Сайт о телевидении

Сайт о телевидении

» » Логическая топология сети определяется. Наиболее эффективные топологии. Типы локальных сетей

Логическая топология сети определяется. Наиболее эффективные топологии. Типы локальных сетей

На уровне самого общего представления любая сеть состоит из совокупности пунктов и соединяющих их линий, взаимное расположение которых характеризует связность сети и способность к обеспечению информационного обмена между различными адресатами. Структура, отображающая расположение пунктов сети и связывающих их линий называетсятопологией сети. Различаютфизическую топологию илогическую .Физическая топология отображает размещение пунктов в пространстве и конфигурацию линий связи .Логическая топология дает представление о путях перемещения информационных сообщений в сети от источников к приемнникам на основе адресной информации.

Рисунок 1 . Системное описание архитектуры сети

Для исследования топологических особенностей сети ее удобно изображать в виде точек и соединяющих их дуг . Такая геометрическая фигура носит название граф. Точки в графе именуются вершинами, а дуги, если не учитывается их направленность, – ребрами. Граф является моделью топологическойструктуры информационной сети. Выбор топологии является наипервейшей задачей, решаемой при построении сети. Он осуществляется с учетом таких требований, какэкономичность инадежность связи . Задача выбора топологии сети решается сравнительно несложно, если известен набортиповых топологий (примитивов) , которые можно использовать как отдельно, так и в комбинации. Рассмотрим ряд таких типовых топологий, назовем их базовыми, и охарактеризуем их особенности.

Топология «точка точка» является наиболее простым примером базовой топологии и представляет собой сегмент сети, связывающий физически и логически два пункта (рис 2).

Надежность связи в таком сегменте может быть повышена за счет введения резервной связи, обеспечивающей стопроцентное резервирование,

называемое защитой типа 1+1 . При выходе из строя основной связи сеть автоматически переводится на резервную. Несмотря на всю простоту, именно эта базовая топология наиболее широко используется при передаче больших потоков информации по высокоскоростным магистральным каналам, например, по трансокеанским подводным кабелям, обслуживающим цифровой телефонный трафик. Она же используется как составная часть радиально-кольцевой топологии (в качестве радиусов). Топология «точка–точка» с резервированием типа 1+1 может рассматриваться как вырожденный вариант топологии «кольцо» (см. ниже).

Древовидная топология может иметь различные варианты (рис. 3).

Рисунок 3 . Древовидная топология: а – дерево, б – звезда, в – цепь

Особенностью сегмента сети, имеющего древовидную топологию любого из перечисленных вариантов, является то, что связность n пунктов на уровне физической топологии здесь достигается числом ребер R = n – 1, что обеспечивает высокую экономичность такой сети. На логическом уровне, количество связывающих путей передачи информации между каждой парой пунктов в таком сегменте всегда равно h = 1. С точки зрения надежности, это достаточно низкий показатель. Повышение надежности в таких сетях достигается введением резервных связей (например, защиты типа 1+1). Древовидная топология находит применение в локальных сетях, сетях абонентского доступа.

Топология «кольцо» (рис. 4) характеризует сеть, в которой к каждому пункту присоединены две, и только две линии. Кольцевая топология широко используется в локальных сетях, в сегментах меж-узловых соединений территориальных сетей, а также в сетях абонентского доступа, организуемых на базе оптического кабеля.

Число ребер графа, отображающего физическую топологию, равно числу вершин: R = n и характеризует сравнительно невысокие затраты на сеть.

На логическом уровне между каждой парой пунктов могут быть организованы h = 2 независимых связывающих пути (прямой и альтернативный). Это обеспечивает повышение надежности связи в таком сегменте, особенно при использовании резервирования типа 1+1, так называемогодвойного кольца (рис. 5). Двойное кольцо образуется физическими соединениями между парами пунктов, при которых информационный поток направляется в двух противоположных направлениях (восточном и западном), причем одно направление используется как основное, второе – как резервное.

Полносвязная топология (рис. 6) обеспечивает физическое и логическое соединение пунктов по принципу «каждый с каждым». Граф, включающий n вершин, содержитR = n (n – 1)/2 ребер, что определяет высокую стоимость сети. Количество независимых связывающих путей между каждой парой пунктов в таком сегменте сети равноh = n – 1. Полносвязная топология на логическом уровне обладает максимальной надежностью связи, благодаря возможности организации большого числа обходных путей. Такая топология характерна для территориальных сетей при формировании сегментов базовых и опорных (магистральных) сетей. Максимальная надежность связи в сегменте достигается при использовании на обходных направлениях альтернативных сред распространения сигналов (например, волоконно-оптический кабель и радиорелейная линия).

Ячеистая топология (рис. 7). Каждый пункт сегмента имеет непосредственную связь с небольшим числом пунктов, ближайших по расстоянию. При большом числе вершин число реберR » r × n /2, гдеr – число ребер, инцидентных каждой вершине. Ячеистые сегменты обладают высокой надежностью связи при меньшем числе ребер по сравнению с полно-связным сегментом.

Рисунок. 7 Ячеистая топология

Использование полно-связной и ячеистой топологий целесообразно лишь в сегментах с высокой концентрацией трафика, так как их реализация связана со значительными затратами.

Сложные топологии. Реальные сети часто имеют сложные топологии, являющиеся расширениями и/или комбинациями базовых физических топологий. За счет использования сложных топологий удается обеспечивать требования красширяемости имасштабируемости сети.

Под расширяемостью понимают возможность увеличения размера сети, путем сравнительно несложного включения новых структурных элементов. Расширяемость сети, как правило, ограничена, т.к. начиная с некоторого момента добавление очередного структурного элемента приводит к резкому снижению производительности сети.

Хорошо масштабируемые сети характеризуются неограниченными возможностями по наращиванию сети, не оказывающими влияния на ее производительность . Хорошая масштабируемость является одним из важнейших требований, предъявляемых к современным сетям, особенно территориальным.

Термин «топология» имеет достаточно много значений, одно из которых применяется в компьютерном мире для описания сетей. Что такое топология далее и будет рассмотрено. Но, несколько забегая вперед, в самом простом случае это понятие можно рассматривать как описание конфигурации (расположения) компьютеров, подключенных к сети. Иными словами, все сводится к пониманию даже не самих соединений, а геометрических фигур, которые соответствуют каждому типу расположения терминалов.

Что понимается под топологией локальной сети?

Как уже понятно, компьютеры, объединяемые в единые сети, подключаются к ним не хаотично, а в строго определенном порядке. Для описания этой схемы и было введено понимание топологии.

По сути, что такое топология? Карта, схема, диаграмма, карта. Описательный процесс, как уже понятно, в чем-то сродни элементарным знаниям по геометрии. Однако только чисто с геометрической точки зрения этот термин рассматривать нельзя. Поскольку речь идет не только о подключениях, а еще и о передаче информации, в связи с этим следует учитывать и этот фактор.

Основные виды сетей и их топологий

Вообще, единого понятия компьютерной топологии не существует. Принято считать, что может быть несколько видов топологий, в совокупности описывающих ту или иную организацию сети. Собственно, и сети могут быть совершенно разными.

Например, самой простой формой организации соединения нескольких компьютерных терминалов в единое целое можно назвать локальную сеть. Существуют еще промежуточные типы сетей (городские, региональные и т. д.).

Наконец, самыми большим являются глобальные сети, которые затрагивают большие географические регионы и включают в себя все остальные типы сетей, а также компьютеры и телекоммуникационное оборудование.

Но что понимается под топологией локальной сети, как одной из самых простых форм организации соединения нескольких компьютеров между собой, в данном случае?

По признаку описываемых процессов и структур их разделяют на несколько типов:

  • физическая - описание реально существующей структуры расположения компьютеров и узлов сети с учетом связей между ними;
  • логическая - описание прохождения сигнала по сети;
  • информационная - описание движения, направления и перенаправления данных внутри сети;
  • управление обменом - описание принципа использования или передачи прав на пользование сетью.

Топология сети: типы

Теперь несколько слов об общепринятой классификации типов топологий по связям. В контексте того, что такое топология, отдельно стоит отметить еще один тип классификации, описывающий исключительно способ подключения компьютера к сети или принципа его взаимодействия с другими терминалами или основными узлами. В этом случае актуальными становятся понятия полносвязанной и неполносвязанной топологий.

Полносвязанная структура (и это признано во всем мире) является чрезвычайно громоздкой по причине того, что каждый единичный терминал, входящий в единую сетевую структуру, связан со всеми остальными. Неудобство в данном случае заключается в том, что для каждого компьютера необходимо устанавливать дополнительное оборудование связи, а сам терминал должен быть оснащен достаточно большим количеством коммуникационных портов. И как правило, такие структуры если и применяются, то крайне редко.

Неполносвязанная топология в этом плане выглядит намного предпочтительнее, поскольку каждый отдельно взятый терминал не соединяется со всеми остальными компьютерами, а получает или передает информацию через определенные сетевые узлы или обращается напрямую к центральному концентратору или хабу. Яркий тому пример - топология сети «звезда».

Поскольку речь зашла об основных методах объединения терминалов в единое целое (сеть), следует остановиться на основных топологиях всех основных типов, среди которых главными являются «шина», «звезда» и «кольцо», хотя существуют и некоторые смешанные типы.

Топология сети «шина» (bus)

Данный тип объединения терминалов в сеть является достаточно популярным, хотя и имеет весьма серьезные недостатки.

Рассмотреть, что собой представляет топология «шина», можно на простом примере. Представьте себе кабель с несколькими ответвлениями по обе стороны. На конце каждого такого ответвления находится компьютерный терминал. Между собой они напрямую не связаны, а информацию получают и передают через единую магистраль, на обоих концах которой установлены специальные терминаторы, препятствующие отражению сигнала. Это стандартная линейная топология сети.

Преимущество такого соединения состоит в том, что длина основной магистрали существенно уменьшается, и выход единичного терминала из строя на работу сети в целом не оказывает никакого влияния. Главным же недостатком является то, что при нарушениях в работе самой магистрали, неработоспособной оказывается вся сеть. К тому же топология «шина» ограничена в количестве подключаемых рабочих станций и обладает достаточно низкой производительностью ввиду распределения ресурсов между всеми терминалами в сети. Распределение может равномерным или неравномерным.

Топология «звезда» (star)

Топология сети «звезда» в некотором смысле напоминает «шину», с той лишь разницей, что подключение всех терминалов производится не к единой магистрали, а к центральному распределительному устройству (концентратор, хаб).

Как раз через концентратор все компьютеры могут взаимодействовать между собой. Информация передается с хаба на все устройства, но принимается, только теми, которым она предназначается. К преимуществам такого подключения относят возможность централизованного управления всеми терминалами сети, а также подключение новых. Однако, как и в случае с «шиной», выход из строя центрального коммутирующего устройства чреват последствиями для всей сети.

Топология «кольцо» (ring)

Наконец, перед нами еще один тип соединения - кольцевая топология сети. Как, наверное, уже понятно из названия, подключение компьютеров осуществляется последовательно от одного к другому через промежуточные узлы, в результате чего и образуется замкнутый круг (естественно, круг в данном случае - понятие условное).

При передаче информация из начальной точки проходит через все терминалы, которые стоят перед конечным получателем. Но распознавание конечного бенефициара производится на основе маркерного доступа. То есть информацию получает только помеченный в информационном потоке терминал. Такая схема практически нигде не используется в силу того, что выход из строя одного компьютера автоматически влечет за собой нарушение в работе всей сети.

Ячеистая и смешанная топология

Этот тип подключений можно получить, если убрать из вышеприведенных соединений некоторые связи или добавить их дополнительно. В большинстве случаев такая схема используется в крупных сетях.

В связи с этим можно определить несколько основных производных. Самыми распространенными считаются схемы типа «двойное кольцо», «дерево», «решетка», «снежинка», «сеть Клоза» и т. д. Как можно видеть даже из названий, все это вариации на тему основных видов соединений, которые и взяты за основу.

Есть еще и смешанный тип топологии, который может объединять в себе несколько других (подсети), сгруппированных по каким-то характерным признакам.

Заключение

Теперь уже, наверное, понятно, что такое топология. Если сделать некий общий итог, данное понятие представляет собой описание способов соединения компьютеров в сети и взаимодействия между ними. Как это производится, зависит исключительно от метода объединения терминалов в одно целое. И сказать, что сегодня можно выделить какой-то один универсальный вариант подключения, нельзя. В каждом конкретном случае и в зависимости от нужд может использоваться тот или иной тип подключений. Но в локальных сетях, если говорить именно о них, наиболее распространенной является схема «звезда», хотя и «шина» все еще используется достаточно широко.

Остается добавить, что в можно встретить еще понятия централизации и децентрализации, но они большей частью связаны не с подключениями, а с системой управления сетевыми терминалами и осуществлением контроля над ними. Централизация явно выражена в подключениях типа «звезда», но для этого типа применима и децентрализация, обеспечивающая ввод дополнительных элементов с целью повышения надежности сети при выходе центрального коммутатора из строя. Достаточно эффективной разработкой в этом плане является схема «гиперкуб», однако она весьма сложна в разработке.

Основные понятия. Большое количество графических данных в ГИС со специфическими взаимными связями требует топологического описания объектов и групп объектов, которое зависит от "связанности" (простой или сложной). Оно определяет совокупность топологических моделей.

Напомним, что топологические свойства фигур не изменяются при любых деформациях, производимых без разрывов или соединений. На рис. 4.8 представлены топологически родственные фигуры: прямоугольный четырехугольник, замкнутый контур произвольной формы, окруж­ность, треугольник. Эти объекты (фигуры) имеют одинаковую топологию - одинаковые топологические свойства. Другим примером топо­логически родственных фигур могут служить арифметические знаки сложения " + " и умножения " х ".

Рис. 4.8. Топологически родственные фигуры

В геоинформационных системах применение термина топологический не такое строгое, как в топологии. В ГИС топологическая модель определяется наличием и хранением совокупностей взаимосвязей, таких, как соединенность дуг на пересечениях, упорядоченный набор звень­ев (цепей), образующих границу каждого полигона, взаимосвязи смежности между ареалами и т.п.

В общем смысле слово топологический означает, что в модели объекта хранятся взаимосвязи, которые расширяют использование данных ГИС дляразличных видов пространственного анализа.

Топологическими характеристиками графические модели ГИС существенно отличаются от моделей САПР. Соответственно это различие просматривается в программно-технологическом обеспечении этих систем.

Например, вплоть до настоящего времени много разработок ГИС выполняется с использованием средств Автокада, версий от 10 до 13. Однако в нем не предусмотрены ни работа с покрытиями, ни оверлейные процедуры, ни обработка топологических данных. Принципиально такие операции в системах CAD (Computer-Aided Desing) возможны, но путем доработки программного обеспечения, что требует достаточно высокой квалификации пользователя и, естественно, ограничивает их круг.

В системах ГИС названные выше процедуры являются встроенными и делают доступным анализ картографической информации широ­кому кругу пользователей без всякой доработки.

Элементы топологии, входящие в описание моделей данных ГИС, в простейшем случае определяются связями между элементами основных типов координатных данных. Например, в логическую структуру ("логическая запись" см. разд. 3) описания данных могут входить указания о том, какие линии входят в район, в каких точках эти линии пересекаются. Топологические модели позволяют представлять элементы карты и всю карту в целом в виде графов. Площади, линии и точки описываются границами и узлами (дуговая/узловая структура). Каждая граница идет от начального к конечному узлу, и известно, какие площади находятся слева и справа.

Теоретической основой моделей служат алгебраическая топология и теория графов. В соответствии с алгебраической топологией координатные типы данных: площади, линии и точки называются 2-ячейками, 1-ячейками и 0-ячейками соответственно. Карта рассматривается как ориентированный двухмерный ячеечный комплекс.

Двойственность между теорией графов и алгебраической топологи­ей позволяет применять теоретические положения графов, а также то­пологический подход.

Топологическое векторное представление данных отличается от нетопологического наличием возможности получения исчерпывающего списка взаимоотношений между связанными геометрическими примитивами без изменения хранимых координат пространственных объектов.

Необходимая процедура при работе с топологической моделью -подготовка геометрических данных для построения топологии. Этот процесс не может быть полностью автоматизирован уже на данных средней сложности и реализуется только при дополнительных затратах тру­да (обычно значительных). Таким образом, данные, хранимые в системе, не предусматривающей поддержки топологии, не могут быть надежно преобразованы в топологические данные другой системы чисто автоматическим алгоритмом.

Топологические характеристики должны вычисляться в ходе количественных преобразований моделей объектов ГИС, а затем храниться в базе данных совместно с координатными данными.

Основные топологические характеристики моделей ГИС. Топологические модели в ГИС задаются совокупностью следующих харак­теристик:

Связанность векторов - контуры, дороги и прочие векторы должны храниться не как независимые наборы точек, а как взаимосвязанные друг с другом объекты;

" связанность и примыкание районов - информация о взаимном рас­положении районов и об узлах пересечения районов (рис. 4.9, в);

пересечение - информация о типах пересечений позволяет вос­ производить мосты и дорожные пересечения (рис. 4.9, а). Так Т-образ­ ное пересечение (3 линии) является трехвалентным, а Х-образное (4 линии сходятся в точке пересечения) называют четырехвалентным;

близость - показатель пространственной близости линейных или ареальных объектов (рис. 4.9, б), оценивается числовым параметром, в данном случае символом 5.

Топологические характеристики линейных объектов могут быть представлены визуально с помощью связанных графов. Граф сохраняет структуру модели со всеми узлами и пересечениями. Он напоминает карту с искаженным масштабом. Примером такого графа может служить схема метрополитена. Разница между картой метро и схемой метро по­казывает разницу между картой и графом.

Узлы графа, описывающего картографическую модель, соответству­ют пересечениям дорог, местам смыкания дорог с мостами и т.п. Ребра такого графа описывают участки дорог и соединяющие их объекты. В отличие от классической сетевой модели в данной модели длина ребер может не нести информативной нагрузки.

Рис. 4.9. Основные топологические свойства моделей ГИС: а - пересечение; б - близость; в – связанность

Топологические характеристики ареальных объектов могут быть представлены с помощью графов покрытия и смежности. Граф покры­тия топологически гомоморфен контурной карте соответствующих районов. Ребра такого графа описывают границы между районами, а его узлы (вершины) представляют точки смыкания районов. Степень вер­шины такого графа - это число районов, которые в ней смыкаются. Граф смежности это как бы вывернутый наизнанку граф покрытия. В нем рай­оны отображаются узлами (вершинами), а пара смыкающихся районов -ребрами. На основе такого графа ГИС может выдать ответ на вопрос, является ли проходимой рассматриваемая территория, разделенная на проходимые или непроходимые участки.

Топологические характеристики сопровождаются позиционной и описательной информацией. Вершина графа покрытия может быть до-

полнена координатными точками, в которых смыкаются соответствую­щие районы, а ребрам приписывают левосторонние и правосторонние идентификаторы.

После введения точечных объектов при построении линейных и площадных объектов необходимо "создать" топологию. Эти процессы включают вычисление и кодирование связей между точками, линиями и ареалами.

Пересечения и связи имеют векторное представление. Топологичес­кие характеристики заносятся при кодировании данных в виде дополни­тельных атрибутов. Этот процесс осуществляется автоматически во мно­гих ГИС в ходе дигитализации (картографических или фотограмметри­ческих) данных.

Объекты связаны множеством отношений между собой. Это опре­деляет эффективность применения реляционных моделей и баз данных, в основе которых используется понятие отношения. В свою оче­редь, отношения задают множества связей. Простейшие примеры таких связей: "ближайший к...", "пересекает", "соединен с...".

Каждому объекту можно присвоить признак, который представляет собой идентификатор ближайшего к нему объекта того же класса; таким образом кодируются связи между парами объектов.

В ГИС часто кодируются два особых типа связей: связи в сетях и связи между полигонами.

Топологически сети состоят из объектов двух типов: линий (звенья, грани, ребра, дуги) и узлов (вершины, пересечения, соединения).

Простейший способ кодирования связей между звеньями и узлами зак­лючается в присвоении каждому звену двух дополнительных атрибутов -идентификаторов узлов на каждом конце (входной узел и выходной узел).

В этом случае при кодировании геометрических данных будут иметь место два типа записей:

координаты дуг: (x1,y1), (х2,у2), ..., (xn,yn);

атрибуты дуг: входной узел, выходной узел, длина, описательные характеристики.

Такая структура позволяет, перемещаясь от звена к звену, опреде­лять те из них, у которых перекрываются номера узлов.

Более сложная, но и более совершенная структура имеет список всех звеньев для каждого узла. Это может быть выполнено добавлением к первым двум записи третьего типа;

3) узел: (х, у), смежные дуги (со знаком "+" для входного угла и со знаком "-" - для выходного).

Чтобы избежать неудобств, связанных с хранением неодинакового количества идентификаторов дуг, используют два отдельных файла:

простой упорядоченный список, в котором файл узлов сжат до ряда идентификаторов дуг;

таблицу, в которой для каждого узла хранится информация о по­ ложении первой дуги списка.

Используемое в настоящее время математическое обеспечение ГИС почти исключительно основано на топологических моделях, дающих хорошее формализованное представление о пространственных соотно­шениях между основными объектами карты. Однако, если требуется установить более сложные соотношения, например включение или по­рядок, нужны дополнительные средства.

Растровые модели

Основы построения. Напомним, что модель данных представляет собой отображение непрерывных последовательностей реального мира в набор дискретных объектов.

В растровых моделях дискретизация осуществляется наиболее про­стым способом - весь объект (исследуемая территория) отображается в пространственные ячейки, образующие регулярную сеть. При этом каж­дой ячейке растровой модели соответствует одинаковый по размерам, но разный по характеристикам (цвет, плотность) участок поверхности объекта. В ячейке модели содержится одно значение, усредняющее ха­рактеристику участка поверхности объекта. В теории обработки изоб­ражений эта процедура известна под названием пикселизация.

Если векторная модель дает информацию о том, где расположен тот или иной объект, то растровая - информацию о том, что расположено в той или иной точке территории. Это определяет основное назначение растровых моделей - непрерывное отображение поверхности.

В растровых моделях в качестве атомарной модели используют двух­мерный элемент пространства - пиксель (ячейка). Упорядоченная сово­купность атомарных моделей образует растр, который, в свою очередь, является моделью карты или геообъекта.

Векторные модели относятся к бинарным или квазибинарным. Рас­тровые позволяют отображать полутона.

Как правило, каждый элемент растра или каждая ячейка должны иметь лишь одно значение плотности или цвета. Это применимо не для всех случаев. Например, когда граница двух типов покрытий может про-

Ходить через центр элемента растра, элементу дается значение, характе­ризующее большую часть ячейки или ее центральную точку. Ряд систем позволяет иметь несколько значений для одного элемента растра.

Характеристики растровых моделей. Для растровых моделей су­ществует ряд характеристик: разрешение, значение, ориентация, зоны, положение.

Разрешение - минимальный линейный размер наименьшего участ­ка пространства (поверхности), отображаемый одним пикселем.

Пиксели обычно представляют собой прямоугольники или квадра­ты, реже используются треугольники и шестиугольники. Более высо­ким разрешением обладает растр с меньшим размером ячеек. Высокое разрешение подразумевает обилие деталей, множество ячеек, минималь­ный размер ячеек.

Значение - элемент информации, хранящийся в элементе растра (пикселе). Поскольку при обработке применяют типизированные дан­ные, то есть необходимость определить типы значений растровой мо­дели.

Тип значений в ячейках растра определяется как реальным явлени­ем, так и особенностями ГИС. В частности, в разных системах можно использовать разные классы значений: целые числа, действительные (десятичные) значения, буквенные значения.

Целые числа могут служить характеристиками оптической плотно­сти или кодами, указывающими на позицию в прилагаемой таблице или легенде. Например, возможна следующая легенда, указывающая наиме­нование класса почв: 0 - пустой класс, 1 - суглинистые, 2 - песчаные, 3 - щебнистые и т.п.

Ориентация - угол между направлением на север и положением колонок растра.

Зона растровой модели включает соседствующие друг с другом ячейки, имеющие одинаковое значение. Зоной могут быть отдельные объекты, природные явления, ареалы типов почв, элементы гидро­графии и т.п.

Для указания всех зон с одним и тем же значением используют по­нятие класс зон. Естественно, что не во всех слоях изображения могут присутствовать зоны. Основные характеристики зоны - ее значение и положение.

Буферная зона - зона, границы которой удалены на известное рас­стояние от любого объекта на карте. Буферные зоны различной ширины могут быть созданы вокруг выбранных объектов на базе таблиц сопря­женных характеристик.

Положение обычно задается упорядоченной парой координат (но­мер строки и номер столбца), которые однозначно определяют положе­ние каждого элемента отображаемого пространства в растре.

Проводя сравнение векторных и растровых моделей, отметим удобство векторных для организации и работы со взаимосвязями объектов. Тем не менее, используя простые приемы, например включая взаимосвязи в таб­лицы атрибутов, можно организовать взаимосвязи и в растровых системах..

Необходимо остановиться на вопросах точности отображения в ра­стровых моделях. В растровых форматах в большинстве случаев неяс­но, относятся координаты к центральной точке пикселя или к одному из его углов. Поэтому точность привязки элемента растра определяют как 1/2 ширины и высоты ячейки.

Растровые модели имеют следующие достоинства:

растр не требует предварительного знакомства с явлениями, дан­ ные собираются с равномерно расположенной сети точек, что позволя­ ет в дальнейшем на основе статистических методов обработки получать объективные характеристики исследуемых объектов. Благодаря этому растровые модели могут использоваться для изучения новых явлений, о которых не накоплен материал. В силу простоты этот способ получил наибольшее распространение;

растровые данные проще для обработки по параллельным алго­ ритмам и этим обеспечивают более высокое быстродействие по сравне­ нию с векторными;

некоторые задачи, например создание буферной зоны, много про­ ще решать в растровом виде;

многие растровые модели позволяют вводить векторные данные, в то время как обратная процедура весьма затруднительна для векторных моделей;

процессы растеризации много проще алгоритмически, чем про­ цессы векторизации, которые зачастую требуют экспертных решений.

Наиболее часто растровые модели применяют при обработке аэро­космических снимков для получения данных дистанционных исследо­ваний Земли.

Метод группового кодирования. Самый простой способ ввода рас­тровых моделей - прямой ввод одной ячейки за другой. Н едо статкам и данного подхода являются требования большого объема памяти в компью­тере и значительного времени для организации процедур ввода-вывода. Например, снимок искусственного спутника Земли (ИСЗ) Landsat имеет 74 000 000 элементов растра и это требует огромных ресурсов для хране­ния данных.

При растровом вводе информации в ГИС возникает проблема ее Сжатия, так как наряду с полезной может попадать и избыточная (в том числе и бесполезная) информация. Для сжатия информации, получен­ной со снимка или карты, применяется кодирование участков развертки или метод группового кодирования, учитывающий, что довольно часто В нескольких ячейках значения повторяются.

Суть метода группового кодирования состоит в том, что данные вво­дятся парой чисел, первое обозначает длину группы, второе - значение. Изображение просматривается построчно, и как только определенный тип элемента или ячейки встречается впервые, он помечается призна­ком начала. Если за данной ячейкой следует цепочка ячеек того же типа, то их число подсчитывается, а последняя ячейка помечается признаком конца. В этом случае в памяти хранятся только позиции помеченных ячеек и значения соответствующих счетчиков.

Применение такого метода значительно упрощает хранение и вос­произведение изображений (карт), когда однородные участки (как пра­вило) превосходят размеры одной ячейки.

Обычно ввод осуществляют слева направо, сверху вниз. Рассмот­рим, например, бинарный массив матрицы (5x6):

0 0 1110

0 0 1 1 10

При использовании метода группового кодирования он будет вво­диться как:

303 1203 1 303 1205 1105 1.

Вместо 30 необходимо только 20 элементов данных. В рассмотрен­ном примере экономия составляет 30 %, однако на практике при работе с большими массивами бинарных данных она бывает гораздо больше.

Метод группового кодирования имеет ограничения и может исполь­зоваться далеко не во всех ГИС.

Элементы бинарной матрицы, т.е. растровой модели, могут прини­мать только два значения: "1" или "0". Эта матрица соответствует чер­но-белому изображению. На практике возможно полутоновое или цвет­ное изображение. В этих случаях значения в ячейках растровой модели могут различаться по типам. Тип значений в ячейках растра определяет­ся как исходными данными, так и особенностями программных средств ГИС. В качестве значений растровых данных могут быть применены це­лые числа, действительные (десятичные) значения, буквенные значения.

В одних системах используются толькоцелые числа, в других - различные типы данных. при этом ставится условие единствазначений для отдельных растровых слоев. Целые числа часто служат кодами, указывающими на позицию в прилагаемой таблице или легенде.

Структурно определенные растровые модели. Растровые модели делятся на регулярные, нерегулярные и аложенные (рекурсивные или иерархические) мозаики (рис. 4.10).

рис 4 10. Растровые модели: а - регулярная прямоугольная решетка б - регулярная треугольная решетка, в - полигоны Тиссена

Сканировано

Плоские регулярные мозаики бывают трех типов: квадрат (рис. 4. 10, а), треугольник и шестиугольник (рис. 4.10, б). Квадрат - самая удобная модель, так как позволяет относительно просто проводить обработку больших массивов данных. Треугольные мозаики служат хорошей ос­новой для создания выпуклых (сферических) покрытий.

Среди нерегулярных мозаик чаще всего используют треугольные сети неправильной формы (Triangulated Irregular Network - TIN) и полигоны Тиссена (рис. 4.10, в). Сети TIN удобны для создания цифровых моде­лей отметок местности по заданному набору точек. Они применяются как в растровых, так и в векторных моделях.

Модель треугольной нерегулярной сети (TIN) в значительной мере альтернативна цифровой модели рельефа, построенной на регулярной сети. TIN-модель была разработана в начале 70-х гг. как простой способ построения поверхностей на основе набора неравномерно расположен­ных точек. В 70-е гг. было создано несколько вариантов данной систе­мы, коммерческие системы на базе TIN стали появляться в 80-х гг. как пакеты программ для построения горизонталей.

Модель TIN используется для цифрового моделирования рельефа. При этом узлам и ребрам треугольной сети соотносятся исходные и про­изводные атрибуты цифровой модели.

Полигоны Тиссена (или диаграммы Вороного) представляют собой геометрические конструкции, образуемые относительно множества то­чек таким образом, что границы полигонов являются отрезками перпен­дикуляров, восстанавливаемых к линиям, соединяющим две ближайшие точки. Полигоны Тиссена позволяют проводить анализ на соседство близость и достижимость.

Нерегулярная выборка лучше, чем регулярная, отражает харак­тер реальной поверхности и это является достоинством полигожн Тиссена.

При построении TIN-модели дискретно расположенные точки со единяются линиями, образующими треугольники. В пределах каждогс треугольника поверхность обычно представляется плоскостью. Посколь ку поверхность каждого треугольника задается высотами трех его вер шин, применение треугольников обеспечивает каждому участку мозаичной поверхности точное прилегание к смежным участкам. Это обес печивает непрерывность поверхности при нерегулярном расположении точек.

Данная модель позволяет использовать в качестве элементов мозаи ки более сложные многоугольники, но их всегда можно разбить на тре угольники.

В векторных ГИС модель TIN можно рассматривать как полигоны с атрибутами угла наклона, экспозиции и площади, с тремя вершинами, имеющими атрибуты высоты, и с тремя сторонами, характеризующи­мися углом наклона и направлением.

Для выбора точек модели используют три основных алгоритма: ал­горитм Фоулера и Литла, алгоритм ключевых точек, эвристическое уда­ление точек.

С аналитической точки зрения основу таких вложенных, или иерар­хических, мозаик составляют (рекурсивно) раскладываемые модели. Рекурсивная декомпозиция треугольников приводит к образованию тре­угольных квадродеревьев, причем декомпозиция шестиугольников не­возможна. Единицы с более высоким уровнем разрешающей способно­сти можно объединять, формируя шестиугольники, что приводит к об­разованию семиразрядного дерева. Схема адресации для вложенных шестиугольных мозаик была разработана Л. Гибсоном и Д. Лукасом. Они назвали ее генерализованной сбалансированной троичной мозаикой.

Квадратомическое дерево - одна из наиболее широко известных структур данных, использующихся применительно к площадям, линиям и точкам.

Бесструктурные гиперграфовые и решетчатые модели. Они обра­батывают координатные данные в виде простых строк координат без ка­кой-либо структуры. В случае обработки площадей общие границы всегда вводятся в ЭВМ дважды. Пример практического применения этих моде­лей - хранимые в памяти ЭВМ полные полигоны и векторные цепные коды.

Гиперграфовые модели основаны на теории множеств и гипергра­фов и используют шесть абстрактных типов данных: класс, атрибут клас­са, связь класса, объект, атрибут объекта, связь объекта.

Класс соответствует границе гиперграфа, причем объекты являются узлами этого графа. Каждый класс содержит объекты с атрибутами объек­та и различаемый узел, содержащий атрибут класса. Используя подклас­сы, вводят иерархию классов и объектов.

Связи классов и связи объектов устанавливают соотношения между теми классами, которые не связаны иерархически. Связи классов пред­ставляют потенциальные соотношения между классами, а связи объек­тов - действительные соотношения между объектами. Для образования мультисвязи можно объединить несколько связей объектов. Несколько классов объектов образуют гиперклассы, которые связаны гиперсвязями.

Гиперграфовые модели применимы как к координатным, так и к ат­рибутивным данным. Как правило, они отличаются высокой степенью сложности.

Решетчатые модели базируются на математической теории реше­ток, оперирующей с частично упорядоченными наборами данных. Они полезны в тех случаях, когда отсутствует четкая иерархия объектов.

Элементы алгебраической теории автоматных моделей синтеза ти­повых конструктивных моделей упрощают процесс получения сложных графических изображений. Однако такой подход, находящий широкое применение в САПР, пока не используется в технологиях ГИС.

Топология «кольцо» - это топология, в которой каждый компьютер соединён линиями связи только с двумя другими: от одного он только получает информацию, а другому только передаёт. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приёмник. Это позволяет отказаться от применения внешних терминаторов.
Каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всём кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Чётко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надёжность сети, потому что выход его из строя сразу же парализует весь обмен.
Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). В качестве носителя в сети используется витая пара или оптоволокно. Сообщения циркулируют по кругу.
Рабочая станция может передавать информацию другой рабочей станции, только после того, как получит право на передачу (маркер), поэтому коллизии исключены. Информация передается по кольцу от одной рабочей станции к другой, поэтому при выходе из строя одного компьютера, если не принимать специальных мер выйдет из строя вся сеть.
Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

Топология компьютерных сетей

На скорость передачи данных в сети, на надежность обслуживания запросов клиентов, на устойчивость сети к отказам оборудования, на стоимость создания и эксплуатации сети значительное влияние оказывает ее топология.

Под топологией компьютерной сети понимается способ соединения ее отдельных компонентов (компьютеров, серверов, принтеров и т.д.). Различают следующие основные топологии:

· топология типа звезда;

· топология типа кольцо;

· топология типа общая шина;

· древовидная топология;

· полносвязная сеть.

Рассмотрим данные топологии сетей.

Топология типа звезда . При использовании топологии типа звезда информация между клиентами сети передается через единый центральный узел (Рис. 11). В качестве центрального узла может выступать сервер или специальное устройство – концентратор (Hub).

Рис. 11. Топология типа звезда

В топологии звезда могут использоваться активные и пассивные концентраторы. Активные концентраторы принимают и усиливают передаваемые сигналы. Пассивные концентраторы пропускают через себя сигналы, не усиливая их. Пассивные концентраторы не требуют подключения к источнику питания.

Преимущества топологии звезда состоят в следующем:

1. Высокое быстродействие сети, так как общая производительность сети зависит только от производительности центрального узла.

2. Отсутствие столкновения передаваемых данных, так как данные между рабочей станцией и сервером передаются по отдельному каналу, не затрагивая другие компьютеры.

Однако помимо достоинств у данной топологии есть и недостатки:

1. Низкая надежность, так как надежность всей сети определяется надежностью центрального узла. Если центральный узел (сервер или концентратор) выйдет из строя, то работа всей сети прекратится.

2. Высокие затраты на подключение компьютеров, так как к каждому новому абоненту необходимо ввести отдельную линию.

3. Отсутствие возможности выбора различных маршрутов для установления связи между абонентами.

Данная топология в настоящее время является самой распространенной.

Топология типа кольцо . При топологии кольцо все компьютеры подключаются к кабелю, замкнутому в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер (рис. 12).

Рис. 12. Топология типа кольцо

Передача информации в данной сети происходит следующим образом. Маркер (специальный сигнал) последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который хочет передать данные. Получив маркер, компьютер создает так называемый пакет, который используется для передачи данных. В пакет помещается адрес получателя и данные, а затем он отправляется по кольцу. Пакет проходит через каждый компьютер, пока не окажется у того, чей адрес совпадает с адресом получателя. После этого принимающий компьютер посылает источнику информации подтверждение факта получения пакета. Получив подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

Преимущества топологии типа кольцо состоят в следующем:

1. Пересылка сообщений является очень эффективной, т.к. можно отправлять несколько сообщений друг за другом по кольцу. Т.е. компьютер, отправив первое сообщение, может отправлять за ним следующее сообщение, не дожидаясь, когда первое достигнет адресата.

2. Протяженность сети может быть значительной. Т.е. компьютеры могут подключаться к друг к другу на значительных расстояниях, без использования специальных усилителей сигнала.

3. Отсутствие коллизий (см. тему №3, раздел 2) и столкновения данных, так как передачу в каждый момент времени ведет только один компьютер.

К недостаткам данной топологии относятся:

1. Низкая надежность сети, так как отказ любого компьютера влечет за собой отказ всей системы.

2. Для подключения нового клиента необходимо прервать работу в сети.

3. При большом количестве клиентов скорость работы в сети замедляется, так как вся информация проходит через каждый компьютер, а их возможности ограничены.

4. Общая производительность сети определяется производи­тельностью самого медленного компьютера .

Данная топология выигрывает в том случае, если в организации создается система распределенных центров обработки информации, расположенных на значительном расстоянии друг от друга.

Топология типа общая шина . При шинной топологии все клиенты подключены к общему каналу передачи данных (рис. 13). При этом они могут непосредственно вступать в контакт с любым компьютером, имеющимся в сети.

Рис.13. Топология типа общая шина

Передача информациипроисходит следующим образом. Данные в виде электрических сигналов передаются всем компьютерам сети. Однако информацию принимает только тот, адрес которого соответствует адресу получателя. Причем в каждый момент времени только один компьютер может вести передачу.

Преимущества топологии общая шина:

1. Вся информация находится в сети и доступна каждому компьютеру. Т.е. с любого персонального компьютера можно получить доступ к информации, которая храниться на любом другом компьютере.

2. Рабочие станции можно подключать независимо друг от друга. Т.е. при подключении нового абонента нет необходимости останавливать передачу информации в сети.

3. Построение сетей на основе топологии общая шина обходится дешевле, так как отсутствуют затраты на прокладку дополнительных линий при подключении нового клиента.

4. Сеть обладает высокой надежностью, т.к. работоспособность сети не зависит от работоспособности отдельных компьютеров.

Последнее преимущество определяется тем, что шина является пассивной топологией. Т.е. компьютеры только принимают передаваемые данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных.

К недостаткам топологии типа общая шина относятся:

1. Низкая скорость передачи данных, так как вся информация циркулирует по одному каналу (шине).

2. Быстродействие сети зависит от числа подключенных компьютеров. Чем больше компьютеров подключено к сети, тем больше загружена шина и тем медленнее идет передача информации от одного компьютера к другому.

3. Для сетей, построенных на основе данной топологии, характерна низкая безопасность, так как информация на каждом компьютере может быть доступна с любого другого компьютера.

Древовидная топология . В сетях с древовидной топологией компьютеры непосредственно связаны с центральными узлами сети – серверами (Рис. 14).



Рис.14. Древовидная топология

Древовидная топология представляет собой комбинацию топологии типа звезда и топологии типа общая шина. Поэтому ей в основном присущи те же преимущества и недостатки, которые были указаны для данных топологий.

Полносвязная вычислительная сеть . В полносвязной сети каждый компьютер соединен со всеми другими компьютерами отдельными линиями (рис. 15).

Рис.15. Полносвязная вычислительная сеть

Преимущества полносвязной сети:

1. Высокая надежность, так как при отказе любого канала связи будет найден обходной путь для передачи информации.

2. Высокое быстродействие, так как информация между компьютерами передается по отдельным линиям.

Недостатки данной топологии:

1. Данная топология требует большого числа соединительных линий, т.е. стоимость создания подобной сети очень высокая.

2. Трудность построения сети при большом количестве компьютеров, так как от каждого компьютера к остальным необходимо прокладывать отдельные линии.

Топология полносвязной сети обычно применяется для малых сетей с небольшим количеством компьютеров, которые работают с полной загрузкой каналов связи.

Для крупных вычислительных сетей (глобальных или региональных) обычно применяется комбинация различных топологией для разных участков.

Модели ЛВС

Существует две модели локальных вычислительных сетей:

· одноранговая сеть;

· сеть типа клиент-сервер.

В одноранговой сети все компьютеры равноправны между собой. При этом вся информация в системе распределена между отдельными компьютерами. Любой пользователь может разрешить или запретить доступ к своим данным. В таких сетях на всех компьютерах устанавливаются однотипные операционные системы (ОС), которые предоставляет всем компьютерам в сети потенциально равные возможности.

Достоинстваданной модели:

1. Простота реализации. Для реализации данной сети достаточно наличия в компьютерах сетевых адаптеров и кабеля, которых их соединит.

2. Низкая стоимость создания сети. Так как отсутствуют затраты, связанные с покупкой дорогостоящего сервера, дорогой сетевой операционной системы и т.д.

Недостатки модели:

1. Низкое быстродействие при сетевых запросах. Рабочая станция всегда обрабатывает сетевые запросы медленнее, чем специализированный компьютер – сервер. Помимо этого на рабочей станции всегда выполняются различные задачи (набор текста, создание рисунков, математические расчеты и др.), которые замедляют ответы на сетевые запросы.

2. Отсутствие единой информационной базы, так как вся информация распределена по отдельным компьютерам. При этом приходиться обращаться к нескольким компьютерам для получения необходимой информации.

3. Отсутствие единой системы безопасности информации. Каждый персональный компьютер защищает свою информацию посредством операционной системы. Однако операционные системы персональных компьютеров, как правило, обладают меньшей защищенностью, чем сетевые операционные системы для серверов. Поэтому "взломать" такую сеть значительно проще.

4. Зависимость наличия в системе информации от состояния компьютера. Если какой-то компьютер будет выключен, то информация, хранимая на нем, будет недоступна другим пользователям.

В сети типа клиент-сервер имеется один или несколько главных компьютеров - серверов. В таких системах всей основной информацией управляют серверы.

Сеть типа клиент-сервер является функционально не симметричной: в ней используются два типа компьютеров - одни ориентированны на выполнение серверных функций и работают под управлением специализированных серверных ОС, а другие - выполняют клиентские функции и работают под управлением обычных ОС. Функциональная несимметричность вызывает и несимметричность аппаратуры - для выделенных серверов используются более мощные компьютеры с большими объемами оперативной и внешней памяти.

Достоинствами данной модели являются:

1. Высокое быстродействие сети, так как сервер быстро обрабатывает сетевые запросы и не загружен другими задачами.

2. Наличие единой информационной базы и системы безопасности. Взломать сервер можно, но это значительно сложнее, чем рабочую станцию.

3. Простота управления все сетью. Так как управление сетью заключается в основном в управлении только сервера.

Недостаткимодели:

1. Высокая стоимость реализации, так как требуется покупать дорогостоящий сервер и сетевую операционную систему для сервера.

2. Зависимость быстродействия сети от сервера. Если сервер будет не достаточно мощным, то работа в сети может сильно замедляться.

3. Для правильной работы сети требуется наличие дополнительного обслуживающего персонала, т.е. в организации должна быть введена должность администратор сети.