Сайт о телевидении

Сайт о телевидении

» » Java приведение типов string к int. Как осуществляется автоматическое продвижение типов в выражениях? Явные и неявные преобразования

Java приведение типов string к int. Как осуществляется автоматическое продвижение типов в выражениях? Явные и неявные преобразования

Аннотация: Эта лекция посвящена вопросам преобразования типов. Поскольку Java – язык строго типизированный, компилятор и виртуальная машина всегда следят за работой с типами, гарантируя надежность выполнения программы. Однако во многих случаях то или иное преобразование необходимо осуществить для реализации логики программы. С другой стороны, некоторые безопасные переходы между типами Java позволяет осуществлять неявным для разработчика образом, что может привести к неверному пониманию работы программы. В лекции рассматриваются все виды преобразований, а затем все ситуации в программе, где они могут применяться. В заключение приводится начало классификации типов переменных и типов значений, которые они могут хранить. Этот вопрос будет подробнее рассматриваться в следующих лекциях.

Что все это означает? Начнем по порядку. Для простых типов расширение означает, что осуществляется переход от менее емкого типа к более емкому. Например, от типа byte (длина 1 байт) к типу int (длина 4 байта). Такие преобразования безопасны в том смысле, что новый тип всегда гарантированно вмещает в себя все данные, которые хранились в старом типе, и таким образом не происходит потери данных. Именно поэтому компилятор осуществляет его сам, незаметно для разработчика:

byte b=3; int a=b;

В последней строке значение переменной b типа byte будет преобразовано к типу переменной a (то есть, int ) автоматически, никаких специальных действий для этого предпринимать не нужно.

Следующие 19 преобразований являются расширяющими:

  • от byte к short , int , long , float , double
  • от short к int , long , float , double
  • от char к int , long , float , double
  • от int к long , float , double
  • от long к float , double
  • от float к double

Обратите внимание, что нельзя провести преобразование к типу char от типов меньшей или равной длины (byte , short ), или, наоборот, к short от char без потери данных. Это связано с тем, что char , в отличие от остальных целочисленных типов, является беззнаковым.

Тем не менее, следует помнить, что даже при расширении данные все-таки могут быть в особых случаях искажены. Они уже рассматривались в предыдущей лекции, это приведение значений int к типу float и приведение значений типа long к типу float или double . Хотя эти дробные типы вмещают гораздо большие числа, чем соответствующие целые, но у них меньше значащих разрядов.

Повторим этот пример:

long a=111111111111L; float f = a; a = (long) f; print(a);

Результатом будет:

Обратное преобразование - сужение - означает, что переход осуществляется от более емкого типа к менее емкому. При таком преобразовании есть риск потерять данные. Например, если число типа int было больше 127, то при приведении его к byte значения битов старше восьмого будут потеряны. В Java такое преобразование должно совершаться явным образом, т.е. программист в коде должен явно указать, что он намеревается осуществить такое преобразование и готов потерять данные.

Следующие преобразования являются сужающими:

  • от byte к char
  • от short к byte , char
  • от char к byte , short
  • от int к byte , short , char
  • от long к byte , short , char , int
  • от float к byte , short , char , int , long
  • от double к byte , short , char , int , long , float

При сужении целочисленного типа к более узкому целочисленному все старшие биты, не попадающие в новый тип, просто отбрасываются. Не производится никакого округления или других действий для получения более корректного результата:

print((byte)383); print((byte)384); print((byte)-384);

Результатом будет:

Видно, что знаковый бит при сужении не оказал никакого влияния, так как был просто отброшен - результат приведения противоположных чисел (384 и -384) оказался одинаковым. Следовательно, может быть потеряно не только точное абсолютное значение, но и знак величины.

Это верно и для типа char :

char c=40000; print((short)c);

Результатом будет:

Сужение дробного типа до целочисленного является более сложной процедурой. Она проводится в два этапа.

На первом шаге дробное значение преобразуется в long , если целевым типом является long , или в int - в противном случае (целевой тип byte , short , char или int ). Для этого исходное дробное число сначала математически округляется в сторону нуля, то есть дробная часть просто отбрасывается.

Например, число 3,84 будет округлено до 3 , а -3,84 превратится в -3 . При этом могут возникнуть особые случаи:

  • если исходное дробное значение является NaN , то результатом первого шага будет 0 выбранного типа (т.е. int или long );
  • если исходное дробное значение является положительной или отрицательной бесконечностью, то результатом первого шага будет, соответственно, максимально или минимально возможное значение для выбранного типа (т.е. для int или long );
  • наконец, если дробное значение было конечной величиной, но в результате округления получилось слишком большое по модулю число для выбранного типа (т.е. для int или long ), то, как и в предыдущем пункте, результатом первого шага будет, соответственно, максимально или минимально возможное значение этого типа. Если же результат округления укладывается в диапазон значений выбранного типа, то он и будет результатом первого шага.
  • и int вполне очевидны - дробные бесконечности преобразовались в, соответственно, минимально и максимально возможные значения этих типов. Результат для следующих трех типов (short , char , byte ) есть, по сути, дальнейшее сужение значений, полученных для int , согласно второму шагу процедуры преобразования. А делается это, как было описано, просто за счет отбрасывания старших битов. Вспомним, что минимально возможное значение в битовом виде представляется как 1000..000 (всего 32 бита для int , то есть единица и 31 ноль). Максимально возможное - 1111..111 (31 единица). Отбрасывая старшие биты, получаем для отрицательной бесконечности результат 0 , одинаковый для всех трех типов. Для положительной же бесконечности получаем результат, все биты которого равняются 1

    В заключение еще раз обратим внимание на то, что примитивные значения типа boolean могут участвовать только в тождественных преобразованиях.

Иногда возникают ситуации, когда необходимо переменной одного типа присвоить значение переменной другого типа. Например:

Пример 1. Присвоение значения переменной одного типа другому

int i = 11; byte b = 22; i = b;

В Java существует 2 типа преобразований - автоматическое преобразование (неявное) и приведение типов (явное преобразование) .

1. Автоматическое преобразование

Рассмотрим сначала автоматическое преобразование. Если оба типа совместимы, их преобразование будет выполнено в Java автоматически. Например, значение типа byte всегда можно присвоить переменной типа int , как это показано в примере 1.

Для автоматического преобразования типа должно выполняться два условия:

  • оба типа должны быть совместимы
  • длина целевого типа должна быть больше длины исходного типа

В этом случае происходит преобразование с расширением .

Следующая схема показывает расширяющее преобразование в Java:

Сплошные линии обозначают преобразования, выполняемые без потери данных. Штриховые линии говорят о том, что при преобразовании может произойти потеря точности.

Например, тип данных int всегда достаточно велик, чтобы хранить все допустимые значения типа byte , поэтому никакие операторы явного приведения типов в данном случае не требуются. С точки зрения расширяющего преобразования числовые типы данных, в том числе целочисленные и с плавающей точкой, совместимы друг с другом. В то же время не существует автоматических преобразований числовых типов в тип char или boolean . Типы char и boolean также не совместимы друг с другом.

Стоит немного пояснить почему, к примеру тип byte не преобразуется автоматически (не явно) в тип char , хотя тип byte имеет ширину 8 бит, а char - 16, тоже самое касается и преобразования типа short в char . Это происходит потому, что byte и short знаковые типы данных, а char без знаковый. Поэтому в данном случае требуется использовать явное приведение типов, поскольку компилятору надо явно указать что вы знаете чего хотите и как будет обрабатываться знаковый бит типов byte и short при преобразовании к типу char .

Поведение величины типа char в большинстве случаев совпадает с поведением величины целого типа, следовательно, значение типа char можно использовать везде, где требуются значения int или long . Однако напомним, что тип char не имеет знака, поэтому он ведет себя отлично от типа short , несмотря на то что диапазон обоих типов равен 16 бит.

2. Приведение типов

Несмотря на все удобство автоматического преобразования типов, оно не в состоянии удовлетворить все насущные потребности. Например, что делать, если значение типа int нужно присвоить переменной типа byte ? Это преобразование не будет выполняться автоматически, поскольку длина типа byte меньше, чем у типа int . Иногда этот вид преобразования называется сужающим преобразованием , поскольку значение явно сужается, чтобы уместиться в целевом типе данных.

Чтобы выполнить преобразование двух несовместимых типов данных, нужно воспользоваться приведением типов. Приведение - это всего лишь явное преобразование типов. Общая форма приведения типов имеет следующий вид:

(целевой_тип) значение

где параметр целевой_тип обозначает тип, в который нужно преобразовать указанное значение.

Пример 2. Приведение типов

Например, в следующем фрагменте кода тип int приводится к типу byte :

Int i = 11; byte b = 22; b = (byte) i;

Пример 3. Преобразования значений с плавающей точкой в целые числа

Рассмотрим пример преобразования значений с плавающей точкой в целые числа. В этом примере дробная часть значения с плавающей точкой просто отбрасывается (операция усечения):

Double d = 3.89; int a = (int) d; //Результат будет 3

Пример 4. Преобразования более емкого целого типа к менее емкому целому числу

При приведении более емкого целого типа к менее емкому старшие биты просто отбрасываются:

Int i = 323; byte b = (byte) i; //Результат будет 67

Пример 5. Преобразования более емкого значения с плавающей точкой к менее емкому целому числу

При приведении более емкого значения с плавающей точкой в целое число происходит усечение и отбрасывание старших битов:

Double d = 389889877779.89; short s = (short) d; //Результат будет -1

3. Автоматическое продвижение типов в выражениях

Помимо операций присваивания, определенное преобразование типов может выполняться и в выражениях.

В языке Java действуют следующие правила:

  1. Если один операнд имеет тип double double .
  2. float , другой тоже преобразуется к типу float .
  3. Иначе, если один операнд имеет тип long , другой тоже преобразуется к типу long .
  4. Иначе оба операнда преобразуются к типу int .
  5. В выражениях совмещенного присваивания (+=,-=,*=,/=) нет необходимости делать приведение.

Приведем пример:

Пример 6. Автоматическое продвижение типов в выражениях

При умножении переменной b1 (byte ) на 2 (int ) результат будет типа int . Поэтому при попытке присвоить результат в переменную b2 (byte ) возникнет ошибка компиляции. Но при использовании совмещенной операции присваивания (*=), такой проблемы не возникнет.

Byte b1 = 1; byte b2 = 2 * b1; //Ошибка компиляции int i1 = 2 * b1; b2 *= 2;

Пример 7. Автоматическое продвижение типов в выражениях

В следующем примере тоже возникнет ошибка компиляции - несмотря на то, что складываются числа типа byte , результатом операции будет тип int, а не short.

Public class IntegerDemo1 { public static void main(String args) { byte b1 = 50, b2 = -99; short k = b1 + b2; //ошибка компиляции System.out.println("k=" + k); } }

Пример 8. Автоматическое продвижение типов в выражениях

Этот пример аналогичен предыдущему, но используется операция совмещенного присваивание, в которой приведение происходит автоматически.

Public class IntegerDemo2 { public static void main(String args) { byte b1 = 50, b2 = -99; b1 += b2; System.out.println("b1=" + b1); } }

Это достаточно большая тема, но мы постараемся рассмотреть ее как можно более полно и вместе с тем компактно. Частично мы уже касались этой темы когда рассматривали примитивные типы Java.

В Java возможны преобразования между целыми значениями и значениями с плавающей точкой. Кроме того, можно преобразовывать значения целых типов и типов с плавающей точкой в значения типа char и наоборот, поскольку каждый символ соответствует цифре в кодировке Unicode. Фактически тип boolean является единственным примитивным типом в Java, который нельзя преобразовать в другой примитивный тип. Кроме того, любой другой примитивный тип нельзя преобразовать в boolean.

Преобразование типов в Java бывает двух видов: неявное и явное .

Неявное преобразование типов выполняется в случае если выполняются условия:

  1. Оба типа совместимы
  2. Длина целевого типа больше или равна длине исходного типа

Во всех остальных случаях должно использоваться явное преобразование типов .

Так же существуют два типа преобразований:

  1. Расширяющее преобразование (widening conversion)
  2. Сужающее преобразование (narrowing conversion)

Расширяющее преобразование (widening conversion ) происходит, если значение одного типа преобразовывается в более широкий тип, с большим диапазоном допустимых значений. Java выполняет расширяющие преобразования автоматически, например, если вы присвоили литерал типа int переменной типа double или значение пепременной типа char переменной типа int. Неявное преобразование всегда имеет расширяющий тип .

Но у тут могут быть свои небольшие грабельки. Например если преобразуется значение int в значение типа float. И у значения int в двоичном представлении больше чем 23 значащих бита, то возможна потеря точности, так как у типа float под целую часть отведено 23 бита. Все младшие биты значения int, которые не поместятся в 23 бита мантиссы float, будут отброшены, поэтому хотя порядок числа сохраниться, но точность будет утеряна. То же самое справедливо для преобразования типа long в тип double.

Расширяющее преобразование типов Java можно изобразить еще так:

Сплошные линии обозначают преобразования, выполняемые без потери данных. Штриховые линии говорят о том, что при преобразовании может произойти потеря точности.

Стоит немного пояснить почему, к примеру тип byte не преобразуется автоматически (не явно) в тип char, хотя тип byte имеет ширину 8 бит, а char 16, тоже самое касается и преобразования типа short в char. Это происходит потому, что byte и short знаковые типы данных, а char без знаковый. Поэтому в данном случае требуется использовать явное приведение типов, поскольку компилятору надо явно указать что вы знаете чего хотите и как будет обрабатываться знаковый бит типов byte и short при преобразовании к типу char.

Поведение величины типа char в большинстве случаев совпадает с поведением величины целого типа, следовательно, значение типа char можно использовать везде, где требуются значения int или long. Однако напомним, что тип char не имеет знака, поэтому он ведет себя отлично от типа short, несмотря на то что диапазон обоих типов равен 16 бит.

short s = ( short ) 0xffff ; // Данные биты представляют число –1
char c = "\uffff" ; // Те же биты представляют символ юникода
int i1 = s ; // Преобразование типа short в int дает –1
int i2 = c ; // Преобразование char в int дает 65535

Сужающее преобразование (narrowing conversion ) происходит, если значение преобразуется в значение типа, диапазон которого не шире изначального. Сужающие преобразования не всегда безопасны: например, преобразование целого значения 13 в byte имеет смысл, а преобразование 13000 в byte неразумно, поскольку byte может хранить только числа от −128 до 127. Поскольку во время сужающего преобразования могут быть потеряны данные, Java компилятор возражает против любого такого преобразования, даже если преобразуемое значение укладывается в более узкий диапазон указанного типа:

int i = 13 ;
byte b = i ; // Компилятор не разрешит это выражение

Единственное исключение из правила – присвоение целого литерала (значения типа int) переменной byte или short, если литерал соответствует диапазону переменной.

Сужающее преобразование это всегда явное преобразование типов .

Явное преобразование примитивных типов

Оператором явного преобразования типов или точнее говоря приведения типов являются круглые скобки, внутри которых указан тип, к которому происходит преобразование – (type) . Например:

int i = 13 ;
byte b = ( byte ) i ; // Принудительное преобразование int в byte
i = ( int ) 13.456 ; // Принудительное преобразование литерала типа double в int 13

Приведение примитивных типов чаще всего используют для преобразования значений с плавающей точкой в целые числа . При этом дробная часть значения с плавающей точкой просто отбрасывается (то есть значение с плавающей точкой округляется по направлению к нулю, а не к ближайшему целому числу). По существу берется только целочисленная часть вещественного типа и она уже приводится к целевому типу целочисленного числа.

При приведении более емкого целого типа к менее емкому старшие биты просто отбрасываются . По существу это равнозначно операции деления по модулю приводимого значения на диапазон целевого типа (например для типа byte это 256).

Слишком большое дробное число при приведении к целому превращается в MAX_VALUE или MIN_VALUE .

Слишком большой double при приведении к float превращается в Float.POSITIVE_INFINITY или Float.NEGATIVE_INFINITY .

Таблица представленная ниже представляет собой сетку, где для каждого примитивного типа указаны типы, в которые их можно преобразовать, и способ преобразования. Буква N в таблице означает невозможность преобразования. Буква Y означает расширяющее преобразование, которое выполняется автоматически. Буква С означает сужающее преобразование, требующее явного приведения. Наконец, Y* означает автоматическое расширяющее преобразование, в процессе которого значение может потерять некоторые из наименее значимых разрядов. Это может произойти при преобразовании int или long во float или double. Типы с плавающей точкой имеют больший диапазон, чем целые типы, поэтому int или long можно представить посредством float или double. Однако типы с плавающей точкой являются приближенными числами и не всегда могут содержать так много значащих разрядов в мантиссе, как целые типы.

Автоматическое расширение типов в выражениях

Так же стоит еще раз упомянуть об автоматическом повышении (расширении) типов в выражениях. Мы с этим уже сталкивались когда рассматривали целочисленные типы данных и операции над ними, но все же стоит и тут напомнить, чтобы усвоилось еще лучше и к тому же это имеет непосредственное отношение к данной теме. В примере ниже знак @ + , , * , / и т.п.

То есть, все целочисленные литералы в выражениях, а так же типы byte , short и char расширяются до int . Если, как описано выше, в выражении не присутствуют другие, более большие типы данных (long , float или double ). Поэтому приведенный выше пример вызовет ошибку компиляции, так как переменная c имеет тип byte , а выражение b+1, в результате автоматического повышения имеет тип int .

Неявное приведение типов в выражениях совмещенного присваивания

Хоть данный раздел и относится к неявному преобразованию (приведению) типов, его объяснение мы привели тут, поскольку в данном случае так же работает и автоматическое расширение типов в выражениях, а затем уже неявное приведение типов. Вот такой кордебалет. Пример ниже я думаю все разъяснит. Так же как и в предыдущем объяснении знак @ означает любой допустимый оператор, например + , , * , / и т.п.

Это стоит пояснить на простом примере:

byte b2 = 50 ;
b2 = b2 * 2 ; // не скомпилируется
b2 *= 2 ; //скомпилируется, хотя и равнозначна b2 = b2 * 2

Вторя строка, приведенная в примере не скомпилируется из-за автоматического расширения типов в выражениях, так как выражение b2*2 имеет тип int, так как происходит автоматическое расширение типа (целочисленные литералы в выражении всегда int). Третья же строка спокойно скомпилируется, так как в ней сработает неявное приведение типов в совмещенном выражении присваивания.

Boxing/unboxing – преобразование примитивных типов в объекты обертки

Boxing и unboxin – это тоже достаточно большая тема, но она достаточно простая.

По существу boxing и unboxing это преобразование примитивных типов в объекты обертки и обратно .

Для объектов оберток примитивных типов применимо все что было сказано выше.

Об классах обертках упоминалось в таблицах, при разборе каждого из примитивных типов. Но тогда это было лишь упоминание в таблице.

Так вот, для каждого примитивного типа есть его старший брат, и он совсем не примитивный, а является настоящим классом, с полями и методами. И для каждой такой парочки возможно автоматическое преобразование.

Обычно, если в программе есть много математических вычислений, то лучше пользоваться примитивными типами, так как это быстрее и экономнее с точки зрения ресурсов, но иногда бывает необходимость преобразовать примитивный тип в объект.

Приведу простой пример:

int i3 ;
byte b2 = 3 ;
Byte myB ;
myB = b2 ;
myB ++;
b2 = myB ;
i3 = myB ;

Если пока не понятно зачем это нужно, то это не страшно, просто завяжите узелок на память.

Мы закончили нашу прошлую статью о на том, что я пообещал Вам рассказать, какие типы можно приводить и как это все делается. Давайте же приступим.

Приведение типов в арифметических выражениях выполняется автоматически.

byte->short->int->long->float->double

Если операнды a и b комбинируются бинарным оператором (ниже мы это обсудим), перед его исполнением оба операнда преобразуются в данные одного типа следующим образом:

  • Если один из операторов имеет тип double, второй также преобразуется в double;
  • Если один из операторов имеет тип float, второй также преобразуется в float;
  • Если один из операторов имеет тип long, второй также преобразуется в long;
  • Если один из операторов имеет тип int, второй также преобразуется в int;

Разрешенные преобразования типов

Сплошные линии показывают преобразование, выполненное без потери информации. Это преобразование выполняется неявно. Преобразования, когда может произойти потеря информации, называются каст (casting). Они показанные штриховыми линиями. Если к типу данных на рисунке нет линий, то такое преобразование невозможно. Преобразования с потерей информации нужно проводить очень внимательно. Так, как можно потерять значительную часть данных и при этом программа может работать правильно.

Для сужения каст необходимо сделать явным. Например: byte b = (byte)128; прикастили инт к байт типу.

Предлагаю сделать несколько примеров.

Вы могли немного не понять данный код, так как я еще не объяснил, что такое компилятор, константы и т.д. Далее по обучению я все расскажу, хотя должен был сделать это раньше. А сейчас я хочу описать, какими правилами должны обладать названия переменных.

  • Имена переменных не могут начинаться с цифры, в именах не могут использоваться как символы арифметических и логических операторов, а также символ ‘#’.
  • Применение символов ‘$’ или ‘_’ приемлемо, включая первую позицию и имя.
  • Переменная примитивного типа, объявленная как член класса (глобальная переменная), по умолчанию задается нулем.
  • Если переменная объявлена как локальная переменная в методе, перед использованием она должна обязательно быть проинициализирована. Так как локальные переменные не изициализируются по умолчанию. Это значит, что Вы не можете объявить локальную переменную и оставить ее без инициализации. То есть вот так: int i;. Если Вы так сделаете в методе, компилятор попросит Вас задать значение по умолчанию в то время, как создав такую переменную как член класса (глобальную) компилятор сам задаст ей значение 0.
  • Область действия и время жизни переменной ограничено блоком {}, в котором она объявлена. Если Вы создали переменную внутри метода (как мы это делали в примерах), то Вы не сможете использовать ее вне метода, так как метод ограничен скобками {}. Глобальную переменную видно во всех блоках.
  • Также запрещено использовать зарезервированные слова java. Весь перечень ключевых слов можно увидеть на картинке ниже.

И так, как в этой статье я затронул выражение бинарный оператор, то предлагаю рассмотреть и операторы в Java. Тем более, что теории не так и много.

Java имеет несколько типов операторов: простое присваивание, арифметическое, унарное, равноправное и реляционное, условное, сравнение типов, побитовое и битовое смещение.

Много умных слов, но очень просто все объяснит вот эта картинка:

На первых порах мы будем пользоваться побитовым сравнением, присваиванием, и постфиксными операторами. Другие операторы встречаются не так часто, поэтому мы рассмотрим только те, которыми будем пользоваться.

    public class OperatorsInJava {

    int a = 5 ;

    int b = 6 ;

    int sum = a + b;

    int difference = a - b;