Сайт о телевидении

Сайт о телевидении

» » Решение методом искусственного базиса. Решение задач линейного программирования методом искусственного базиса

Решение методом искусственного базиса. Решение задач линейного программирования методом искусственного базиса

x 1

+x 2

+x 3

x 1

+x 2

+x 3

x 1

+x 2

+x 3

≤ = ≥

≤ = ≥

≤ = ≥

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Симплекс метод

Примеры решения ЗЛП симплекс методом

Пример 1. Решить следующую задачу линейного программирования:

Правая часть ограничений системы уравнений имеет вид:

Запишем текущий опорный план:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор x при . min (40:6, 28:2)=20/3 соответствует строке 1. Из базиса выходит вектор x 3 . Сделаем исключение Гаусса для столбца x 2 , учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на -1/3, 1/6, 1/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-3), следовательно в базис входит вектор x 1 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при . min(44/3:11/3, 62/3:5/3)=4 соответствует строке 2. Из базиса выходит вектор x 4 . Сделаем исключение Гаусса для столбца x 1 , учитывая, что ведущий элемент соответствует строке 2. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 3, 4 со строкой 2, умноженной на 1/11, -5/11, 9/11, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Текущий опорный план является оптимальным, так как в строках 4 под переменными нет отрицательных элементов.

Решение можно записать так: .

Значение целевой функции в данной точке: F (X )=.

Пример 2. Найти максимум функции

Р е ш е н и е.

Базисные векторы x 4 , x 3 , следовательно, все элементы в столбцах x 4 , x 3 , ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x 4 , кроме ведущего элемента. Для этого сложим строку 3 со строкой 1, умноженной на 4. Обнулим все элементы столбца x 3 , кроме ведущего элемента. Для этого сложим строку 3 со строкой 2, умноженной на 1.

Симплекс таблица примет вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-11), следовательно в базис входит вектор x 2 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при . Все следовательно целевая функция неограничена сверху. Т.е. задача линейного программирования неразрешима.

Примеры решения ЗЛП методом искусственного базиса

Пример 1. Найти максимум функции

Р е ш е н и е. Так как количество базисных векторов должен быть 3, то добавляем искусственное переменное, а в целевую функцию добавляем это переменное, умноженное на −M, где M, очень большое число:


Матрица коэффициентов системы уравнений имеет вид:

Базисные векторы следовательно, все элементы в столбцах ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца кроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-5), следовательно в базис входит вектор Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 3. Из базиса выходит вектор Сделаем исключение Гаусса для столбца учитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строку 5 со строкой 3, умноженной на 1. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 1. Из базиса выходит вектор x 2 . Сделаем исключение Гаусса для столбца x 1 , учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на 3/2, -1/10, 3/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-13/2), следовательно в базис входит вектор x 3 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 3. Из базиса выходит вектор x 5 . Сделаем исключение Гаусса для столбца x 3 , учитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 2, 4 со строкой 3, умноженной на 5/3, 25/9, 65/9, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Текущий опорный план является оптимальным, так как в строках 4−5 под переменными нет отрицательных элементов.

Решение исходной задачи можно записать так:

Пример 2. Найти оптимальный план задачи линейного программирования:

Матрица коэффициентов системы уравнений имеет вид:

Базисные векторы x 4 , x 5 , x 6 , следовательно, все элементы в столбцах x 4 , x 5 , x 6 , ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x 4 , кроме ведущего элемента. Для этого сложим строку 4 со строкой 1, умноженной на -1. Обнулим все элементы столбца x 5 , кроме ведущего элемента. Для этого сложим строку 5 со строкой 2, умноженной на -1. Обнулим все элементы столбца x 6 , кроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

В строке 5 элементы, соответствующие переменным x 1 , x 2 , x 3 , x 4 , x 5 , x 6 неотрицательны, а число находящийся в пересечении данной строки и столбца x 0 отрицательнo. Тогда исходная задача не имеет опорного плана. Следовательно она неразрешима.

Когда в условии присутствуют ограничения типа равенств. Рассмотрим задачу:

max{F(x)=∑c i x i |∑a ji x i =b j , j=1,m ; x i ≥0}.

В ограничения и в функцию цели вводят так называемые «искусственные переменные» R j следующим образом:

∑a ji x+R j =b j , j=1,m ;F(x)=∑c i x i -M∑R j

При введении искусственных переменных в методе искусственного базиса в функцию цели им приписывается достаточно большой коэффициент M, который имеет смысл штрафа за введение искусственных переменных. В случае минимизации искусственные переменные прибавляются к функции цели с коэффициентом M. Введение искусственных переменных допустимо в том случае, если в процессе решения задачи они последовательно обращаются в нуль.

Симплекс-таблица, которая составляется в процессе решения, используя метод искусственного базиса, называется расширенной. Она отличается от обычной тем, что содержит две строки для функции цели: одна – для составляющей F = ∑c i x i , а другая – для составляющей M ∑R j Рассмотрим процедуру решения задачи на конкретном примере.

Пример 1. Найти максимум функции F(x) = -x 1 + 2x 2 - x 3 при ограничениях:

2x 1 +3x 2 +x 3 =3,

x 1 ≥0, x 2 ≥0, x 3 ≥0 .

Применим метод искусственного базиса. Введем искусственные переменные в ограничения задачи

2x 1 + 3x 2 + x 3 + R 1 = 3;

x 1 + 3x 3 + R 2 = 2 ;

Функция цели F(x)-M ∑R j = -x 1 + 2x 2 - x 3 - M(R 1 +R 2).

Выразим сумму R 1 + R 2 из системы ограничений: R 1 + R 2 = 5 - 3x 1 - 3x 2 - 4x 3 , тогда F(x) = -x 1 + 2x 2 - x 3 - M(5 - 3x 1 - 3x 2 - 4x 3) .

При составлении первой симплекс-таблицы (табл. 1) будем полагать, что исходные переменные x 1 , x 2 , x 3 являются небазисными, а введенные искусственные переменные – базисными. В задачах максимизации знак коэффициентов при небазисных переменных в F- и M-строках изменяется на противоположный. Знак постоянной величины в M-строке не изменяется. Оптимизация проводится сначала по M-строке. Выбор ведущих столбца и строки, все симплексные преобразования при испльзовании метода искусственного базиса осуществляются как в обычном симплекс-методе.

Максимальный по абсолютному значению отрицательный коэффициент (-4) определяет ведущий столбец и переменную x 3 , которая перейдет в базис. Минимальное симплексное отношение (2/3) соответствует второй строке таблицы, следовательно, переменная R 2 должна быть из базиса исключена. Ведущий элемент обведен контуром.

В методе искусственного базиса искусственные переменные, исключенные из базиса, в него больше не возвращаются, поэтому столбцы элементов таких переменных опускаются. Табл. 2. сократилась на 1 столбец. Осуществляя пересчет этой таблицы, переходим к табл. 3., в которой строка M обнулилась, ее можно убрать. После исключения из базиса всех искусственных переменных получаем допустимое базисное решение исходной задачи, которое в рассматриваемом примере является оптимальным:

x 1 =0; x 2 =7/9; F max =8/9.

Если при устранении M-строки решение не является оптимальным, то процедура оптимизации продолжается и выполняется обычным симплекс-методом. Рассмотрим пример, в котором присутствуют ограничения всех типов:≤,=,≥

Пример 2 . Найти минимальное значение функции F(x) = 2x 1 + 3x 2 - x 3 при следующих ограничениях

2x 1 +x 2 -3x 3 ≥6,

x 1 -x 2 +2x 3 =4,

x 1 +x 2 +x 3 ≤5,

x 1 ≥0, x 2 ≥0, x 3 ≥0 .

Домножим первое из ограничений на (-1) и введем в ограничения дополнительные переменные x 4 , x 5 и искусственную переменную R следующим образом:

2x 1 -x 2 +3x 3 +x 4 =-6,

x 1 -x 2 +2x 3 +R=4,

x 1 +x 2 +x 3 +x 5 =5,

Пусть x 4 , R и x 5 – базисные переменные, а x 1 , x 2 , x 3 – небазисные. Функция цели F(x)=F(x)+M∑R=2x 1 +3x 2 -x 3 +M(4-x 1 +x 2 -2x 3).

В первой (табл. 4.) коэффициенты при небазисных переменных в F-строке и M-строках знака не меняют, так как осуществляется минимизация функции. Свободный член в методе искусственного базиса в M-строке берется с противоположным знаком. Решение, соответствующее табл. 4, не является допустимым, так как есть отрицательный свободный член.

Выберем ведущий столбец и строку в соответствии с шагом 2 алгоритма решения. После пересчета получим табл. 5. Оптимизация решения в методе искусственного базиса (шаг 5 алгоритма) осуществляется вначале по M-строке. В результате x 3 введем в базис, а переменную R исключим из рассмотрения, сократив количество столбцов. После пересчета получим табл. 6, которая соответствует оптимальному решению задачи.

Таблица 4

базисные переменные Свободные члены Небазисные переменные
x 1 x 2 x 3
x 4 -6 -2 -1 3
R 4 1 -1 2
x 5 5 1 1 1
F 0 2 3 -1
M -4 -1 1 -2

Таблица 5

базисные переменные Свободные члены Небазисные переменные
x 4 x 2 x 3
x 1 3 -1/2 1/2 -3/2
R 1 1/2 -3/2 7/2
x 5 2 1/2 1/2 5/2
F -6 1 2 2
M -1 -1/2 3/2 -7/2

Таблица 6

Искомый минимум функции F(x) равен свободному члену F-строки табл. 6, взятому с обратным знаком, так как min F(x) = -max(-F(x)); x 4 = x 2 = 0;

x 1 =24/7; x 3 =2/7; x 5 =9/7; F min =46/7;

Решение системы производится путём ввода искусственных переменных R i со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами M, имеющими смысл "штрафов" за ввод искусственных переменных, а в задачи минимизации - с положительными M. Таким образом из исходной получается новая M-задача (поэтому метод искусственного базиса так же называют M-методом ).

Если в оптимальном решении М-задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении M-задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.

Симплекс-таблица, которая составляется в процессе решения, используя метод искусственного базиса, называется расширенной . Она отличается от обычной тем, что содержит две строки для функции цели: одна – для составляющей F, а другая – для составляющей M. При составлении симплекс таблицы полагают что исходные переменные являются небазисными, а дополнительные (x n+m) и искусственные (R i)- базисными.

Исходная таблица для "Метода искусственного базиса" имеет следующий вид:

x 1 x 2 ... x n-1 x n b
F -a 0,1 -a 0,2 ... -a 0,n-1 -a 0,n -b 0
x n+1 a 1,1 a 1,2 ... a 1,n-1 a 1,n b 1
x n+2 a 2,1 a 2,2 ... a 2,n-1 a 2,n b 2
R i a i,1 a i,2 ... a i,n-1 a i,n b i
... ... ... ... ... ... ...
x n+m a m,1 a m,2 ... a m,n-1 a m,n b m
M -∑a i,1 -∑a i,2 ... -∑a i,n-1 -∑a i,n -∑b i

Элементы дополнительной строки M расчитываются как сумма соответствующих коэффициентов условий-равенств (условий в которые после приведения к каноническому виду введены переменные R i) взятая с противоположным знаком.

Алгоритм метода искусственного базиса.

Подготовительный этап

Приводим задачу ЛП к каноническому виду

F=a 0,1 x 1 +a 0,2 x 2 +...a 0,n x n +b 0 → max

a 1,1 x 1 +a 1,2 x 2 +...a 1,n x n +x n+1 =b 1

a 2,1 x 1 +a 2,2 x 2 +...a 2,n x n +x n+2 =b 2

.........................................

a i,1 x 1 +a i,2 x 2 +...a i,n x n +R i =b i

.......................................

a m,1 x 1 +a m,2 x 2 +...a m,n x n +x n+m =b m

В случае если в исходной задаче необходимо найти минимум - знаки коэффициентов целевой функции F меняются на противоположные a 0,n =-a 0,n . Знаки коэффициентов ограничивающих условий со знаком "≥" так же меняются на противоположные. В случае если условие содержит знак "≤" или "=" - коэффициенты запишутся без изменений. К каждому условияю-неравенству, при переходе к каноническому виду добавляем дополнительную переменную, x n+m , к каждому i-му условию-равенству добавляем искусственную переменную R i .

Шаг 0. Составляем симплексную таблицу, соответствующую исходной задаче

x 1 x 2 ... x n-1 x n b
F -a 0,1 -a 0,2 ... -a 0,n-1 -a 0,n -b 0
x n+1 a 1,1 a 1,2 ... a 1,n-1 a 1,n b 1
x n+2 a 2,1 a 2,2 ... a 2,n-1 a 2,n b 2
R i a i,1 a i,2 ... a i,n-1 a i,n b i
... ... ... ... ... ... ...
x n+m a m,1 a m,2 ... a m,n-1 a m,n b m
M -∑a i,1 -∑a i,2 ... -∑a i,n-1 -∑a i,n -∑b i

Шаг 1. Проверка на допустимость.

Проверяем на положительность элементы столбца b (свободные члены), если среди них нет отрицательных то найдено допустимое решение (решение соответствующее одной из вершин многогранника условий) и мы переходим к шагу 2. Если в столбце свободных членов имеются отрицательные элементы то выбираем среди них максимальный по модулю - он задает ведущую строку k. В этой строке так же находим максимальный по модулю отрицательный элемент a k,l - он задает ведущий столбец - l и является ведущим элементом. Переменная, соответствующая ведущей строке исключается из базиса, переменная соответствующая ведущему столбцу включается в базис. Пересчитываем симплекс-таблицу согласно .

Если же среди свободных членов есть отрицательные элементы - а в соответствующей строке - нет то условия задачи несовместны и решений у нее нет.

Если после перерасчета в столбце свободных членов остались отрицаетельные элементы, то переходим к первому шагу, если таких нет, то ко второму.

Шаг 2. Проверка на оптимальность.

На предыдущем этапе найдено допустимое решение. Проверим его на оптимальность Если среди элементов симплексной таблицы, находщихся в строках M и F(не беря в расчет элемент b 0 - текущее значение целевой функции и элемент -∑b i) нет отрицательных, то найдено оптимальное решение.

2.1 Положительность строки M

Если в строке M есть отрицательные элементы то решение требует улучшения. Выбираем среди отрицательных элементов строки M максимальный по модулю (исключая -∑b i)

При a i,l >0, b i >0

Пересчитываем симплекс-таблицу по . Если в новой таблице после перерасчета в строке M остались отрицательные элементы переходим к шагу 2

Если в строке M и в столбце свободных членов все элементы положительные, то переходим к шагу 2.2 .

2.2 Положительность строки F

Проверяем на положительность элементы строки F. Если имеются отрицательные элементы (не считая b 0), выбираем среди отрицательных элементов строки F максимальный по модулю.

-a 0,l =min{-a 0,i }

l - столбец в котором он находится будет ведущим. Для того, что бы найти ведущую строку, находим отношение соответсвующего свободного члена и элемента из ведущего столбца, при условии, что они неотрицательны.

b k /a k,l =min {b i /a i,l } при a i,l >0, b i >0

k - cтрока, для которой это отношение минимально - ведущая. Элемент a k,l - ведущий (разрешающий). Переменная, соответствующая ведущей строке (x k) исключается из базиса, переменная соответствующая ведущему столбцу (x l) включается в базис.

Пересчитываем симплекс-таблицу по . Если в новой таблице после перерасчета в строке F остались отрицательные элементы переходим к шагу 2.2

Если невозможно найти ведущую строку, так как нет положительных элементов в ведущем столбце, то функция в области допустимых решений задачи не ограничена - алгоритм завершает работу.

Если в строке F и в столбце свободных членов все элементы положительные, то найдено оптимальное решение.

Алгоритм метода искусственного базиса имеет следующие особенности:

1. Ввиду того, что начальное опорное решение расширенной задачи содержит искусственные переменные, входящие в целевую функцию с коэффициентом —М (в задаче на максимум) или +М (в задаче на минимум), оценки разложений векторов условий состоят из двух слагаемых и , одно из которых не зависит от М , а другое зависит от М . Так как М скольугодно велико по сравнению с единицей (М>> 1), то на первом этапе расчета для нахождения векторов, вводимых в базис, используются только слагаемые оценок .

2. Векторы, соответствующие искусственным переменным, которые выводятся из базиса опорного решения, исключаются из рассмотрения.

3. После того, как все векторы, соответствующие искусственным переменным, исключаются из базиса, расчет продолжается обычным симплексным методом с использованием оценок , не зависящих от М.

4. Переход от решения расширенной задачи к решению исходной задачи производится с использованием доказанных выше теорем 4.1-4.3.

Пример 4.4. Решить задачу линейного программирования методом искусственного базиса

.

Решение . Составляем расширенную задачу. В левые части уравнений системы ограничений вводим неотрицательные искусственные переменные с коэффициентом (всегда) +1. Удобно справа от уравнений записать вводимые искусственные переменные. В первое уравнение вводим , во второе — . Данная задача — задача на нахождение максимума, поэтому и в целевую функцию вводятся с коэффициентом — М . Получаем

Задача имеет начальное опорное решение с единичным базисом .

Вычисляем оценки векторов условий по базису опорного решения и значение целевой функции на опорном решении.



.
.

Записываем исходные данные в симплексную таблицу (табл. 4.6).



Т а б л и ц а 4.6

При этом оценки и для удобства вычислений записываем в две строки: в первую — слагаемые , не зависящие от М , во вторую — слагаемые , зависящие от М . Значения удобно указывать без М , имея в виду однако, что оно там присутствует.

Начальное опорное решение не является оптимальным, так как в задаче на максимум имеются отрицательные оценки. Выбираем номер вектора , вводимого в базис опорного решения, и номер вектора , выводимого из базиса. Для этого вычисляем приращения целевой функции при введении в базис каждого из векторов с отрицательной оценкой и находим максимум этого приращения. При этом слагаемыми оценок (без М ) пренебрегаем до тех пор, пока хотя бы одно слагаемое М ) не будет отлично от нуля. В связи с этим строка со слагаемыми оценок может отсутствовать в таблице до тех пор, пока присутствует строка . Находим при k = 3.

В третьем столбце " " за разрешающий элемент выбираем коэффициент 1 во второй строке и выполняем преобразование Жордана.

Вектор , выводимый из базиса, исключаем из рассмотрения (вычеркиваем). Получаем опорное решение с базисом (табл. 4.7). Решение не является оптимальным так как имеется отрицательная оценка = 1.

Т а б л и ц а 4.7

В столбце " " единственный положительный элемент принимаем за разрешающий и переходим к новому опорному решению с базисом (табл. 4.8).


Т а б л и ц а 4.8

Данное опорное решение является единственным оптимальным решением расширенной задачи, так как в задаче на максимум оценки для всех векторов, не входящих в базис, положительны. По теореме 4.1 исходная задача также имеет оптимальное решение, которое получается из оптимального решения расширенной задачи отбрасыванием нулевых искусственных переменных, т. е. Х * = (0,0,6,2).

Ответ : max Z (X ) = -10 при .

Пример 4.5. Решить методом искусственного базиса задачу линейного программирования со смешанными ограничениями

Решение . Приводим задачу линейного программирования к каноническому виду. Для этого вводим дополнительные переменные и в первое и третье ограничения соответственно. Получаем

.

Составляем расширенную задачу, для чего вводим искусственные переменные и во второе и третье уравнения соответственно. Получаем

Данная расширенная задача имеет начальное опорное решение

С единичным базисом , . Вычисляем оценки векторов условий по базису опорного решения и записываем в симплексную таблицу так же, как в предыдущем примере. Решение не является оптимальным, так как в задаче на минимум векторы и имеют положительные оценки . Улучшаем опорные решения. Каждому опорному решению соответствует своя таблица. Все таблицы можно записать друг под другом, объединив в единую таблицу (табл. 4.9).

Т а б л и ц а 4.9

Определяем, введение какого из векторов или в базис начального опорного решения приведет к большему уменьшению целевой функции. Находим при k = 2, т. е. лучше ввести в базис вектор . Получаем второе опорное решение с базисом . Целевая функция . Это решение также не является оптимальным, так как вектор имеет положительную оценку . Вводим вектор в базис, получаем третье опорное решение с базисом . Целевая функция . Это решение оптимальное, но не единственное, так как вектор , не входящий в базис, имеет нулевую оценку. Поэтому необходимо перейти к новому опорному решению, которое также будет оптимальным. Для этого требуется ввести в базис вектор .

Переходим к четвертому опорному (оптимальному) решению

С базисом , при этом . Оптимальные решения расширенной задачи , имеют нулевые искусственные переменные. Поэтому (по теореме 4.1) исходная задача также имеет два оптимальных решения и . Дополнительные переменные в оптимальном решении исходной задачи не записываем.

Ответ : при , , , .

Слово симплекс

Слово симплекс английскими буквами(транслитом) — simpleks

Слово симплекс состоит из 8 букв: е и к л м п с с

Значения слова симплекс. Что такое симплекс?

Симплекс

Симплекс (от лат. simplex - простой) (математический), простейший выпуклый многогранник данного числа измерений n. При n = 3 трёхмерный С. представляет собой произвольный, в том числе неправильный, тетраэдр.

БСЭ. - 1969-1978

Симплекс - выпуклый многоугольник в n-мерном пространстве с n+1 вершинами, не лежащими в одной гиперплоскости. С. выделены в отдельный класс потому, что в n-мерном пространстве n точек всегда лежат в одной гиперплоскости.

slovar-lopatnikov.ru

СИМПЛЕКС - выпуклый многоугольник в n-мерном пространстве с n+1 вершинами, не лежащими в одной гиперплоскости. С. выделены в отдельный класс потому, что в n-мерном пространстве n точек всегда лежат в одной гиперплоскости.

Лопатников. - 2003

Саб симплекс

Саб симплекс Способ применения и дозы: Внутрь, во время или после еды и, при необходимости, перед сном. Перед применением следует активно встряхнуть флакон.

Решение ЗЛП симплекс методом с искусственным базисом

Чтобы суспензия начала поступать из пипетки…

Саб симплексДействующее вещество ›› Симетикон* (Simethicone*) Латинское название Sab simplex АТХ:›› A02DA Ветрогонные препараты Фармакологическая группа…

Словарь медицинских препаратов. — 2005

САБ® СИМПЛЕКС (SAB® SIMPLEX) Суспензия для приема внутрь от белого до серо-белого цвета, слегка вязкая, с характерным фруктовым (ванильно-малиновым) запахом. 100 мл симетикон 6.919 г…

ШОКЕ СИМПЛЕКС

ШОКЕ СИМПЛЕКС — непустое компактное выпуклое множество Xв локально выпуклом пространстве E, обладающее следующим свойством: при вложении Ев качестве гиперплоскости в пространство проектирующий конус.

Шеффилд-Симплекс

«Шеффилд-Симплекс» (англ. Sheffield-Simplex) - лёгкий пулемётный бронеавтомобиль Вооружённых сил Российской империи. Разработан британской фирмой «Sheffield-Simplex» на базе шасси собственного легкового автомобиля…

ru.wikipedia.org

Нордитропин Симплекс

Нордитропин Симплекс Показания: Задержка роста у детей вследствие недостаточности гормона роста или хронической почечной недостаточности (в препубертатном возрасте), синдрома Шерешевского - Тернера…

НОРДИТРОПИН® СИМПЛЕКС® (NORDITROPIN SimpleXx) Раствор для п/к введения 1.5 мл (1 картридж) соматропин 10 мг 1.5 мл — картриджи (1) — упаковки ячейковые контурные (1) — пачки картонные.

Справочник лекарственных препаратов "Видаль"

СТАНДАРТНЫЙ СИМПЛЕКС

СТАНДАРТНЫЙ СИМПЛЕКС — 1) С. с.- симплекс размерности пв пространстве с вершинами в точках е i=(0,…, 1,…, 0), i=0,…, п(единица стоит на i-м месте), т. е.

Математическая энциклопедия. — 1977-1985

Двойственный симплекс-метод

Двойственный симплекс-метод можно применять при решении задачи линейного программирования, свободные члены системы уравнений которой могут быть любыми числами. В обычном симплексном алгоритме план всегда должен быть допустимым.

ru.wikipedia.org

Русский язык

Си́мпле́кс/.

Морфемно-орфографический словарь. - 2002

Поиск Лекций

Пример решения задачи методом искусственного базиса.

Найти минимум функции F=-2×1+3×2 — 6×3 — x4 при условиях

Решение. Запишем данную задачу в форме основной задачи: найти максимум функции F1=2×1 – 3×2 + 6×3 + x4 при условиях

В системе уравнений последней задачи рассмотрим векторы из коэффициентов при неизвестных:

А1 = А2 = А 3= А 4= А 5= А 6=

Среди векторов А1 ,…, А 6 только два единичных (А 4 и А 5). Поэтому в левую часть третьего уравнения системы ограничений добавим дополнительную неотрицательную переменную x 7 и рассмотрим расширенную задачу, состоящую в максимизации функции

F=2×1 – 3×2 + 6×3 + x4 – Mx7

при условиях

Расширенная задача имеет опорный план X=(0; 0; 0; 24; 22; 0; 10), определяемый системой трех единичных векторов: А 4 , А5 , А7 .

Таблица 1

i Базис Сσ А0 -3 M
А1 А2 А3 А4 А5 А6 P7
А4 -2
А5
А7 M -1 -1
m +1 -8
m +2 -10 -1 -2

Составляем таблицу (1) I итерации, содержащую пять строк. Для заполнения 4-й и 5-й строк находим F 0 и значения разностей zj – cj (j= ):

F 0 = 24–10M;

z1–c1 = 0–M ;

z2–c2 = 4+M ;

z3–c3 = –8–2M ;

z4–c4 =0+M ;

z5–c5 =0+M ;

z6–c6 = 0+M ;

z7–c7 =0+M ;

Значения F 0 и zj–cj состоят из двух слагаемых, одно из которых содержит M , а другое – нет.

Для удобства итерационного процесса число, состоящее при M , записываем в 5-й строке, а слагаемое, которое не содержит M ,– в 4-й строке.

В 5-й строке табл.1 в столбцах векторов Аj (j = ) имеется два отрицательных числа (-1 и -2). Наличие этих чисел говорит о том, что данный опорный план расширенной задачи не является оптимальным. Переходим к новому опорному плану расширенной задачи.

Метод искусственного базиса.

В базис вводим вектор А3 . Чтобы определить вектор, исключаемый из базиса, находим θ=min(22/4; 10/2)=10/2. Следовательно, вектор А7 исключаем из базиса. Этот вектор не имеет смысла вводить ни в один из последующих базисов, поэтому в дальнейшем столбец данного вектора не заполняется (табл. 2 и 3).

Составляем таблицу II итерации (табл. 2). Она содержит только четыре строки, так как искусственный вектор из базиса исключен.

Таблица2

i Базис Сσ А0 -3
А1 А2 А3 А4 А5 А6
А4 -1
А5 -1
А3 1/2 -1/2 -1/2
m +1 -4

Как видно из табл. 2, для исходной задачи опорным является план Х =(0;0;5;34;2).

Проверим его на оптимальность. Для этого рассмотрим элементы 4-й строки. В этой строке в столбце вектора А6 имеется отрицательное число (-4). Следовательно, данный опорный план не является оптимальным и может быть улучшен благодаря введению в базис вектора А6. Из базиса исключается вектор А5 . Составляем таблицу III итерации.

Таблица 3

В 4-й строке табл.3 среди чисел ∆j нет отрицательных. Это означает, что найденный новый опорный план исходной задачи Х *=(0; 0; 11/2; 35; 0; 1) является оптимальным. При этом плане значение линейной формы Fmax = 68.

Решение данной задачи можно проводить, используя одну таблицу, в которой последовательно записаны все итерации.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

+
x 1 - 2 x 2 + S 1 = 2
2 x 1 3 x 2 - S 2 = 4
- 2 x 1 + x 2 + S 3 = 2



Переменная называется базисной для данного уравнения, если она входит в данное уравнение с коэффициентом один и не входит в оставшиеся уравнения (при условии, что в правой части уравнения стоит положительное число).
Если в каждом уравнении присутствует базисная переменная, тогда говорят, что в системе присутствует базис.
Переменные, которые не являются базисными, называются свободными. (см. систему ниже)

Идея симплекс метода заключается в том, чтобы переходить от одного базиса к другому, получая значение функции, как минимум, не больше имеющегося (каждому базису соответствует единственное значение функции).
Очевидно, количество всевозможных базисов для любой задачи число конечное (и не очень большое).
Следовательно, рано или поздно, ответ будет получен.

Как осуществляется переход от одного базиса к другому?
Запись решения удобнее вести в виде таблиц. Каждая строка эквивалентна уравнению системы. Выделенная строка состоит из коэффициентов функции (сравните сами). Это позволяет не переписывать переменные каждый раз, что существенно экономит время.
B выделенной строке выбираем наименьший отрицательный коэффициент. Это необходимо для того, чтобы получить значение функции, как минимум, не больше имеющегося.
Выбран столбец.
Для положительных коэффициентов выбранного столбца считаем отношение Θ и выбираем наименьшее значение. Это необходимо для того, чтобы после преобразования столбец свободных членов остался положительным.
Выбрана строка.
Следовательно, определен элемент, который будет базисным. Далее считаем.


+
x 1 - 2 x 2 + S 1 = 2
2 x 1 3 x 2 - S 2 + R 1 = 4
- 2 x 1 + x 2 + S 3 = 2

x 1 = 0 x 2 = 0 S 2 = 0
S 1 = 2 S 3 = 2 R 1 = 4
=> W = 4

Шаг №1
x 1 x 2 S 1 S 2 S 3 R 1 св. член Θ
1 -2 1 0 0 0 2
2 3 0 -1 0 1 4 4: 3 ≈ 1,33
-2 1 0 0 1 0 2 2: 1 = 2
-2 -3 0 1 0 0 W - 4
1 -2 1 0 0 0 2
2/3 1 0 -1/3 0 1/3 4/3
-2 1 0 0 1 0 2
-2 -3 0 1 0 0 W - 4
7/3 0 1 -2/3 0 2/3 14/3
2/3 1 0 -1/3 0 1/3 4/3
-8/3 0 0 1/3 1 -1/3 2/3
0 0 0 0 0 1 W - 0


+
7/3 x 1 + S 1 - 2/3 S 2 = 14/3
2/3 x 1 + x 2 - 1/3 S 2 = 4/3
- 8/3 x 1 1/3 S 2 + S 3 = 2/3


4. Нахождение наименьшего значения функции F.

Шаг №1
x 1 x 2 S 1 S 2 S 3 св. член Θ
7/3 0 1 -2/3 0 14/3 14/3: 7/3 = 2
2/3 1 0 -1/3 0 4/3 4/3: 2/3 = 2
-8/3 0 0 1/3 1 2/3
-7/3 0 0 5/3 0 F - 20/3
1 0 3/7 -2/7 0 2
2/3 1 0 -1/3 0 4/3
-8/3 0 0 1/3 1 2/3
-7/3 0 0 5/3 0 F - 20/3
1 0 3/7 -2/7 0 2
0 1 -2/7 -1/7 0 0
0 0 8/7 -3/7 1 6
0 0 1 1 0 F - 2

S 1 = 0 S 2 = 0
x 1 = 2 x 2 = 0 S 3 = 6
=> F - 2 = 0 => F = 2
Среди коэффициентов выделенной строки нет отрицательных. Следовательно, найдено наименьшее значение функции F.