увеличении х также увеличивается у, причем линейно. График В показывает нам пример отрицательной линейной корреляции, на котором при увеличении х у линейно уменьшается. На графике С мы видим отсутствие корреляции между х и у. Эти переменные никоим образом не влияют друг на друга.

Наконец, график D - это пример нелинейных отношений между переменными. По мере увеличения х у сначала уменьшается, потом меняет направление и увеличивается.

Оставшаяся часть статьи посвящена линейным взаимосвязям между зависимой и независимой переменными.

Коэффициент корреляции

Коэффициент корреляции, r, предоставляет нам как силу, так и направление связи между независимой и зависимой переменными. Значения r находятся в диапазоне между — 1.0 и + 1.0. Когда r имеет положительное значение, связь между х и у является положительной (график A на рисунке), а когда значение r отрицательно, связь также отрицательна (график В). Коэффициент корреляции, близкий к нулевому значению, свидетельствует о том, что между х и у связи не существует график С).

Сила связи между х и у определяется близостью коэффициента корреляции к - 1.0 или +- 1.0. Изучите следующий рисунок.

График A показывает идеальную положительную корреляцию между х и у при r = + 1.0. График В - идеальная отрицательная корреляция между х и у при r = — 1.0. Графики С и D - примеры более слабых связей между зависимой и независимой переменными.

Коэффициент корреляции, r, определяет, как силу, так и направление связи между зависимой и независимой переменными. Значения r находятся в диапазоне от — 1.0 (сильная отрицательная связь) до + 1.0 (сильная положительная связь). При r= 0 между переменными х и у нет никакой связи.

Мы можем вычислить фактический коэффициент корреляции с помощью следующего уравнения:

Ну и ну! Я знаю, что выглядит это уравнение как страшное нагромождение непонятных символов, но прежде чем ударяться в панику, давайте применим к нему пример с экзаменационной оценкой. Допустим, я хочу определить, существует ли связь между количеством часов, посвященных студентом изучению статистики, и финальной экзаменационной оценкой. Таблица, представленная ниже, поможет нам разбить это уравнение на несколько несложных вычислений и сделать их более управляемыми.

Как видите, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует весьма сильная положительная корреляция. Преподаватели будут весьма рады узнать об этом.

Какова выгода устанавливать связь между подобными переменными? Отличный вопрос. Если обнаруживается, что связь существует, мы можем предугадать экзаменационные результаты на основе определенного количества часов, посвященных изучению предмета. Проще говоря, чем сильнее связь, тем точнее будет наше предсказание.

Использование Excel для вычисления коэффициентов корреляции

Я уверен, что, взглянув на эти ужасные вычисления коэффициентов корреляции, вы испытаете истинную радость, узнав, что программа Excel может выполнить за вас всю эту работу с помощью функции КОРРЕЛ со следующими характеристиками:

КОРРЕЛ (массив 1; массив 2),

массив 1 = диапазон данных для первой переменной,

массив 2 = диапазон данных для второй переменной.

Например, на рисунке показана функция КОРРЕЛ, используемая при вычислении коэффициента корреляции для примера с экзаменационной оценкой.

ЛАБОРАТОРНАЯ РАБОТА

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ В EXCEL

1.1 Корреляционный анализ в MS Excel

Корреляционный анализ состоит в определении степени связи между двумя слу­чайными величинами X и Y. В качестве меры такой связи используется коэффи­циент корреляции. Коэффициент корреляции оценивается по выборке объема п связанных пар наблюдений (x i , y i) из совместной генеральной совокупности X и Y. Для оценки степени взаимосвязи величин X и Y, измеренных в количественных шкалах, используетсякоэффи­циент линейной корреляции (коэффициент Пирсона), предполагающий, что выборки X и Y распределены по нормальному закону.

Коэффициент корреляции изменяется от -1 (строгая обратная линейная зависимость) до 1 (строгая прямая пропорцио­нальная зависимость). При значении 0 линейной зависимости между двумя вы­борками нет.

Общая классификация корреляционных связей (по Ивантер Э.В., Коросову А.В., 1992):

Существует несколько типов коэффициентов корреляции, что зависит от переменных Х иY, которые могут быть измерены в разных шкалах. Именно этот факт и определяет выбор соответствующего коэффициента корреляции (см. табл. 13):

В MS Excel для вычисления парных коэффициентов линейной корреляции используется специальная функция КОРРЕЛ (массив1; массив2),

испытуемых

где массив1 – ссылка на диапазон ячеек первой выборки (X);

Пример 1: 10 школьникам были даны тесты на наглядно-образное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Исследователя интересует вопрос: существует ли вза­имосвязь между временем решения этих задач? Переменная X - обозначает среднее время реше­ния наглядно-образных, а переменная Y- сред­нее время решения вербальных заданий тестов.

Решение: Для выявления степени взаимосвязи, прежде всего, необходимо ввести данные в таблицу MS Excel (см. табл., рис. 1). Затем вычисляется значение коэффициента корреляции. Для этого курсор установите в ячейку C1. На панели инструментов нажмите кнопку Вставка функции (fx).

В появившемся диалоговом окне Мастер функций выберите ка­тегорию Статистические и функциюКОРРЕЛ , после чего нажмите кнопку ОК. Указателем мыши введите диапазон дан­ных выборки Х в поле массив1 (А1:А10). В поле массив2 введите диапазон данных выборки У (В1:В10). Нажмите кнопку ОК. В ячейке С1 появится значение коэффициента кор­реляции - 0,54119. Далее необходимо посмотреть на абсолютное число коэффициента корреляции и определить тип связи (тесная, слабая, средняя и т.д.)

Рис. 1. Результаты вычисления коэффициента корреляции

Таким образом, связь между временем решения наглядно-образных и вербальных заданий теста не доказана.

Задание 1. Имеются данные по 20 сельскохозяйственным хозяйствам. Найтикоэффициент корреляции между величинами урожайности зерновых культур и качеством земли и оценить его значимость. Данные приведены в таблице.

Таблица 2. Зависимость урожайности зерновых культур от качества земли

Номер хозяйства

Качество земли, балл

Урожайность, ц/га


Задание 2. Определите, имеется ли связь между временем работы спортивного тренажера для фитнеса (тыс. часов) и стоимость его ремонта (тыс. руб.):

Время работа тренажера (тыс. часов)

Стоимость ремонта (тыс. руб.)

1.2 Множественная корреляция в MS Excel

При большом числе наблюдений, когда коэффициенты корреляции необходимо последовательно вычислять для нескольких выборок, для удобства полу­чаемые коэффициенты сводят в таблицы, называемые корреляционными матрицами .

Корреляционная матрица - это квадратная таблица, в кото­рой на пересечении соответствующих строк и столбцов находятся коэффициент корреляции между соответствующими параметрами.

В MS Excel для вычисления корреляционных матриц используется процедура Кор­реляция из пакета Анализ данных. Процедура позволяет получить корреляционную матрицу, содержащую коэффициенты корреляции между различными параметрами.

Для реализации процедуры необходимо:

1. выполнить команду Сервис - Анализ данных ;

2. в появившемся списке Инструменты анализа выбрать строку Корреляция и нажать кнопку ОК ;

3. в появившемся диалоговом окне указать Входной интервал , то есть ввести ссыл­ку на ячейки, содержащие анализируемые данные. Входной интервал должен содержать не менее двух столбцов.

4. в разделе Группировка переключатель установить в соответствии с введенными данными (по столбцам или по строкам);

5. указать выходной интервал , то есть ввести ссылку на ячейку, начиная с которой будут показаны результаты анализа. Размер выходного диапазона будет определен автоматически, и на экран будет выведено сообщение в случае возможного наложения выходного диапазона на исходные данные. Нажать кнопку ОК .

В выходной диапазон будет выведена корреляционная мат­рица, в которой на пересечении каждых строки и столбца находится коэффи­циент корреляции между соответствующими параметрами. Ячейки выходного диапазона, имеющие совпадающие координаты строк и столбцов, содержат зна­чение 1, так как каждый столбец во входном диапазоне полностью коррелирует сам с собой

Пример 2. Имеются ежемесячные данные наблюдений за состоянием погоды и посещаемостью музеев и парков (см. табл. 3). Необходимо определить, существует ли взаимосвязь между состоянием погоды и посещаемостью музеев и парков.

Таблица 3. Результаты наблюдений

Число ясных дней

Количество посетителей музея

Количество посетителей парка

Решение . Для выполнения корреляционного анализа введите в диапазон A1:G3 исходные данные (рис. 2). Затем в меню Сервис выберите пункт Анализ данных и далее укажите строку Корреляция . В появившемся диалоговом окне укажите Входной интервал (А2:С7). Укажите, что данные рассматриваются по столбцам. Укажите выходной диапазон (Е1) и нажмите кнопку ОК .

На рис. 33 видно, что корреляция между со­стоянием погоды и посещаемостью музея равна -0,92, а между состоянием по­годы и посещаемостью парка - 0,97, между посещаемостью парка и музея - 0,92.

Таким образом, в результате анализа выявлены зависимости: сильная степень об­ратной линейной взаимосвязи между посещаемостью музея и количеством сол­нечных дней и практически линейная (очень сильная прямая) связь между посещаемостью парка и состоянием погоды. Между посещаемостью музея и парка имеется сильная обратная взаимосвязь.

Рис. 2. Результаты вычисления корреляционной матрицы из примера 2

Задание 3 . 10 менеджеров оценивались по методике экспертных оценок психологических характеристик личности руководителя. 15 экспертов производили оценку каждой психологической характеристики по пятибальной системе (см. табл. 4). Психолога интересует вопрос, в какой взаимосвязи находятся эти характеристики руководителя между собой.

Таблица 4. Результаты исследования

Испытуемые п/п

тактичность

требовательность

критичность

Задача 1.

Используя критерий Пирсона, при уровне значимости a = 0,05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X с эмпирическим распределением выборки объема n = 200.

Решение.

1. Вычислим и выборочное среднее квадратическое отклонение .
2. Вычислим теоретические частоты учитывая, что n = 200, h = 2, = 4,695, по формуле
.

Составим расчетную таблицу (значения функции j (x ) приведены в приложении 1).


i

3. Сравним эмпирические и теоретические частоты. Составим расчетную таблицу, из которой найдем наблюдаемое значение критерия :


i
Сумма

По таблице критических точек распределения (приложение 6), по уровню значимости a = 0,05 и числу степеней свободы k = s – 3 = 9 – 3 = 6 находим критическую точку правосторонней критической области (0,05; 6) = 12,6.
Так как =22,2 > = 12,6, гипотезу о нормальном распределении генеральной совокупности отвергаем. Другими словами, эмпирические и теоретические частоты различаются значимо.

Задача2

Представлены статистические данные.

Результаты измерений диаметров n = 200 валков после шлифовки обобщены в табл. (мм):
Таблица Частотный вариационный ряд диаметров валков

i

xi , мм

xi , мм

Требуется:

1) составить дискретный вариационный ряд, при необходимости упорядочив его;

2) определить основные числовые характеристики ряда;

3) дать графическое представление ряда в виде полигона (гистограммы) распределения;

4) построить теоретическую кривую нормального распределения и проверить соответствие эмпирического и теоретического распределений по критерию Пирсона. При проверке статистической гипотезы о виде распределения принять уровень значимости a = 0,05

Решение: Основные числовые характеристики данного вариационного ряда найдем по определению. Средний диаметр валков равен (мм):
x ср = = 6,753;
исправленная дисперсия (мм2):
D = = 0,0009166;
исправленное среднее квадратическое (стандартное) отклонение (мм):
s = = 0,03028.


Рис. Частотное распределение диаметров валков

Исходное («сырое») частотное распределение вариационного ряда, т.е. соответствие ni (xi ), отличается довольное большим разбросом значений ni относительно некоторой гипотетической «усредняющей» кривой (рис.). В этом случае предпочтительно построить и анализировать интервальный вариационный ряд, объединяя частоты для диаметров, попадающих в соответствующие интервалы.
Число интервальных групп K определим по формуле Стерджесса:
K = 1 + log2n = 1 + 3,322lgn ,
где n = 200 – объем выборки. В нашем случае
K = 1 + 3,322×lg200 = 1 + 3,322×2,301 = 8,644 » 8.
Ширина интервала равна (6,83 – 6,68)/8 = 0,01875 » 0,02 мм.
Интервальный вариационный ряд представлен в табл.

Таблица Частотный интервальный вариационный ряд диаметров валков.

k

xk , мм

Интервальный ряд может быть наглядно представлен в виде гистограммы частотного распределения.


Рис . Частотное распределение диаметров валков. Сплошная линия – сглаживающая нормальная кривая.

Вид гистограммы позволяет сделать предположение о том, что распределение диаметров валков подчиняется нормальному закону, согласно которому теоретические частоты могут быть найдены как
nk , теор = n ×N (a ; s; xk )×Dxk ,
где, в свою очередь, сглаживающая гауссова кривая нормального распределения определяется выражением:
N (a ; s; xk ) = .
В этих выражениях xk – центры интервалов в частотном интервальном вариационном ряде.

Например, x 1 = (6,68 + 6,70)/2 = 6,69. В качестве оценок центра a и параметра s гауссовой кривой можно принять:
a = x ср.
Из рис. видно, что гауссова кривая нормального распределения в целом соответствует эмпирическому интервальному распределению. Однако следует удостовериться в статистической значимости этого соответствия. Используем для проверки соответствия эмпирического распределения эмпирическому критерий согласия Пирсона c2 . Для этого следует вычислить эмпирическое значение критерия как сумму
= ,
где nk и nk ,теор – эмпирические и теоретические (нормальные) частоты, соответственно. Результаты расчетов удобно представить в табличном виде:
Таблица Вычисления критерия Пирсона


[xk , xk+ 1), мм

xk , мм

nk ,теор

Критическое значение критерия найдем по таблице Пирсона для уровня значимости a = 0,05 и числа степеней свободы d .f . = K – 1 – r , где K = 8 – число интервалов интервального вариационного ряда; r = 2 – число параметров теоретического распределения, оцененных на основании данных выборки (в данном случае, – параметры a и s). Таким образом, d .f . = 5. Критическое значение критерия Пирсона есть крит(a; d .f .) = 11,1. Так как c2эмп < c2крит, заключаем, что согласие между эмпирическим и теоретическим нормальным распределением является статистическим значимым. Иными словами, теоретическое нормальное распределение удовлетворительно описывает эмпирические данные.

Задача3

Коробки с шоколадом упаковываются автоматически. По схеме собственно-случайной бесповторной выборки взято 130 из 2000 упаковок, содержащихся в партии, и получены следующие данные об их весе:

Требуется используя критерий Пирсона при уровне значимости a=0,05 проверить гипотезу о том, что случайная величина X – вес упаковок – распределена по нормальному закону. Построить на одном графике гистограмму эмпирического распределения и соответствующую нормальную кривую.

Решение

1012,5
= 615,3846

Примечание:

В принципе в качестве дисперсии нормального закона распределения следует взять исправленную выборочную дисперсию. Но т.к. количество наблюдений – 130 достаточно велико, то подойдет и “обычная” .
Таким образом, теоретическое нормальное распределение имеет вид:

Интервал

[xi ; xi+1 ]

Эмпирические частоты

ni

Вероятности
pi

Теоретические частоты
npi

(ni-npi)2