Сайт о телевидении

Сайт о телевидении

» » Функциональная зависимость. Нормальные формы. Способы задания функции

Функциональная зависимость. Нормальные формы. Способы задания функции

Ограничения уникальности, накладываемые объявлениями первичного и кандидатных ключей отношения, является частным случаем ограничений, связанных с понятием функциональных зависимостей .

Для объяснения понятия функциональной зависимости, рассмотрим следующий пример.

Пусть нам дано отношение, содержащее данные о результатах какой-то одной конкретной сессии. Схема этого отношения выглядит следующим образом:

Сессия (№ зачетной книжки , Фамилия, Имя, Отчество, Предмет , Оценка);

Атрибуты «№ зачетной книжки» и «Предмет» образуют составной (так как ключом объявлены два атрибута) первичный ключ этого отношения. Действительно, по двум этим атрибутам можно однозначно определить значения всех остальные атрибутов.

Однако, помимо ограничения уникальности, связанной с этим ключом, на отношение непременно должно быть наложено то условие, что одна зачетная книжка выдается обязательно одному конкретному человеку и, следовательно, в этом отношении кортежи с одинаковым номером зачетной книжки должны содержать одинаковые значения атрибутов «Фамилия», «Имя» и «Отчество».


Если у нас имеется следующий фрагмент какой-то определенной базы данных студентов учебного заведения после какой-то сессии, то в кортежах с номером зачетной книжки 100, атрибуты «Фамилия», «Имя» и «Отчество» совпадают, а атрибуты «Предмет» и «Оценка» – не совпадают (что и понятно, ведь в них речь идет о разных предметах и успеваемости по ним). Это значит, что атрибуты «Фамилия», «Имя» и «Отчество» функционально зависят от атрибута «№ зачетной книжки», а атрибуты «Предмет» и «Оценка» функционально не зависят.

Таким образом, функциональная зависимость – это однозначная зависимость, затабулированная в системах управления базами данных.

Теперь дадим строгое определение функциональной зависимости.

Определение : пусть X, Y – подсхемы схемы отношения S, определяющие над схемой S схему функциональной зависимости X > Y (читается «X стрелка Y»). Определим ограничения функциональной зависимости inv > Y> как утверждение о том, что в отношении со схемой S любые два кортежа, совпадающие в проекции на подсхему X, должны совпадать и в проекции на подсхему Y.

Запишем это же определение в формулярном виде:

Inv > Y> r (S ) = t 1 , t 2 ? r (t 1 [X ] = t 2 [X ] ? t 1 [Y ] = t 2 [Y ]), X , Y ? S;

Любопытно, что в этом определении использовано понятие унарной операции проекции, с которым мы сталкивались раньше. Действительно, как еще, если не использовать эту операцию, показать равенство друг другу двух столбцов таблицы-отношения, а не строк? Поэтому мы и записали в терминах этой операции, что совпадение кортежей в проекции на какой-то атрибут или несколько атрибутов (подсхему X) непременно влечет за собой совпадение этих же столбцов-кортежей и на подсхеме Y в том случае, если Y функционально зависит от X.

Интересно заметить, что в случае функциональной зависимости Y от X, говорят также, что X функционально определяет Y или что Y функционально зависит от X. В схеме функциональной зависимости X > Y подсхема X называется левой частью, а подсхема Y – правой частью.

На практике проектирования баз данных на схему функциональной зависимости для краткости обычно ссылаются как на функциональную зависимость.

Конец определения .


В частном случае, когда правая часть функциональной зависимости, т. е. подсхема Y, совпадает со всей схемой отношения, ограничение функциональной зависимости переходит в ограничение уникальности первичного или кандидатного ключа. Действительно:

Inv <K > S > r (S ) = ? t 1 , t 2 ? r (t 1 [K ] = t 2 [K ] > t 1 (S ) = t 2 (S )), K ? S ;

Просто в определении функциональной зависимости вместо подсхемы X нужно взять обозначение ключа K, а вместо правой части функциональной зависимости, подсхемы Y взять всю схему отношений S, т. е., действительно, ограничение уникальности ключей отношений является частным случаем ограничения функциональной зависимости при равенстве правой части схемы функциональной зависимости всей схеме отношения.

Приведем примеры изображения функциональной зависимости:

{№ зачетной книжки} > {Фамилия, Имя, Отчество};

{№ зачетной книжки, Предмет} > {Оценка};

2. Правила вывода Армстронга

Если какое-либо базовое отношение удовлетворяет векторно определенным функциональным зависимостям, то с помощью различных специальных правил вывода можно получить другие функциональные зависимости, которым данное базовое отношение будет заведомо удовлетворять.

Хорошим примером таких специальных правил являются правила вывода Армстронга.

Но прежде чем приступать к анализу самих правил вывода Армстронга, введем в рассмотрение новый металингвистический символ «+», который называется символом метаутверждения о выводимости . Этот символ при формулировании правил записывается между двумя синтаксическими выражениями и свидетельствует о том, что из формулы, стоящей слева от него, выводится формула, стоящая справа от него.

Сформулируем теперь сами правила вывода Армстронга в виде следующей теоремы.

Теорема. Справедливы следующие правила, называемые правилами вывода Армстронга.

Правило вывода 1. + X > X;

Правило вывода 2. X > Y+ X ? Z > Y;

Правило вывода 3. X > Y, Y ? W > Z + X ? W > Z;

Здесь X, Y, Z, W – произвольные подсхемы схемы отношения S. Символ метаутверждения о выводимости разделяет списки посылок и списки утверждений (заключений).

1. Первое правило вывода называется «рефлексивность » и читается следующим образом: «выводится правило: “X функционально влечет за собой X”». Это самое простое из правил вывода Армстронга. Оно выводится буквально из воздуха.

Интересно заметить, что функциональная зависимость, обладающая и левой, и правой частями, называется рефлексивной . Согласно правилу рефлексивности ограничение рефлексивной зависимости выполняется автоматически.

2. Второе правило вывода называется «пополнение » и читается таким образом: «если X функционально определяет Y, то выводится правило: “объединение подсхем X и Z функционально влечет за собой Y”». Правило пополнения позволяет расширять левую часть ограничения функциональных зависимостей.

3. Третье правило вывода называется «псевдотранзитивность » и читается следующим образом: “если подсхема X функционально влечет за собой подсхему Y и объединение подсхем Y и W функционально влекут за собой Z, то выводится правило: «объединение подсхем X и W функционально определяют подсхему Z»”.

Правило псевдотранзитивности обобщает правило транзитивности, соответствующее частному случаю W: = 0. Приведем формулярную запись этого правила:

Необходимо отметить, что посылки и заключения, приведенные ранее, были представлены в сокращенной форме обозначениями схем функциональной зависимости. В расширенной форме им соответствуют следующие ограничения функциональных зависимостей.

Правило вывода 1. inv X> r(S);

Правило вывода 2. inv Y> r(S) ? inv Y> r(S);

Правило вывода 3. inv Y> r(S) & inv Z> r(S) ? inv Z> r(S);

Проведем доказательства этих правил вывода.

1. Доказательство правила рефлексивности следует непосредственно из определения ограничения функциональной зависимости при подстановке вместо подсхемы Y – подсхемы X.

Действительно, возьмем ограничение функциональной зависимости:

Inv Y> r(S) и подставим в него X вместо Y, получим:

Inv X> r(S), а это и есть правило рефлексивности.

Правило рефлексивности доказано.

2. Доказательство правила пополнения проиллюстрируем на диаграммах функциональной зависимости.

Первая диаграмма – это диаграмма посылки:

посылка: X > Y


Вторая диаграмма:

заключение: X ? Z > Y


Пусть кортежи равны на X ? Z. Тогда они равны на X. Согласно посылке они будут равны и на Y.

Правило пополнения доказано.

3. Доказательство правила псевдотранзитивности также проиллюстрируем на диаграммах, которых в этом конкретном случае будет три.

Первая диаграмма – первая посылка:

посылка 1: X > Y


посылка 2: Y ? W > Z


И, наконец, третья диаграмма – диаграмма заключения:

заключение: X ? W > Z


Пусть кортежи равны на X ? W. Тогда они равны и на X, и на W. Согласно Посылке 1, они будут равны и на Y. Отсюда, согласно Посылке 2, они будут равны и на Z.

Правило псевдотранзитивности доказано.

Все правила доказаны.

3. Производные правила вывода

Другим примером правил, с помощью которых можно, при необходимости вывести новые правила функциональной зависимости, являются так называемые производные правила вывода .

Что это за правила, как они получаются?

Известно, что если из одних правил, уже существующих, законными логическими методами вывести другие, то эти новые правила, называемые производными , можно использовать наряду с исходными правилами.

Необходимо специально отметить, что эти самые произвольные правила являются «производными» именно от пройденных нами ранее правил вывода Армстронга.

Сформулируем производные правила вывода функциональных зависимостей в виде следующей теоремы.

Теорема.

Следующие правила являются производными от правил вывода Армстронга.

Правило вывода 1. + X ? Z > X;

Правило вывода 2. X > Y, X > Z + X ? Y > Z;

Правило вывода 3. X > Y ? Z + X > Y, X > Z;

Здесь X, Y, Z, W, так же как и в предыдущем случае, – произвольные подсхемы схемы отношения S.

1. Первое производное правило называется правилом тривиальности и читается следующим образом:

«Выводится правило: “объединение подсхем X и Z функционально влечет за собой X”».

Функциональная зависимость с левой частью, являющейся подмножеством правой части, называется тривиальной . Согласно правилу тривиальности ограничения тривиальной зависимости выполняются автоматически.

Интересно, что правило тривиальности является обобщением правила рефлексивности и, как и последнее, могло бы быть получено непосредственно из определения ограничения функциональной зависимости. Тот факт, что это правило является производным, не случаен и связан с полнотой системы правил Армстронга. Подробнее о полноте системы правил Армстронга мы поговорим чуть позднее.

2. Второе производное правило называется правилом аддитивности и читается следующим образом: «Если подсхема X функционально определяет подсхему Y, и X одновременно функционально определяет Z, то из этих правил выводится следующее правило: “X функционально определяет объединение подсхем Y и Z”».

3. Третье производное правило называется правилом проективности или правилом «обращение аддитивности ». Оно читается следующим образом: «Если подсхема X функционально определяет объединение подсхем Y и Z, то из этого правила выводится правило: “X функционально определяет подсхему Y и одновременно X функционально определяет подсхему Z”», т. е., действительно, это производное правило является обращенным правилом аддитивности.

Любопытно, что правила аддитивности и проективности применительно к функциональным зависимостям с одинаковыми левыми частями позволяют объединять или, наоборот, расщеплять правые части зависимости.

При построении цепочек вывода после формулировки всех посылок применяется правило транзитивности с той целью, чтобы включить функциональную зависимость с правой частью, находящейся в заключении.

Проведем доказательства перечисленных произвольных правил вывода.

1. Доказательство правила тривиальности .

Проведем его, как и все последующие доказательства, по шагам:

1) имеем: X > X (из правила рефлексивности вывода Армстронга);

Правило тривиальности доказано.

2. Проведем пошаговое доказательство правила аддитивности :

1) имеем: X > Y (это посылка 1);

2) имеем: X > Z (это посылка 2);

3) имеем: Y ? Z > Y ? Z (из правила рефлексивности вывода Армстронга);

4) имеем: X ? Z > Y ? Z (получаем при помощи применения правила псевдотранзитивности вывода Армстронга, а потом как следствие первого и третьего шагов доказательства);

5) имеем: X ? X > Y ? Z (получаем, применяя правило псевдотранзитивности вывода Армстронга, а после следует из второго и четвертого шагов);

6) имеем X > Y ? Z (следует из пятого шага).

Правило аддитивности доказано.

3. И, наконец, проведем построение доказательства правила проективности :

1) имеем: X > Y ? Z, X > Y ? Z (это посылка);

2) имеем: Y > Y, Z > Z (выводится при помощи правила рефлексивности вывода Армстронга);

3) имеем: Y ? z > y, Y ? z > Z (получается из правила пополнения вывода Армстронга и следствием из второго шага доказательства);

4) имеем: X > Y, X > Z (получается, применением правила псевдотранзитивности вывода Армстронга, а затем как следствие из первого и третьего шагов доказательства).

Правило проективности доказано.

Все производные правила вывода доказаны.

4. Полнота системы правил Армстронга

Пусть F (S ) - заданное множество функциональных зависимостей, заданных над схемой отношения S.

Обозначим через inv <F (S )> ограничение, накладываемое этим множеством функциональных зависимостей. Распишем его:

Inv <F (S )> r (S ) = ?X > Y ?F (S ) [inv Y> r (S )].

Итак, это множество ограничений, накладываемое функциональными зависимостями, расшифровывается следующим образом: для любого правила из системы функциональных зависимостей X > Y, принадлежащего множеству функциональных зависимостей F (S ), действует ограничение функциональных зависимостей inv Y> r (S ), определенных над множеством отношения r (S ).

Пусть какое-то отношение r (S ) удовлетворяет этому ограничению.

Применяя правила вывода Армстронга к функциональным зависимостям, определенным для множества F (S ), можно получить новые функциональные зависимости, как уже было сказано и доказано нами ранее. И, что показательно, ограничениям этих функциональных зависимостей отношение F (S ) будет автоматически удовлетворять, что видно из расширенной формы записи правил вывода Армстронга. Напомним общий вид этих расширенных правил вывода:

Правило вывода 1. inv < X > X > r (S );

Правило вывода 2. inv Y> r (S ) ? inv ? Z > Y> r (S );

Правило вывода 3. inv Y> r (S ) & inv ? W > Z> r (S ) ? inv ? W > Z>;

Возвращаясь к нашим рассуждениям, пополним множество F (S ) новыми, выведенными из него же с помощью правил Армстронга зависимостями. Будем применять эту процедуру пополнения до тех пор, пока у нас не перестанут получаться новые функциональные зависимости. В результате этого построения мы получим новое множество функциональных зависимостей, называемое замыканием множества F (S ) и обозначаемое F + (S) .

Действительно, такое название вполне логично, ведь мы собственноручно путем длительного построения «замкнули» множество имеющихся функциональных зависимостей само на себе, прибавив (отсюда «+») все новые функциональные зависимости, получившиеся из имеющихся.

Необходимо заметить, что этот процесс построения замыкания конечен, ведь конечна сама схема отношения, на которой и проводятся все эти построения.

Само собой разумеется, что замыкание является надмножеством замыкаемого множества (действительно, ведь оно больше!) и ни сколько не изменяется при своем повторном замыкании.

Если записать только что сказанное в формулярном виде, то получим:

F (S ) ? F + (S ), [F + (S )] + = F + (S );

Далее из доказанной истинности (т. е. законности, правомерности) правил вывода Армстронга и определения замыкания следует, что любое отношение, удовлетворяющее ограничениям заданного множества функциональных зависимостей, будет удовлетворять ограничению зависимости, принадлежащей замыканию.

X > Y ? F + (S ) ? ?r (S ) [inv <F (S )> r (S ) ? inv Y> r (S )];

Итак, теорема полноты системы правил вывода Армстронга утверждает, что внешняя импликация может совершенно законно и обоснованно быть заменена эквивалентностью.

(Доказательство этой теоремы мы рассматривать не будем, так как сам процесс доказательства не столь важен в нашем конкретном курсе лекций.)

a. При рассмотрении количественной стороны различных процессов мы почти всегда наблюдаем, что переменные величины зависят друг от друга; например, путь проходимый свободно падающим в пустоте телом зависит только от времени, давление в паровом котле зависит только от температуры пара.

Глубина океана в одном пункте постоянна, но в различных пунктах различна, она зависит только от двух переменных - от географической долготы и географической широты места.

Высота растущего дерева зависим от многих переменных - от солнечного освещения, от влажности, от количества питательных веществ в почве и т. д.

Мы видим, что некоторые переменные изменяются независимо, они и называются независимыми переменными или аргументами, другие же от них зависят их называют функциями.

Сама зависимость называется функциональной. Между прочим, функциональная зависимость представляет собой одно из самых важных понятий математики.

b. Следует всегда различать, от какого числа независимых переменных зависит функция. Проще всего поддаются изучению функции одной переменной, ими мы будем заниматься в первую очередь. Изучение функций многих переменных сложнее, но так или иначе сводится к изучению функций одной переменной.

c. Если мы желаем записать математически, что переменная у зависит от , то будем употреблять такое обозначение:

Эта запись читается так:

Не; следует думать, что буква умножается на , она является лишь сокращением слова «функция», а вся запись является сокращенной фразой (2).

Точно так же, если функция U зависит от двух аргументов то эта зависимость обозначается следующим образом:

Здесь буквы f, х и у также не являются сомножителями.

Совершенно ясно, как обозначается функция трех четырех и большего числа аргументов.

Вместо буквы употребляют и другие буквы чаще всего .

d. Записи типа (1) и (3) являются самыми общими обовначениями функций, так как под ними можно понимать какие угодно функции, а потому, имея в руках только эти обозначения, мы ничего не сможем узнать о свойствах этих функций.

Для того чтобы иметь возможность изучать функцию нужно ее задать.

e. Имеется много способов задать функцию, но все они сводятся к трем основным типам:

1) функцию можно задать таблицей ее числовых значений, соответствующих числовым значениям ее аргумента;

2) функцию можно задать графически;

3) функцию можно задать математической формулой.

f. Приведем примеры. Известно, что при вращении махового колеса возникают напряжения, которые стремятся разорвать его обод. Если обод колеса сделан из однородного материала, то напряжения зависят только от скорости вращения. Обозначая скорость через v, а напряжение в ободе через , мы можем записать что

Теория сопротивления материалов дает такую таблицу для значений функции (4), если обод сделан из литой стали:

Здесь v измеряется в метрах в секунду - в ньютонах на квадратный сантиметр.

Большим достоинством табличного способа Зсдания функции является то, что числа таблицы непосредственно могут быть использованы для различных вычислений.

Недостатком является то, что всякая таблица дается не для всех значений аргумента, а через некоторые интервалы, так что, если каких-либо значений функции в таблице нет, то нужно брать более подробную таблицу; если же последней нет, то приходится подбирать нужное число более или менее приблизительног сообразуясь с характером изменения чисел таблицы,

g. Большим недостатком является также и то, что если таблица содержит много чисел, то характер изменения функции уловить трудно. Наконец, третьим недостатком является то, что изучать свойства функции, заданной таблицей, трудно; кроме того, полученные свойства будут неточными.

h. От первых двух недостатков свободен графический способ задания функции.

Чтобы пояснить графический способ рассмотрим такой пример.

Если какой-либо материал подвергнуть растяжению, то сила, необходимая для растягивания, будет зависеть от того, какое растяжение необходимо сделать, т. е. сила есть функция от удлинения. Если удлинение в процентах обозначить через X, а растягивающую силу, которая обычно измеряется в ньютонах на квадратный сантиметр, обозначить через , то

Для различных материалов эта зависимость будет различной. Возьмем координатные оси и будем считать к за абсциссу, а за ординату, тогда для каждой пары их значений получим точку на плоскости.

Все эти точки расположатся на некоторой кривой, которая имеет различный вид для различных материалов. Существуют приборы, которые такие кривые чертят автоматически.

Для мягкой стали мы получим следующую кривую (рис. 31):

k. Как мы видим, действительно графический снособ нагляден и дает значения функции для всех значений аргумента. Но третий недостаток и здесь имеет место. Изучать свойства функции заданной графически, все-таки затруднительно.

l. Теперь покажем способ задания функции формулой Возьмем такой пример. Площадь круга очевидно зависит от радиуса. Если радиус обозначить через я, а площадь через у, то, как известно из геометрии, где - отношение длины окружности к длине диаметра. Мы видим, что зависимость здесь задается математической формулой, поэтому третий способ называется математическим способом. Еще пример: длина гипотенузы прямоугольного треугольника зависит от длин обоих катетов. Если длину гипотенузы обозначить через , а длины катетов через то по теореме Пифагора будем иметь

Так как оба катета мы можем изменять независимо друг от друга, то мы имеем здесь пример функции двух аргументов, заданной математически.

Можно привести еще много примеров функций, заданyых математически, из области различных наук.

m. Математический способ обладает огромным преимуществом перед другими способами задания функций, а именно: к изучению функций, заданных математически, можно привлечь математический анализ.

Помимо того, если необходимо, всегда можно математический способ превратить в табличный. Действительно, мы вправе задать аргументам желательные нам числовые значения и по формуле вычислить сколько угодно значений функции. Таким образом, одна формула заменяет всю таблицу.

n. Математический способ имеет только один недостаток, а именно, формула не дает наглядного представления об изменении функции. Однако этот недостаток мы всегда можем восполнить, так как всегда математический способ задания можно превратить в графический. Это делается так.

o. Если мы имеем функцию одной переменной, то составляем таблицу и каждую пару значений аргумента и функции принимаем за координаты, после этого строим возможно большее число точек. Все полученные точки расположатся на некоторой кривой линии, которая и будет графиком функции. Если мы имеем функцию двух или более аргументов, то и ее можно изобразить графически. Но это уже значительно сложнее, а потому этим вопросом мы займемся несколько позднее.

p. Все сказанное свидетельствует о том, что математический способ задания функций является наиболее выгодным.

Поэтому всегда стремятся, если функция задана таблицей или графиком, выразить ее формулой. Эта задача обычно очень трудная, но чрезвычайно важная для естествознания и технических наук. Без преувеличения можно сказать, что все проблемы механики, естествознания - прикладных наук сводятся к установлению и изучению функциональных зависимостей между теми переменными величинами, с которыми эти дисциплины имеют дело. Бела удается эти функциональные зависимости выразить формулами, то наука приобретает надежный рычаг для приложения всей огромной мощи математического анализа и далеко продвигается в своем развитии.

С другой стороны, математический анализ, получая эту прекрасную пищу, сам растет и совершенствуется.

q. Ввиду того, что перевод на язык формул функциональных зависимостей не является непосредственной задачей математики, мы будем предполагать, что функции уже выражены формулами. Таким образом, в дальнейшем мы будем заниматься только функциями, заданными матетатически.

Функциональные зависимости

Функциональная зависимость описывает связь между атрибутами и является одним из основных понятий нормализации. Предположим, что реляционная схема имеет атрибуты (A, B, C,…, Z) и вся база может быть представлена в виде одного универсального отношения R=(A, B, C,…, Z). Следовательно, каждый атрибут в базе имеет уникальное имя.

Если A и B – атрибуты некоторого отношения R, и каждое значение А связано с одним и только одним значением В (причем каждый из атрибутов может состоять из одного или нескольких атрибутов), то атрибут В функционально зависим от атрибута А (ВàА).

Функциональная зависимость, справедливая при любых условиях, называется тривиальной . Нетривиальные зависимости определяют ограничения целостности для отношений.

Транзитивная зависимость для атрибутов A, B и C некоторого отношения означает следующее: если АàВ и ВàС, то С транзитивно зависит от атрибута А через атрибут В (при условии, что А функционально не зависит от В или С).

Для исключения избыточности данных, что может привести к потере целостности, необходимо использовать минимально достаточное множество зависимостей.

Проектирование базы данных с помощью нормализации начинают с определения функциональных зависимостей, очевидных с точки зрения семантики, т.е. приведение к первой нормальной форме.

Таблица, находящаяся в первой нормальной форме, должна отвечать следующим требованиям:

1) таблица не должна иметь повторяющихся записей;

2) в таблице должны отсутствовать повторяющиеся группы полей;

3) каждое поле должно быть семантически неделимым.

Таблица, находящаяся во второй нормальной форме, должна отвечать всем требованиям 1НФ, любое неключевое поле однозначно идентифицируется полным набором ключевых полей, то есть каждый атрибут отношения находится в полной или частичной функциональной зависимости от другого атрибута.

Функциональная зависимость АàВ является полной функциональной зависимостью, если удаление какого либо атрибута из А приводит к утрате этой зависимости. Функциональная зависимость АàВ называется частичной , если в А есть некий атрибут при удалении которого эта зависимость сохраняется.

Таблица, находящаяся в третьей нормальной форме, должна отвечать всем требованиям 2НФ, ни одно из неключевых полей не идентифицируется при помощи другого неключевого поля, то есть отношение, которое находится в первой и второй нормальных формах и не имеет атрибутов, не входящих в первичный ключ атрибутов, которые находились бы в транзитивной функциональной зависимости от этого первичного ключа.

Нормальная форма Бойса-Кода (НФБК) основана на функциональных зависимостях, в которых учитываются все потенциальные ключи отношения, но с более строгими ограничениями.

Детерминантом функциональной зависимости является атрибут (или группа атрибутов), от которого полностью функционально зависит некоторый другой атрибут.

Для проверки принадлежности отношения к НФБК необходимо найти все его детерминанты и убедиться в том, что они являются потенциальными ключами.

Различие между 3НФ и НФБК заключается в том, что функциональная зависимость АàВ допускается в отношении 3НФ, если атрибут В является первичным ключом, а атрибут А не обязательно является потенциальным ключом. В отношении НФБК эта зависимость допускается только тогда, когда атрибут А является потенциальным ключом. Следовательно, НФБК является более строгой версией 3НФ, поскольку каждое отношение НФБК является 3НФ, но не всякое отношение 3НФ является НФБК.

Отношения находятся в НФБК только в том случае, если каждый его детерминант является потенциальным ключом.

Четвертая нормальная форма (4НФ) – отношение в НФБК, которое не содержит нетривиальных многозначных зависимостей.

Многозначная зависимость представляет такую зависимость между атрибутами отношения (например А, В и С), что каждое значение А представляет собой множество значений для В и множество значений для С. Однако множество значений В и С не зависят друг от друга.

Многозначная зависимость может быть дополнительно определена как тривиальная или нетривиальная. Многозначная зависимость АàВ некоторого отношения R определяется как тривиальная, если атрибут В является подмножеством атрибута А или . И наоборот, многозначная зависимость определяется как нетривиальная, если ни то ни другое условие не выполняется. Тривиальная многозначная зависимость не накладывает никаких ограничений на данное отношение, а нетривиальная – накладывает.

При разбиении отношения с помощью операции проекции используемый метод декомпозиции определяется точно. Необходимо, чтобы при обратном соединении полученных отношений можно было восстановить исходное отношение. Такая декомпозиция называется декомпозицией соединения без потерь (или беспроигрышным или неаддитивным соединением), поскольку при ее выполнении сохраняются все данные исходного отношения, а также исключается создание дополнительных фиктивных строк.

Пятая нормальная форма (5НФ), которая также называется проективно-соединительной нормальной формой, означает, что отношение в такой форме не имеет зависимостей соединения. Отношение R с подмножеством атрибутов А,В,…,Z удовлетворяет зависимости соединения, если каждое допустимое значение R равно соединению его проекций на подмножества А,В,…,Z.

При проектировании базы данных в реляционной СУБД основной целью разра­ботки логической модели данных является создание точного представления дан­ных, связей между ними и требуемых ограничений. Для этого не­обходимо определить, прежде всего, подходящий набор отношений. Метод, используемый при этом, называется нормализацией (normalization). Нормализация представляет собой вариант восходящего подхода к проектированию базы данных, который начинается с установления связей между атрибутами.

Цель нормализации

Нормализация - метод создания набора отношений с заданными свойствами на основе требований к данным, установленным в некоторой орга­низации.

Нормализация часто выполняется в виде последовательности тестов для некоторого отношения с целью проверки его соответствия (или несоответствия) требованиям заданной нормальной формы.

Процесс нормализации является формальным методом, который позволяет идентифицировать отношения на основе их первичных ключей (или потенциальных ключей, как в случае НФБК) и функциональных зависимостей, существующих между их атрибутов. Проектировщики баз данных могут использовать нормализацию в виде наборов тестов, применяемых к отдельным отношениям с целью нормализации реляционной схемы до заданной конкретной формы, что позволит предотвратить возможное возникновение аномалий обновления.

Основная цель проектирования реляционной базы данных заключается в группи­ровании атрибутов и отношения так, чтобы минимизировать избыточность данных и таким образом сократить объем памяти, необходимый для физического хранения от­ношений, представленных в виде таблиц.

Функциональные зависимости

Функциональная зависимость описывает связь между ат­рибутами и является одним из основных понятий нормализации. В этом разделе приводится определение данного понятия, а в следующих - описание его взаимосвя­зи с процессами нормализации отношений базы данных.

Функциональная зависимость - описывает связь между атрибутами отношения. Например, если в отношении. R, содержащем атрибуты А и В, атрибут В функционально зависит от атрибута А (что обозначается как АВ), то каждое значение атрибута А связано только с одним значением атрибута В. (Причем каждый из атрибутов А и В может состоять из одного или нескольких атрибутов.)

Функциональная зависимость является смысловым (или семантическим) свойст­вом атрибутов отношения. Семантика отношения указывает, как его атрибуты могут быть связаны друг с другом, а также определяет функциональные зависимости меж­ду атрибутами в виде ограничений, наложенных на некоторые атрибуты.

Зависимость между атрибу­тами А и В можно схематически представить в виде диаграммы, показанной на рисунке 5.

Детерминант - детерминантом функциональной зависимости называется атрибут или группа атрибутов, расположенная на диаграмме функциональ­ной зависимости слева от символа стрелки.

Рисунок 5 - Диаграмма функциональной за­висимости

При наличии функциональной зависимости атрибут или группа атрибутов, распо­ложенная на ее диаграмме слева от символа стрелки, называется детерминантом (determinant). Например, на рис. 6.1 атрибут А является детерминантом атрибута В.

Концепция функциональной зависимости является центральным понятием про­цесса нормализации.

Лекции № 8-9.

Функциональная зависимость. Нормальные формы.

Цель занятия: познакомить студентов с определением функциональной зависимости атрибутов, с понятием нормализации исходного отношения, рассказать о причинах, приводящих к необходимости нормализации файлов записи, ввести способы обеспечения требуемого уровня нормальности таблицы, определить нормальные формы на конкретном примере.

Функциональные зависимости

Теория нормализации, как и теория баз данных в целом, опирается на математический аппарат, основу которого составляют теория множеств и элементы алгебры.

Одни и те же данные могут группироваться в таблицы (отношения) различными способами. Группировка атрибутов в отношениях должна быть рациональной (т. е. дублирование данных д.б. минимальным) и упрощающей процедуры их обработки и обновления. Устранение избыточности данных является одной из важнейших задач проектирования баз данных и обеспечивается нормализацией.

Нормализация таблиц (отношений) - это формальный аппарат ограничений на формирование таблиц (отношений), который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение (ввод, корректировку) базы данных. Процесс нормализации заключается в разложении (декомпозиции) исходных отношений БД на более простые отношения. Каждая ступень этого процесса приводит схему отношений в последовательные нормальные формы. Для каждой ступени нормализации имеются наборы ограничений, которым должны удовлетворять отношения БД. Нормализация позволяет удалить из таблиц базы избыточную неключевую информацию.

Вначале вспомним некоторые понятия:

Простой атрибут - это атрибут, значения которого неделимы. Иными словами, в таблице нет полей типа ФИО или Адрес - они разложены на поля Фамилия, Имя, Отчество в первом случае и на поля Индекс, Город и т. д. во втором.

Сложный (составной) атрибут получается путем соединения нескольких атомарных атрибутов, иначе его называют вектором или агрегатом данных.

Определение функциональной зависимости: Пусть X и Y атрибуты некоторого отношения. Если в любой момент времени произвольному значению X соответствует единственное значение Y, то Y функционально зависит от X (X Y)

Если ключ является составным, то любой атрибут должен зависеть от ключа в целом, но не может находиться в функциональной зависимости от какой-либо части составного ключа, т.е. функциональная зависимость имеет вид (X 1 , X 2 , ..., X) Y.

Функциональная зависимость может быть полной или неполной.

Неполной зависимостью называется зависимость неключевого атрибута от части составного ключа.


Полной функциональной зависимостью называется зависимость неключевого атрибута от всего составного ключа, а не от его частей.

Определение транзитивной функциональной зависимости: Пусть X, Y, Z - три атрибута некоторого отношения. При эtom X Y и Y Z, но обратное соответствие отсутствует, то есть Y не зависит от Z, а Х не зависит от Y. Тогда говорят, что Z транзитивно зависит от Х.

Определение многозначной зависимости: Пусть Х и Y атрибуты некоторого отношения. Атрибут Y многозначно зависит от атрибута X, если. каждому значению X соответствует множество значений Y, не связанных с другими атрибутами из отношения. Многозначные зависимости могут носить характер «один ко многим» (1:М), «многие к одному» (М:1) или «многие ко многим» (М:М), обозначаемые соответственно: X=>Y, Y<=X и X<=>Y. Например, преподаватель ведет несколько предметов, а каждый предмет может вестись несколькими преподавателями, тогда имеет место зависимость ФИО <=> Предмет.

Рассмотрим следующий пример: Предположим, что для учебной части факультета создается БД о преподавателях, которая включает следующие атрибуты:

ФИО - фамилия и инициалы преподавателя (совпадения фамилий и инициалов исключаются).

Должность - должность, занимаемая преподавателем.

Оклад- оклад преподавателя.

Стаж - преподавательский стаж. Д_Стаж - надбавка за стаж.

Кафедра - номер кафедры, на которой числится преподаватель.

Предмет - название предмета (дисциплины), читаемого преподавателем.

Группа - номер группы, в которой преподаватель проводит занятия.

Вид занятия - вид занятий, проводимых преподавателем в учебной группе.

Исходное отношение ПРЕПОДАВАТЕЛЬ