Сайт о телевидении

Сайт о телевидении

» » Из скольких шагов состоит алгоритм метода лагранжа. Условная оптимизация. Метод множителей Лагранжа

Из скольких шагов состоит алгоритм метода лагранжа. Условная оптимизация. Метод множителей Лагранжа

Метод множителей Лагранжа.

Метод множителей Лагранжа является одним из методов, которые позволяют решать задачи нелинейного программирования.

Нелинейное программирование-это раздел математического программирования, изучающий методы решения экстремальных задач с нелинейной целевой функцией и областью допустимых решений, определенной нелинейными ограничениями. В экономике это соответствует тому, что результаты (эффективность) возрастают или убывают непропорционально изменению масштабов использования ресурсов (или, что то же самое, масштабов производства): напр., из-за деления издержек производства на предприятиях на переменные и условно-постоянные; из-за насыщения спроса на товары, когда каждую следующую единицу продать труднее, чем предыдущую и т. д.

Задача нелинейного программирования ставится как задача нахождения оптимума определенной целевой функции

F(x 1 ,…x n), F (x ) → max

при выполнении условий

g j (x 1 ,…x n)≥0, g (x ) ≤ b , x ≥ 0

где x -вектор искомых переменных;

F (x ) -целевая функция;

g (x ) - функция ограничений (непрерывно дифференцируемая);

b - вектор констант ограничений.

Решение задачи нелинейного программирования (глобальный максимум или минимум) может принадлежать либо границе, либо внутренней части допустимого множества.

В отличие от задачи линейного программирования, в задаче программирования нелинейного оптимум не обязательно лежит на границе области, определенной ограничениями. Иначе говоря, задача состоит в выборе таких неотрицательных значений переменных, подчиненных системе ограничений в форме неравенств, при которых достигается максимум (или минимум) данной функции. При этом не оговариваются формы ни целевой функции, ни неравенств. Могут быть разные случаи: целевая функция нелинейная, а ограничения линейны; целевая функция линейна, а ограничения (хотя бы одно из них) нелинейные; и целевая функция, и ограничения нелинейные.

Задача нелинейного программирования встречается в естественных науках, технике, экономике, математике, в сфере деловых отношений и в науке управления государством.



Нелинейное программирование, например, связано с основной экономической задачей. Так в задаче о распределении ограниченных ресурсов максимизируют либо эффективность, либо, если изучается потребитель, потребление при наличии ограничений, которые выражают условия недостатка ресурсов. В такой общей постановке математическая формулировка задачи может оказаться невозможной, но в конкретных применениях количественный вид всех функций может быть определен непосредственно. Например, промышленное предприятие производит изделия из пластмассы. Эффективность производства здесь оценивается прибылью, а ограничения интерпретируются как наличная рабочая сила, производственные площади, производительность оборудования и т.д.

Метод "затраты - эффективность" также укладывается в схему нелинейного программирования. Данный метод был разработан для использования при принятии решений в управлении государством. Общей функцией эффективности является благосостояние. Здесь возникают две задачи нелинейного программирования: первая - максимизация эффекта при ограниченных затратах, вторая - минимизация затрат при условии, чтобы эффект был выше некоторого минимального уровня. Обычно эта задача хорошо моделируется с помощью нелинейного программирования.

Результаты решения задачи нелинейного программирования являются подспорьем при принятии государственных решений. Полученное решение является, естественно, рекомендуемым, поэтому необходимо исследовать предположения и точность постановки задачи нелинейного программирования, прежде чем принять окончательное решение.

Нелинейные задачи сложны, часто их упрощают тем, что приводят к линейным. Для этого условно принимают, что на том или ином участке целевая функция возрастает или убывает пропорционально изменению независимых переменных. Такой подход называется методом кусочно-линейных приближений, он применим, однако, лишь к некоторым видам нелинейных задач.

Нелинейные задачи в определенных условиях решаются с помощью функции Лагранжа: найдя ее седловую точку, тем самым находят и решение задачи. Среди вычислительных алгоритмов Н. п. большое место занимают градиентные методы. Универсального же метода для нелинейных задач нет и, по-видимому, может не быть, поскольку они чрезвычайно разнообразны. Особенно трудно решаются многоэкстремальные задачи.

Одним из методов, которые позволяют свести задачу нелинейного программирования к решению системы уравнений, является метод неопределенных множителей Лагранжа.

С помощью метода множителей Лагранжа по существу устанавливаются необходимые условия, позволяющие идентифицировать точки оптимума в задачах оптимизации с ограничениями в виде ра­венств. При этом задача с ограничениями преобразуется в эквива­лентную задачу безусловной оптимизации, в которой фигурируют некоторые неизвестные параметры, называемые множителями Ла­гранжа.

Метод множителей Лагранжа заключается в сведении задач на условный экстремум к задачам на безусловный экстремум вспомогательной функции - т. н. функции Лагранжа.

Для задачи об экстремуме функции f (х 1 , x 2 ,..., x n ) при условиях (уравнениях связи) φ i (x 1 , x 2 , ..., x n ) = 0, i = 1, 2,..., m , функция Лагранжа имеет вид

L(x 1, x 2… x n ,λ 1, λ 2 ,…λm)=f(x 1, x 2… x n)+∑ i -1 m λ i φ i (x 1, x 2… x n)

Множители λ 1 , λ 2 , ..., λm наз. множителями Лагранжа.

Если величины x 1 , x 2 , ..., x n , λ 1 , λ 2 , ..., λm суть решения уравнений, определяющих стационарные точки функции Лагранжа, а именно, для дифференцируемых функций являются решениями системы уравнений

то при достаточно общих предположениях x 1 , x 2 , ..., x n доставляют экстремум функции f.

Рассмотрим задачу минимизации функции n переменных с учетом одного ограничения в виде равенства:

Минимизировать f(x 1, x 2… x n) (1)

при ограничениях h 1 (x 1, x 2… x n)=0 (2)

В соответствии с методом множителей Лагранжа эта задача преобразуется в следующую задачу безусловной оптимизации:

минимизировать L(x,λ)=f(x)-λ*h(x) (3)

где Функция L(х;λ) называется функцией Лагранжа,

λ - неизвестная постоянная, которая носит название множителя Лагранжа. На знак λ никаких требований не накладывается.

Пусть при заданном значении λ=λ 0 безусловный минимум функции L(x,λ) по х достигается в точке x=x 0 и x 0 удовлетворяет уравнению h 1 (x 0)=0. Тогда, как нетрудно видеть, x 0 минимизирует (1) с учетом (2), поскольку для всех значений х, удовлетворяющих (2), h 1 (x)=0 и L(x,λ)=min f(x).

Разумеется, необходимо подобрать значение λ=λ 0 таким образом, чтобы координата точки безусловного минимума х 0 удовлетворяла равенству (2). Это можно сделать, если, рассматривая λ как переменную, найти безусловный минимум функции (3) в виде функции λ, а затем выбрать значение λ, при котором выполняется равенство (2). Проиллюстрируем это на конкретном примере.

Минимизировать f(x)=x 1 2 +x 2 2 =0

при ограничении h 1 (x)=2x 1 +x 2 -2=0=0

Соответствующая задача безусловной оптимизации записывается в следующем виде:

минимизировать L(x,λ)=x 1 2 +x 2 2 -λ(2x 1 +x 2 -2)

Решение. Приравняв две компоненты градиента L к нулю, получим

→ x 1 0 =λ

→ x 2 0 =λ/2

Для того чтобы проверить, соответствует ли стационарная точка х° минимуму, вычислим элементы матрицы Гессе функции L(х;u), рассматриваемой как функция х,

которая оказывается положительно определенной.

Это означает, что L(х,u) - выпуклая функция х. Следовательно, координаты x 1 0 =λ, x 2 0 =λ/2 определяют точку глобального минимума. Оптимальное значение λ находится путем подстановки значений x 1 0 и x 2 0 в уравнение2x 1 +x 2 =2, откуда 2λ+λ/2=2 или λ 0 =4/5. Таким образом, условный минимум достигается при x 1 0 =4/5 и x 2 0 =2/5 и равен min f(x)=4/5.

При решении задачи из примера мы рассматривали L(х;λ) как функцию двух переменных x 1 и x 2 и, кроме того, предполагали, что значение параметра λ выбрано так, чтобы выполнялось ограни­чение. Если же решение системы

J=1,2,3,…,n

в виде явных функций λ получить нельзя, то значения х и λ находятся путем решения следующей системы, состоящей из n+1 уравнений с n+1 неизвестными:

J=1,2,3,…,n., h 1 (x)=0

Для нахождения всех возможных решений данной системы можно использовать численные методы поиска (например, метод Ньютона). Для каждого из решений () следует вычислить элементы матрицы Гессе функции L, рассматриваемой как функция х, и выяснить, является ли эта матрица положительно определенной (локальный минимум) или отрицательно определенной (локальный максимум).

Метод множителей Лагранжа можно распространить на случай, когда задача имеет несколько ограничений в виде равенств. Рассмотрим общую задачу, в которой требуется

Минимизировать f(x)

при ограничениях h k =0, k=1, 2, ..., К.

Функция Лагранжа принимает следующий вид:

Здесь λ 1 , λ 2 , ..., λk -множители Лагранжа, т.е. неизвестные параметры, значения которых необходимо определить. Приравнивая частные производные L по х к нулю, получаем следующую систему n уравнении с n неизвестными:

Если найти решение приведенной выше системы в виде функций вектора λ оказывается затруднительным, то можно расширить систему путем включения в нее ограничений в виде равенств

Решение расширенной системы, состоящей из n+К уравнений с n+К неизвестными, определяет стационарную точку функции L. Затем реализуется процедура проверки на минимум или максимум, которая проводится на основе вычисления элементов матрицы Гессе функции L, рассматриваемой как функция х, подобно тому, как это было проделано в случае задачи с одним ограничением. Для некоторых задач расширенная система n+К уравнений с n+K неизвестными может не иметь решений, и метод множителей Лагранжа оказывается неприменимым. Следует, однако, отметить, что такие задачи на практике встречаются достаточно редко.

Рассмотрим частный случай общей задачи нелинейного программирования, предполагая, что система ограничений содержит только уравнения, отсутствуют условия неотрицательности переменных и и - функции непрерывные вместе со своими частными производными. Следовательно решив систему уравнений (7), получают все точки, в которых функция (6) может иметь экстремальные значения.

Алгоритм метода множителей Лагранжа

1.Составляем функцию Лагранжа.

2.Находим частные производные от функции Лагранжа по переменным x J ,λ i и приравниваем их нулю.

3.Решаем систему уравнений (7), находим точки, в которых целевая функция задачи может иметь экстремум.

4.Среди точек, подозрительных на экстремум, находим такие, в которых достигается экстремум, и вычисляем значения функции (6) в этих точках.

Пример.

Исходные данные: По плану производства продукции предприятию необходимо изготовить 180 изделий. Эти изделия могут быть изготовлены двумя технологическими способами. При производстве x 1 изделий 1 способом затраты равны 4x 1 +x 1 2 руб., а при изготовлении x 2 изделий 2 способом они составляют 8x 2 +x 2 2 руб. Определить сколько изделий каждым из способов следует изготовить, чтобы затраты на производство продукции были минимальными.

Целевая функция для поставленной задачи имеет вид
®min при условиях x 1 +x 2 =180, x 2 ≥0.
1.Составляем функцию Лагранжа
.
2. Вычисляем частные производные по x 1 , x 2, λ и приравниваем их нулю:

3. Решая полученную систему уравнений, находим x 1 =91,x 2 =89

4.Сделав замену в целевой функции x 2 =180-x 1 , получим функцию от одной переменной, а именно f 1 =4x 1 +x 1 2 +8(180-x 1)+(180-x 1) 2

Вычисляем или 4x 1 -364=0 ,

откуда имеем x 1 * =91, x 2 * =89.

Ответ: Количество изделий изготовленных первым способом равно х 1 =91, вторым способом х 2 =89 при этом значение целевой функции равно 17278 руб.

Способ определения условного экстремума начинается с построения вспомогательной функции Лагранжа, которая в области допустимых решений достигает максимума для тех же значений переменных x 1 , x 2 , ..., x n , что и целевая функция z . Пусть решается задача определения условного экстремума функции z = f (X) при ограничениях φ i ( x 1 , x 2 , ..., x n ) = 0, i = 1, 2, ..., m , m < n

Составим функцию

которая называется функцией Лагранжа . X , - постоянные множители (множители Лагранжа ). Отметим, что множителям Лагранжа можно придать экономический смысл. Если f (x 1 , x 2 , ..., x n ) - доход, соответствующий плану X = (x 1 , x 2 , ..., x n ) , а функция φ i (x 1 , x 2 , ..., x n ) - издержки i-го ресурса, соответствующие этому плану, то X , - цена (оценка) i-го ресурса, характеризующая изменение экстремального значения целевой функции в зависимости от изменения размера i-го ресурса (маргинальная оценка). L(Х) - функция n + m переменных (x 1 , x 2 , ..., x n , λ 1 , λ 2 , ..., λ n ) . Определение стационарных точек этой функции приводит к решению системы уравнений

Легко заметить, что . Таким образом, задача нахождения условного экстремума функции z = f (X) сводится к нахождению локального экстремума функции L(X) . Если стационарная точка найдена, то вопрос о существовании экстремума в простейших случаях решается на основании достаточных условий экстремума - исследования знака второго дифференциала d 2 L(X) в стационарной точке при условии, что переменные приращения Δx i - связаны соотношениями

полученными путем дифференцирования уравнений связи.

Решение системы нелинейных уравнений с двумя неизвестными с помощью средства Поиск решения

Настройка Поиск решения позволяет находить решение систе­мы нелинейных уравнений с двумя неизвестными:

где
- нелинейная функция от переменныхx и y ,
- произвольная постоянная.

Известно, что пара (x , y ) является решением системы уравнений (10) тогда и только тогда, когда она является решением следующего уравнение с двумя неизвестными:

С другой стороны, решение системы (10) - это точки пересечения двух кривых: f ] (x , y ) = C и f 2 (х, у) = С 2 на плоскости ХО Y .

Из этого следует метод нахождения корней системы. нелинейных уравнений:

    Определить (хотя бы приближенно) интервал существования решения системы уравнений (10) или уравнения (11). Здесь не­обходимо учитывать вид уравнений, входящих в систему, область определения каждого их уравнений и т. п. Иногда применяется подбор начального приближения решения;

    Протабулировать решение уравнения (11) по переменным x и y на выбранном интервале, либо построить графики функций f 1 (x , y ) = С, и f 2 (х,у) = С 2 (система(10)).

    Локализовать предполагаемые корни системы уравнений - найти несколько минимальных значений из таблицы табулирование­ корней уравнения (11), либо определить точки пересечения кривых, входящих в систему (10).

4. Найти корни для системы уравнений (10) с помощью надстройки Поиск решения.

an(t)z(n)(t) + an − 1(t)z(n − 1)(t) + ... + a1(t)z"(t) + a0(t)z(t) = f(t)

состоит в замене произвольных постоянных ck в общем решении

z(t) = c1z1(t) + c2z2(t) + ...

Cnzn(t)

соответствующего однородного уравнения

an(t)z(n)(t) + an − 1(t)z(n − 1)(t) + ... + a1(t)z"(t) + a0(t)z(t) = 0

на вспомогательные функции ck(t), производные которых удовлетворяют линейной алгебраической системе

Определителем системы (1) служит вронскиан функций z1,z2,...,zn, что обеспечивает её однозначную разрешимость относительно .

Если - первообразные для , взятые при фиксированных значениях постоянных интегрирования, то функция

является решением исходного линейного неоднородного дифференциального уравнения. Интегрирование неоднородного уравнения при наличии общего решения соответствующего однородного уравнения сводится, таким образом, к квадратурам.

Метод Лагранжа (метод вариации произвольных постоянных)

Метод для получения общего решения неоднородного уравнения, зная общее решение однородного уравнения без нахождения частного решения.

Для линейного однородного дифференциального уравнения n-го порядка

y(n) + a1(x) y(n-1) + ... + an-1 (x) y" + an(x) y = 0,

где y = y(x) - неизвестная функция, a1(x), a2(x), ..., an-1(x), an(x) - известные, непрерывные, справедливо: 1) существуют n линейно независимых решений уравнения y1(x), y2(x), ..., yn(x); 2) при любых значениях констант c1, c2, ..., cn функция y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) является решением уравнения; 3) для любых начальных значений x0, y0, y0,1, ..., y0,n-1 существуют такие значения c*1, c*n, ..., c*n, что решение y*(x)=c*1 y1(x) + c*2 y2(x) + ... + c*n yn (x) удовлетворяет при x = x0 начальным условиям y*(x0)=y0, (y*)"(x0)=y0,1 , ...,(y*)(n-1)(x0)=y0,n-1.

Выражение y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) называется общим решением линейного однородного дифференциального уравнения n-го порядка.

Совокупность n линейно независимых решений линейного однородного дифференциального уравнения n-го порядка y1(x), y2(x), ..., yn(x) называется фундаментальной системой решений уравнения.

Для линейного однородного дифференциального уравнения с постоянными коэффициентами существует простой алгоритм построения фундаментальной системы решений. Будем искать решение уравнения в виде y(x) = exp(lx): exp(lx)(n) + a1exp(lx)(n-1) + ... + an-1exp(lx)" + anexp(lx)= = (ln + a1ln-1 + ... + an-1l + an)exp(lx) = 0, т.е. число l является корнем характеристического уравнения ln + a1ln-1 + ... + an-1l + an = 0. Левая часть характеристического уравнения называется характеристическим многочленом линейного дифференциального уравнения: P(l) = ln + a1ln-1 + ... + an-1l + an. Таким образом, задача о решении линейного однородного уравнения n -го порядка с постоянными коэффициентами сводится к решению алгебраического уравнения.

Если характеристическое уравнение имеет n различных действительных корней l1№ l2 № ... № ln, то фундаментальная система решений состоит из функций y1(x) = exp(l1x), y2(x) = exp(l2x), ..., yn(x) = exp(lnx), и общее решение однородного уравнения имеет вид: y(x)= c1 exp(l1x) + c2 exp(l2x) + ... + cn exp(lnx).

ундаментальная система решений и общее решение для случая простых действительных корней.

Если какой-либо из действительных корней характеристического уравнения повторяется r раз (r-кратный корень), то в фундаментальной системе решений ему отвечают r функций; если lk=lk+1 = ... = lk+r-1, то в фундаментальную систему решений уравнения входят r функций: yk(x) = exp(lkx), yk+1(x) = xexp(lkx), yk+2(x) = x2exp(lkx), ..., yk+r-1(x) =xr-1 exp(lnx).

ПРИМЕР 2. Фундаментальная система решений и общее решение для случая кратных действительных корней.

Если характеристическое уравнение имеет комплексные корни, то каждой паре простых (имеющих кратность 1) комплексных корней lk,k+1=ak ± ibk в фундаментальной системе решений отвечает пара функций yk(x) = exp(akx)cos(bkx), yk+1(x) = exp(akx)sin(bkx).

ПРИМЕР 4. Фундаментальная система решений и общее решение для случая простых комплексных корней. Мнимые корни.

Если же комплексная пара корней имеет кратность r, то такой паре lk=lk+1 = ... = l2k+2r-1=ak ± ibk, в фундаментальной системе решений отвечают функции exp(akx)cos(bkx), exp(akx)sin(bkx), xexp(akx)cos(bkx), xexp(akx)sin(bkx), x2exp(akx)cos(bkx), x2exp(akx)sin(bkx), ................ xr-1exp(akx)cos(bkx), xr-1exp(akx)sin(bkx).

ПРИМЕР 5. Фундаментальная система решений и общее решение для случая кратных комплексных корней.

Таким образом, для отыскания общего решения линейного однородного дифференциального уравнения с постоянными коэффициентами следует: записать характеристическое уравнение; найти все корни характеристического уравнения l1, l2, ... , ln; записать фундаментальную систему решений y1(x), y2(x), ..., yn(x); записать выражение для общего решения y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x). Для решения задачи Коши нужно подставить выражение для общего решения в начальные условия и определить значения постоянных c1,..., cn, которые являются решениями системы линейных алгебраических уравнений c1 y1(x0) + c2 y2(x0) + ... + cn yn(x0) = y0, c1 y"1(x0) + c2 y"2(x0) + ... + cn y"n(x0) =y0,1, ......... , c1 y1(n-1)(x0) + c2 y2(n-1)(x0) + ... + cn yn(n-1)(x0) = y0,n-1

Для линейного неоднородного дифференциального уравнения n-го порядка

y(n) + a1(x) y(n-1) + ... + an-1 (x) y" + an(x) y = f(x),

где y = y(x) - неизвестная функция, a1(x), a2(x), ..., an-1(x), an(x), f(x) - известные, непрерывные, справедливо: 1) если y1(x) и y2(x) - два решения неоднородного уравнения, то функция y(x) = y1(x) - y2(x) - решение соответствующего однородного уравнения; 2) если y1(x) решение неоднородного уравнения, а y2(x) - решение соответствующего однородного уравнения, то функция y(x) = y1(x) + y2(x) - решение неоднородного уравнения; 3) если y1(x), y2(x), ..., yn(x) - n линейно независимых решений однородного уравнения, а yч(x) - произвольное решение неоднородного уравнения, то для любых начальных значений x0, y0, y0,1, ..., y0,n-1 существуют такие значения c*1, c*n, ..., c*n, что решение y*(x)=c*1 y1(x) + c*2 y2(x) + ... + c*n yn (x) + yч(x) удовлетворяет при x = x0 начальным условиям y*(x0)=y0, (y*)"(x0)=y0,1 , ...,(y*)(n-1)(x0)=y0,n-1.

Выражение y(x)= c1 y1(x) + c2 y2(x) + ... + cn yn(x) + yч(x) называется общим решением линейного неоднородного дифференциального уравнения n-го порядка.

Для отыскания частных решений неоднородных дифференциальных уравнений с постоянными коэффициентами с правыми частями вида: Pk(x)exp(ax)cos(bx) + Qm(x)exp(ax)sin(bx), где Pk(x), Qm(x) - многочлены степени k и m соответственно, существует простой алгоритм построения частного решения, называемый методом подбора.

Метод подбора, или метод неопределенных коэффициентов, состоит в следующем. Искомое решение уравнения записывается в виде: (Pr(x)exp(ax)cos(bx) + Qr(x)exp(ax)sin(bx))xs, где Pr(x), Qr(x) - многочлены степени r = max(k, m) с неизвестными коэффициентами pr , pr-1, ..., p1, p0, qr, qr-1, ..., q1, q0. Сомножитель xs называют резонансным сомножителем. Резонанс имеет место в случаях, когда среди корней характеристического уравнения есть корень l =a ± ib кратности s. Т.е. если среди корней характеристического уравнения соответствующего однородного уравнения есть такой, что его действительная часть совпадает с коэффициентом в показателе степени экспоненты, а мнимая - с коэффициентом в аргументе тригонометрической функции в правой части уравнения, и кратность этого корня s, то в искомом частном решении присутствует резонансный сомножитель xs. Если же такого совпадения нет (s=0), то резонансный сомножитель отсутствует.

Подставив выражение для частного решения в левую часть уравнения, получим обобщенный многочлен того же вида, что и многочлен в правой части уравнения, коэффициенты которого неизвестны.

Два обобщенных многочлена равны тогда и только тогда, когда равны коэффициенты при сомножителях вида xtexp(ax)sin(bx), xtexp(ax)cos(bx) с одинаковыми степенями t. Приравняв коэффициенты при таких сомножителях, получим систему 2(r+1) линейных алгебраических уравнений относительно 2(r+1) неизвестных. Можно показать, что такая система совместна и имеет единственное решение.

Наименование параметра Значение
Тема статьи: Метод Лагранжа.
Рубрика (тематическая категория) Математика

Найти полином означает определить значения его коэффициента . Для этого используя условие интерполяции можно сформировать систему линœейных алгебраических уравнений (СЛАУ).

Определитель этой СЛАУ принято называть определителœем Вандермонда. Определитель Вандермонда не равен нулю при для , то есть в том случае, когда в интерполяционной таблице нет совпадающих узлов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно утверждать, что СЛАУ имеет решение и это решение единственно. Решив СЛАУ и определив неизвестные коэффициенты можно построить интерполяционный полином .

Полином, удовлетворяющий условиям интерполяции, при интерполяции методом Лагранжа строится в виде линœейной комбинации многочленов n-ой степени:

Многочлены принято называть базисными многочленами. Для того, чтобы многочлен Лагранжа удовлетворял условиям интерполяции крайне важно, чтобы для его базисных многочленов выполнялись следующие условия:

для .

В случае если эти условия выполняются, то для любого имеем:

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, выполнение заданных условий для базисных многочленов означает, что выполняются и условия интерполяции.

Определим вид базисных многочленов исходя из наложенных на них ограничений.

1-е условие: при .

2-е условие: .

Окончательно для базисного многочлена можно записать:

Тогда, подставляя полученное выражение для базисных многочленов в исходный полином, получаем окончательный вид многочлена Лагранжа:

Частная форма многочлена Лагранжа при принято называть формулой линœейной интерполяции:

.

Многочлен Лагранжа взятый при принято называть формулой квадратичной интерполяции:

Метод Лагранжа. - понятие и виды. Классификация и особенности категории "Метод Лагранжа." 2017, 2018.

  • - Метод Лагранжа (метод вариации произвольной постоянной).

    Линейные ДУ. Определение. ДУ вида т.е. линейное относ-но неизвестной ф-ции и ее производной наз-ся линейным. Для реш-я такого типа ур-й рассмотрим два метода: метод Лагранжа и метод Бернулли.Рассмотрим однородное ДУ Это ур-е с разделяющимися переем-ми Решение ур-я Общее... .


  • - Линейные ДУ, однород-е и неоднород-е. Понятие общего реш-я. Метод Лагранжа вариации произв-х постоянных.

    Определение. ДУ наз-ся однород-м, если ф-я может быть представлена, как ф-я отнош-я своих аргументов Пример. Ф-я наз-ся однородной ф-й измерения если Примеры: 1) - 1-й порядок однородности. 2) - 2-й порядок однородности. 3) - нулевой порядок однородности (просто однородная... .


  • - Лекция 8. Применение частных производных: задачи на экстремум. Метод Лагранжа.

    Задачи на экстремум имеют большое значение в экономических расчетах. Это вычисление, например, максимумов дохода, прибыли, минимума издержек в зависимости от нескольких переменных: ресурсов, производственных фондов и т.д. Теория нахождения экстремумов функций... .


  • - Т.2.3. ДУ высших порядков. Уравнение в полных дифференциалах. Т.2.4. Линейные ДУ второго порядка с постоянными коэффициентами. Метод Лагранжа.

    3. 2. 1. ДУ с разделяющимися переменными С.Р. 3. В естествознании, технике и экономике часто приходится иметь дело с эмпирическими формулами, т.е. формулами, составленными на основе обработки статистических данных или...

  • ЛАГРАНЖА МЕТОД

    Метод приведения квадратичной формы к сумме квадратов, указанный в 1759 Ж. Лагранжем (J. Lagrange). Пусть дана

    от ппеременных х 0 , x 1 ,..., х п . с коэффициентами из поля k характеристики Требуется привести эту форму к канонич. виду

    при помощи невырожденного линейного преобразования переменных. Л. м. состоит в следующем. Можно считать, что не все коэффициенты формы (1) равны нулю. Поэтому возможны два случая.

    1) При некотором g, диагональный Тогда

    где форма f 1 (х).не содержит переменную x g . 2) Если же все но то


    где форма f 2 (х).не содержит двух переменных x g и x h . Формы, стоящие под знаками квадратов в (4), линейно независимы. Применением преобразований вида (3) и (4) форма (1) после конечного числа шагов приводится к сумме квадратов линейно независимых линейных форм. С помощью частных производных формулы (3) и (4) можно записать в виде


    Лит. : Г а н т м а х е р Ф. Р., Теория матриц, 2 изд., М., 1966; К у р о ш А. Г., Курс высшей алгебры, 11 изд., М., 1975; Александров П. С., Лекции по аналитической геометрии..., М., 1968. И. В. Проскуряков.


    Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

    Смотреть что такое "ЛАГРАНЖА МЕТОД" в других словарях:

      Лагранжа метод - Лагранжа метод — метод решения ряда классов задач математического программирования с помощью нахождения седловой точки (x*, λ*) функции Лагранжа., что достигается приравниванием нулю частных производных этой функции по… … Экономико-математический словарь

      Лагранжа метод - Метод решения ряда классов задач математического программирования с помощью нахождения седловой точки (x*, ?*) функции Лагранжа., что достигается приравниванием нулю частных производных этой функции по xi и?i . См. Лагранжиан. }