Сайт о телевидении

Сайт о телевидении

» » Первичные ключи. Понятие ключа в БД, первичные и внешние ключи

Первичные ключи. Понятие ключа в БД, первичные и внешние ключи

P rimary Key (Первичный ключ) является полем в таблице, которое однозначно идентифицирует каждую строку/запись в таблице базы данных. Первичные ключи должны содержать уникальные значения. Первичный ключ столбец не может иметь значения .

Таблица может иметь только один первичный ключ, который может состоять из одного или нескольких полей. Когда несколько полей используются в качестве первичного ключа, их называют составным ключом.

Если таблица имеет первичный ключ, определенный на любом поле (ях), то вы не можете иметь две записи, имеющие одинаковое значение этого поля (ей).

Примечание – Вы могли бы использовать эти понятия при создании таблиц базы данных.

Создание первичного ключа

Вот синтаксис для определения атрибута ID в качестве первичного ключа в таблице Customers.

CREATE TABLE CUSTOMERS(ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR (25) , SALARY DECIMAL (18, 2), PRIMARY KEY (ID));

Для того, чтобы создать ограничение первичного ключа на столбце «ID», когда таблица CUSTOMERS уже существует, используйте следующий синтаксис SQL:

ALTER TABLE CUSTOMERS ADD PRIMARY KEY (ID);

Примечание

Если вы используете оператор ALTER TABLE, чтобы добавить первичный ключ, столбец первичного ключа (ей) должен был уже объявлен как не содержащий NULL значения (если таблица была создана первым).

Для определения первичного ключа на нескольких столбцах, используйте синтаксис SQL приведенный ниже:

CREATE TABLE CUSTOMERS(ID INT NOT NULL, NAME VARCHAR (20) NOT NULL, AGE INT NOT NULL, ADDRESS CHAR (25) , SALARY DECIMAL (18, 2), PRIMARY KEY (ID, NAME));

Чтобы создать ограничение первичного ключа на колонки «ID» и «NAME», когда таблица CUSTOMERS уже существует, используйте следующий синтаксис SQL.

ALTER TABLE CUSTOMERS ADD CONSTRAINT PK_CUSTID PRIMARY KEY (ID, NAME);

Удаление первичного ключа

Вы можете очистить ограничения первичного ключа из таблицы с помощью синтаксиса, приведенного ниже.

ALTER TABLE CUSTOMERS DROP PRIMARY KEY;

В данной теме, на примере двух таблиц, определяются основные понятия реляционных баз данных, а именно:

  • первичный ключ;
  • внешний ключ;
  • простой и составной ключ;
  • отношение, типы отношений;
  • искусственный и естественный ключи;
  • главная (master) и подчиненная (detail) таблицы.

Входные данные

Пусть задана база данных работников предприятия, которая состоит из двух таблиц. Первая таблица содержит данные о работнике. Вторая таблица содержит сведения о заработной плате работника.

Таблицы имеют следующую структуру.

«Работник» . Содержит данные о работнике «Зарплата» . Содержит сведения о заработной плате работников.

Вопрос/ответ

1. Что такое первичный ключ в таблице базы данных? Для чего используются первичные ключи?

При работе с таблицами в реляционных базах данных, желательно (необходимо), чтобы каждая таблица имела так называемый первичный ключ .

Первичный ключ – это поле, которое используется для обеспечения уникальности данных в таблице. Это означает, что значение (информация) в поле первичного ключа в каждой строке (записи) таблицы может быть уникальным.

Уникальность необходима во избежание неоднозначности, когда неизвестно к какой записи таблицы можно обратиться, если в таблице есть повторяющиеся записи (две записи имеют одинаковые значения во всех полях таблицы).

Пример. Для таблицы «Работник» можно ввести дополнительное поле, которое будет первичным ключом. Однако, поле (атрибут) «Табельный номер» также обеспечивает уникальность. Так как, теоретически, не может быть двух одинаковых табельных номеров. На практике могут быть случаи, что один и тот же табельный номер будет введен по ошибке и совпадут значения всех полей таблицы. В результате возникнут два одинаковых записи в таблице. Во избежание такой ошибки, лучше создать в таблице дополнительное поле-счетчик, которое обеспечит уникальность.

Также для таблицы «Зарплата» можно ввести дополнительное поле, которое будет первичным ключом.

2. Что такое отношение (связь) между таблицами (relationship)? Пример

Таблицы в реляционной модели данных могут иметь связи между собой. Такие связи называются отношениями. Для таблиц «Работник» и «Зарплата» можно установить связь по полю «Табельный номер».

Пример. Проанализируем таблицы «Работник» и «Зарплата». В этих таблицах можно установить отношение между таблицами на основе поля «Табельный номер». То есть, связь между таблицами происходит на основе поля (атрибуту) «Табельный номер».

Это означает следующее. Если нужно найти начисленную заработную плату в таблице «Зарплата» для работника Иванов И.И., то нужно выполнить следующие действия:

  • найти табельный номер работника Иванов И.И. в таблице «Работник». Значение табельного номера равно 7585;
  • в таблице «Зарплата» найти все значения, которые равны 7585 (табельный номер);
  • выбрать из таблицы «Зарплата» все значения поля «Начислено», которые соответствуют табельному номеру 7585.

Рис. 1. Иллюстрация связи между таблицами. Табельный номер 2145 таблицы «Работник» отображается в таблице «Зарплата»

Рис. 2. Связь (отношение) между полями таблиц

3. Что такое внешний ключ (foreign key)? Пример

Понятие «внешний ключ» есть важным при рассмотрении связанных таблиц.

Внешний ключ – это одно или несколько полей (атрибутов), которые являются первичными в другой таблице и значение которых заменяется значениями первичного ключа другой таблицы.

Пример. Пусть между таблицами «Работник» и «Зарплата» существует взаимосвязь по полю «Табельный номер». В этом случае, поле «Табельный номер» таблицы «Работник» может быть первичным ключом, а поле «Табельный номер» таблицы «Зарплата» внешним ключом. Это означает, что значения поля «Табельный номер» таблицы «Зарплата» заменяются значениями поля «Табельный номер» таблицы «Работник».

4. Что такое рекурсивный внешний ключ?

Рекурсивный внешний ключ – это внешний ключ, который ссылается на одну и ту же таблицу, к которой он принадлежит. В этом случае поле (атрибут), которое соответствует внешнему ключу, есть ключом одного и того же отношения (связи).

5. Могут ли первичный и внешний ключи быть простыми или составными (сложными)?

Первичный, вторичный и внешний ключи могут быть как простыми так и составными (сложными). Простые ключи – это ключи, которые содержат только одно поле (один атрибут). Составные (сложные) ключи – это ключи, которые содержат несколько полей (атрибутов).

6. Какое отличие между искусственным и естественным ключом? Пример

Естественной ключ обеспечивает уникальность из самой сущности предметной области. Бывают случаи, когда значения записей некоторого поля (полей) таблицы есть уникальными. Это поле может быть естественным ключом.

Искусственный ключ вводится дополнительно для обеспечения уникальных значений. Чаще всего искусственный ключ есть полем типа счетчик (counter). В таком поле, при добавлении новой записи (строки) в таблицу, значение счетчика увеличивается на 1 (или другую величину). Если запись удалить из таблицы, то максимальное значение счетчика строк уже не уменьшается, а остается как есть. Как правило, за этим все следит система управления базами данных.

Пример. В таблице «Работник» естественном ключом есть поле (атрибут) «Табельный номер». Поле «Табельный номер» есть само по себе уникальным, так как не может быть двух работников с одинаковым табельным номером.

В таблице «Зарплата» значение во всех четырех полях могут случайно повториться. Поэтому, здесь целесообразно добавить дополнительное поле-счетчик, которое будет искусственным ключом. В этом случае таблица «Зарплата» с дополнительным полем может иметь приблизительно следующий вид:

где поле «Номер» есть искусственным ключом, который обеспечивает уникальность.

7. Какие существуют способы выбора первичного ключа?

Существует 3 способа выбора первичного ключа:

  • использовать поле-инкремент (поле-счетчик) как искусственный ключ;
  • выбрать из данных одно поле, которое может обеспечить уникальность;
  • выбрать из данных несколько полей, которые могут обеспечить уникальность. В этом случае ключ еще будет называться сложным (составным).
8. Что означают термины «главная таблица» (master) и «подчиненная таблица» (detail)?

Если между таблицами есть связь, то одна из них может быть главной (master), а другая подчиненной (detail). Главная таблица отображает все записи, которые помещаются в ней. Подчиненная таблица отображает только те записи, которые соответствуют значению ключа главной таблицы, который на данный момент есть активным (текущим). Если изменяется текущая запись главной таблицы, то изменяется множество доступных записей подчиненной таблицы.

Пример. Если рассмотреть таблицы «Работник» и «Зарплата», то таблица «Работник» есть главной, а таблица «Зарплата» есть подчиненной.

9. Какие существуют типы отношений (связей) между таблицами?

Существует 4 основных типа отношений между таблицами:

  • «один к одному» . В этом случае каждой записи одной таблицы соответствует только одна запись другой таблицы;
  • «один ко многим» . Это когда одной записи главной таблицы (master) соответствует несколько записей подчиненной таблицы (detail). То есть, каждой записи, которая есть первичным ключом одной таблицы, соответствует несколько записей связанной таблицы;
  • «много к одному» . Это когда нескольким записям главной таблицы отвечает одна запись подчиненной таблицы;
  • «много ко многим» . Это когда в обоих таблицах существует несколько взаимосвязанных записей.

Пример. Если рассмотреть отношение между таблицами «Работник» и «Зарплата», то это отношения есть типа «один ко многим». Таблица «Работник» есть главной. Таблица «Зарплата» есть подчиненной.

Наличие взаимосвязей, перекрестных ссылок между таблицами - это одно из фундаментальных свойств, отличающих реляционную базу данных от простого набора таблиц. Для реализации таких взаимосвязей почти все СУБД позволяют определять в таблицах первичные и внешние ключи и имеют в своем составе механизмы поддержания ссылочной целостности.

Первичный ключ

Понятия первичного ключа мы уже вскользь касались в статье, посвященной нормализации базы данных. Первичный ключ - это столбец или группа столбцов, однозначно определяющие запись. Первичный ключ по определению уникален: в таблице не может быть двух разных строк с одинаковыми значениями первичного ключа. Столбцы, составляющие первичный ключ, не могут иметь значение NULL. Для каждой таблицы первичный ключ может быть только один.

Уникальный ключ

Уникальный ключ - это столбец или группа столбцов, значения (комбинация значений для группы столбцов) которых не могут повторяться. Отличия уникального ключа от первичного - в том, что:

  • уникальных ключей для одной таблицы может быть несколько (вопросик на засыпку для тех, кто прочитал статью про нормализацию: правила какой нормальной формы при этом будут нарушены? ;)
  • уникальные ключи могут иметь значения NULL, при этом если имеется несколько строк со значениями уникального ключа NULL, такие строки согласно стандарту SQL 92 считаются различными (уникальными).

Внешний ключ

Внешние ключи - это основной механизм для организации связей между таблицами и поддержания целостности и непротиворечивости информации в базе данных.

Внешний ключ - это столбец или группа столбцов, ссылающиеся на столбец или группу столбцов другой (или этой же) таблицы. Таблица, на которую ссылается внешний ключ, называется родительской таблицей, а столбцы, на которые ссылается внешний ключ - родительским ключом. Родительский ключ должен быть первичным или уникальным ключом, значения же внешнего ключа могут повторяться хоть сколько раз. То есть с помощью внешних ключей поддерживаются связи "один ко многим". Типы данных (а в некоторых СУБД и размерности) соответствующих столбцов внешнего и родительского ключа должны совпадать.

И самое главное. Все значения внешнего ключа должны совпадать с каким-либо из значений родительского ключа. (Заметим в скобках насчет совпадения / несовпадения: нюансы возникают, когда в значениях столбцов вторичного ключа встречается NULL. Давайте пока в эти нюансы вдаваться не будем). Появление значений внешнего ключа, для которых нет соответствующих значений родительского ключа, недопустимо. Вот тут-то мы плавно переходим к понятию ссылочной целостности.

Ссылочная целостность

Первое из правил ссылочной целостности фактически уже изложено в предыдущем абзаце: в таблице не допускается появления (неважно, при добавлении или при модификации) строк, внешний ключ которых не совпадает с каким-либо из имеющихся значений родительского ключа.

Более интересные моменты возникают, когда мы удаляем или изменяем строки родительской таблицы. Как при этом не допустить появления \"болтающихся в воздухе\" строк дочерней таблицы? Для этого существуют правила ссылочной целостности ON UPDATE и ON DELETE, которые, по стандарту SQL 92, могут содержать следующие инструкции:

  • CASCADE - обеспечивает автоматическое выполнение в дочерней таблице тех же изменений, которые были сделаны в родительском ключе. Если родительский ключ был изменен - ON UPDATE CASCADE обеспечит точно такие же изменения внешнего ключа в дочерней таблице. Если строка родительской таблицы была удалена, ON DELETE CASCADE обеспечит удаление всех соответствующих строк дочерней таблицы.
  • SET NULL - при удалении строки родительской таблицы ON DELETE SET NULL установит значение NULL во всех столбцах вторичного ключа в соответствующих строках дочерней таблицы. При изменении родительского ключа ON UPDATE SET NULL установит значение NULL в соответствующих столбцах соответствующих строк (о как:) дочерней таблицы.
  • SET DEFAULT - работает аналогично SET NULL, только записывает в соответствующие ячейки не NULL, а значения, установленные по умолчанию.
  • NO ACTION (установлено по умолчанию) - при изменении родительского ключа никаких действий с внешним ключом в дочерней таблице не производится. Но если изменение значений родительского ключа приводит к нарушению ссылочной целосности (т.е. к появлению "висящих в воздухе" строк дочерней таблицы), то СУБД не даст произвести такие изменения родительской таблицы.

Ну а сейчас - от общего к частному.

Ключи и ссылочная целостность в MySQL и Oracle

Oracle поддерживает первичные, уникальные, внешние ключи в полном объеме. Oracle поддерживает следующие правила ссылочной целостности:

  • NO ACTION (устанавливается по умолчанию) в более жестком, чем по стандарту SQL 92, варианте: запрещается изменение и удаление строк родительской таблицы, для которых имеются связанные строки в дочерних таблицах.
  • ON DELETE CASCADE.

Более сложные правила ссылочной целостности в Oracle можно реализовать через механизм триггеров.

MySQL версии 4.1 (последняя на момент написания статьи стабильная версия) позволяет в командах CREATE / ALTER TABLE задавать фразы REFERENCES / FOREIGN KEY, но в работе никак их не учитывает и реально внешние ключи не создает. Соответственно правила ссылочной целостности, реализуемые через внешние ключи, в MySQL не поддерживаются. И все заботы по обеспечению целостности и непротиворечивости информации в базе MySQL ложатся на плечи разработчиков клиентских приложений.

Разработчики MySQL обещают реализовать работу с внешними ключами и поддержание ссылочной целостности в версии 5.0. Что ж, когда версия MySQL 5.0 станет стабильной - посмотрим, что там в итоге получится. Очень, очень хотелось бы, чтобы MySQL поддерживала ссылочную целостность (без ущерба для производительности:).

Последнее обновление: 02.07.2017

Базы данных могут содержать таблицы, которые связаны между собой различными связями. Связь (relationship) представляет ассоциацию между сущностями разных типов.

При выделении связи выделяют главную или родительскую таблицу (primary key table / master table) и зависимую, дочернюю таблицу (foreign key table / child table). Дочерняя таблица зависит от родительской.

Для организации связи используются внешние ключи. Внешний ключ представляет один или несколько столбцов из одной таблицы, который одновременно является потенциальным ключом из другой таблицы. Внешний ключ необязательно должен соответствовать первичному ключу из главной таблицы. Хотя, как правило, внешний ключ из зависимой таблицы указывает на первичный ключ из главной таблицы.

Связи между таблицами бывают следующих типов:

    Один к одному (One to one)

    Один к многим (One to many)

    Многие ко многим (Many to many)

Связь один к одному

Данный тип связей встречает не часто. В этом случае объекту одной сущности можно сопоставить только один объект другой сущности. Например, на некоторых сайтах пользователь может иметь только один блог. То есть возникает отношение один пользователь - один блог.

Нередко этот тип связей предполагает разбиение одной большой таблицы на несколько маленьких. Основная родительская таблица в этом случае продолжает содержать часто используемые данные, а дочерняя зависимая таблица обычно хранит данные, которые используются реже.

В этом отношении первичный ключ зависимой таблицы в то же время является внешним ключом, который ссылается на первичный ключ из главной таблицы.

Например, таблица Users представляет пользователей и имеет следующие столбцы:

    UserId (идентификатор, первичный ключ)

    Name (имя пользователя)

И таблица Blogs представляет блоги пользователей и имеет следующие столбцы:

    BlogId (идентификатор, первичный и внешний ключ)

    Name (название блога)

В этом случае столбец BlogId будет хранить значение из столбца UserId из таблицы пользователей. То есть столбец BlogId будет выступать одновременно первичным и внешним ключом.

Связь один ко многим

Это наиболее часто встречаемый тип связей. В этом типе связей несколько строк из дочерний таблицы зависят от одной строки в родительской таблице. Например, в одном блоге может быть несколько статей. В этом случае таблица блогов является родительской, а таблица статей - дочерней. То есть один блог - много статей. Или другой пример, в футбольной команде может играть несколько футболистов. И в то же время один футболист одновременно может играть только в одной команде. То есть одна команда - много футболистов.

К примеру, пусть будет таблица Articles, которая представляет статьи блога и которая имеет следующие столбцы:

    ArticleId (идентификатор, первичный ключ)

    BlogId (внешний ключ)

    Title (название статьи)

    Text (текст статьи)

В этом случае столбец BlogId из таблицы статей будет хранить значение из столбца BlogId из таблицы блогов.

Связь многие ко многим

При этом типе связей одна строка из таблицы А может быть связана с множеством строк из таблицы В. В свою очередь одна строка из таблицы В может быть связана с множеством строк из таблицы А. Типичный пример - студенты и курсы: один студент может посещать несколько курсов, и соответственно на один курс могут записаться несколько студентов.

Другой пример - статьи и теги: для одной статьи можно определить несколько тегов, а один тег может быть определен для нескольких статей.

Но в SQL Server на уровне базы данных мы не можем установить прямую связь многие ко многим между двумя таблицами. Это делается посредством вспомогательной промежуточной таблицы. Иногда данные из этой промежуточной таблицы представляют отдельную сущность.

Например, в случае со статьями и тегами пусть будет таблица Tags, которая имеет два столбца:

    TagId (идентификатор, первичный ключ)

    Text (текст тега)

Также пусть будет промежуточная таблица ArticleTags со следующими полями:

    TagId (идентификатор, первичный и внешний ключ)

    ArticleIdId (идентификатор, первичный и внешний ключ)

Технически мы получим две связи один-ко-многим. Столбец TagId из таблицы ArticleTags будет ссылаться на столбец TagId из таблицы Tags. А столбец ArticleId из таблицы ArticleTags будет ссылаться на столбец ArticleId из таблицы Articles. То есть столбцы TagId и ArticleId в таблице ArticleTags представляют составной первичный ключ и одновременно являются внешними ключами для связи с таблицами Articles и Tags.

Ссылочная целостность данных

При изменении первичных и внешних ключей следует соблюдать такой аспект как ссылочная целостность данных (referential integrity). Ее основная идея состоит в том, чтобы две таблице в базе данных, которые хранят одни и те же данные, поддерживали их согласованность. Целостность данных представляет правильно выстроенные отношения между таблицами с корректной установкой ссылок между ними. В каких случаях целостность данных может нарушаться:

    Аномалия удаления (deletion anomaly). Возникает при удалении строки из главной таблицы. В этом случае внешний ключ из зависимой таблицы продолжает ссылаться на удаленную строку из главной таблицы

    Аномалия вставки (insertion anomaly). Возникает при вставке строки в зависимую таблицу. В этом случае внешний ключ из зависимой таблицы не соответствует первичному ключу ни одной из строк из главной таблицы.

    Аномалии обновления (update anomaly). При подобной аномалии несколько строк одной таблицы могут содержать данные, которые принадлежат одному и тому же объекту. При изменении данных в одной строке они могу прийти в противоречие с данными из другой строки.

Аномалия удаления

Для решения аномалии удаления для внешнего ключа следует устанавливать одно из двух ограничений:

    Если строка из зависимой таблицы обязательно требует наличия строки из главной таблицы, то для внешнего ключа устанавливается каскадное удаление. То есть при удалении строки из главной таблицы происходит удаление связанной строки (строк) из зависимой таблицы.

    Если строка из зависимой таблицы допускает отсутствие связи со строкой из главной таблицы (то есть такая связь необязательна), то для внешнего ключа при удалении связанной строки из главной таблицы задается установка значения NULL. При этом столбец внешнего ключа должен допускать значение NULL.

Аномалия вставки

Для решения аномалии вставки при добавлении в зависимую таблицу данных столбец, который представляет внешний ключ, должен допускать значение NULL. И таким образом, если добавляемый объект не имеет связи с главной таблицей, то в столбце внешнего ключа будет стоять значение NULL.

Аномалии обновления

Для решения проблемы аномалии обновления применяется нормализация, которая будет рассмотрена далее.

На Рисунке представлена таблица (отношение степени 5), содержащая некоторые сведения о работниках гипотетического предприятия. Строки таблицы соответствуют кортежам. Каждая строка фактически представляет собой описание одного объекта реального мира (в данном случае работника), характеристики которого содержатся в столбцах. Реляционные отношения соответствуют наборам сущностей, а кортежи - сущностям. Столбцы в таблице, представляющей реляционное отношение, называют атрибутами .

Каждый атрибут определен на домене, поэтому домен можно рассматривать как множество допустимых значений данного атрибута. Несколько атрибутов одного отношения и даже атрибуты разных отношений могут быть определены на одном и том же домене.

Атрибут, значение которого однозначно идентифицирует кортежи, называется ключевым (или просто ключом ). Ключом является атрибут "Табельный номер", поскольку его значение уникально для каждого работника предприятия. Если кортежи идентифицируются только сцеплением значений нескольких атрибутов, то говорят, что отношение имеет составной ключ.

Первичный ключ - в реляционной модели данных один из потенциальных ключей отношения, выбранный в качестве основного ключа (или ключа по умолчанию).

Отношение может содержать несколько ключей. Всегда один из ключей объявляется первичным , его значения не могут обновляться. Все остальные ключи отношения называются возможными ключами .

С точки зрения теории все потенциальные (возможные) ключи отношения эквивалентны, то есть обладают одинаковыми свойствами уникальности и минимальности. Однако в качестве первичного обычно выбирается тот из потенциальных ключей, который наиболее удобен для тех или иных практических целей, например для создания внешних ключей в других отношениях либо для создания кластерного индекса. Поэтому в качестве первичного ключа как правило выбирают тот, который имеет наименьший размер (физического хранения) и/или включает наименьшее количество атрибутов.

Если первичный ключ состоит из единственного атрибута, его называют простым ключом .

Если первичный ключ состоит из двух и более атрибутов, его называют составным ключом . Так, имя, фамилия, отчество, номер паспорта, серия паспорта не могут быть первичными ключами по отдельности, так как могут оказаться одинаковыми у двух и более людей. Но не бывает двух личных документов одного типа с одинаковыми серией и номером. Поэтому в отношении, содержащем данные о людях, первичным ключом может быть подмножество атрибутов, состоящее из типа личного документа, его серии и номера.



В отличие от иерархической и сетевой моделей данных в реляционной отсутствует понятие группового отношения. Для отражения ассоциаций между кортежами разных отношений используется дублирование их ключей.

Атрибуты, представляющие собой копии ключей других отношений, называются внешними ключами .

Например, связь между отношениями ОТДЕЛ и СОТРУДНИК создается путем копирования первичного ключа "Номер_отдела" из первого отношения во второе. Таким образом, для того, чтобы получить список работников данного подразделения, необходимо: 1) Из таблицы ОТДЕЛ установить значение атрибута "Номер_отдела" , соответствующее данному "Наименованию_отдела". 2) выбрать из таблицы СОТРУДНИК все записи, значение атрибута "Номер_отдела" которых равно полученному на предыдушем шаге. Для того, чтобы узнать в каком отделе работает сотрудник, нужно выполнить обратную операцию: 1) Определяем "Номер_отдела" из таблицы СОТРУДНИК. 2) По полученному значению находим запись в таблице ОТДЕЛ.


18. Нормализация в реляционных БД, понятие нормальной формы при проектировании баз данных.

Нормальная форма - свойство отношения в реляционной модели данных, характеризующее его с точки зрения избыточности, которая потенциально может привести к логически ошибочным результатам выборки или изменения данных. Нормальная форма определяется как совокупность требований, которым должно удовлетворять отношение.

Процесс преобразования базы данных к виду, отвечающему нормальным формам, называется нормализацией . Нормализация предназначена для приведения структуры базы данных к виду, обеспечивающему минимальную избыточность, то есть нормализация не имеет целью уменьшение или увеличение производительности работы или же уменьшение или увеличение объёма БД. Конечной целью нормализации является уменьшение потенциальной противоречивости хранимой в БД информации.



Устранение избыточности производится, как правило, за счёт декомпозиции отношений таким образом, чтобы в каждом отношении хранились только первичные факты (то есть факты, не выводимые из других хранимых фактов).

Функциональные зависимости.

Реляционная база данных содержит как структурную, так и семантическую информацию. Структура базы данных определяется числом и видом включенных в нее отношений, и связями типа "один ко многим", существующими между кортежами этих отношений. Семантическая часть описывает множество функциональных зависимостей, существующих между атрибутами этих отношений. Дадим определение функциональной зависимости.

19. 1НФ: Основные определения и правила преобразования.

Для обсуждения первой нормальной формы необходимо дать два определения:

Простой атрибут - атрибут, значения которого атомарны (неделимы).

Сложный атрибут - получается соединением нескольких атомарных атрибутов, которые могут быть определены на одном или разных доменах (его также называют вектор или агрегат данных).

Определение первой нормальной формы:

отношение находится в 1NF если значения всех его атрибутов атомарны. . В противном случае это вообще не таблица и такие атрибуты необходимо декомпозировать.

Рассмотрим пример:

В базе данных отдела кадров предприятия необходимо хранить сведения о служащих, которые можно попытаться представить в отношении

СЛУЖАЩИЙ(НОМЕР_СЛУЖАЩЕГО, ИМЯ, ДАТА_РОЖДЕНИЯ, ИСТОРИЯ_РАБОТЫ, ДЕТИ).

Из внимательного рассмотрения этого отношения следует, что атрибуты "история_работы" и "дети" являются сложными, более того, атрибут "история_работы" включает еще один сложный атрибут "история_зарплаты".
Данные агрегаты выглядят следующим образом:

 ИСТОРИЯ_РАБОТЫ (ДАТА_ПРИЕМА, НАЗВАНИЕ, ИСТОРИЯ_ЗАРПЛАТЫ),

 ИСТОРИЯ_ЗАРПЛАТЫ (ДАТА_НАЗНАЧЕНИЯ, ЗАРПЛАТА),

 ДЕТИ (ИМЯ_РЕБЕНКА, ГОД_РОЖДЕНИЯ).

Их связь представлена на рис. 3.3.

Рис.3.3. Исходное отношение.

Для приведения исходного отношения СЛУЖАЩИЙ к первой нормальной форме необходимо декомпозировать его на четыре отношения, так как это показано на следующем рисунке:

Рис.3.4. Нормализованное множество отношений.

Здесь первичный ключ каждого отношения выделен синей рамкой, названия внешних ключей набраны шрифтом синего цвета. Напомним, что именно внешние ключи служат для представления функциональных зависимостей, существующих в исходном отношении. Эти функциональные зависимости обозначены линиями со стрелками.

Алгоритм нормализации описан Е.Ф.Коддом следующим образом:

  • Начиная с отношения, находящегося на верху дерева (рис. 3.3.), берется его первичный ключ, и каждое непосредственно подчиненное отношение расширяется путем вставки домена или комбинации доменов этого первичного ключа.
  • Первичный Ключ каждого расширенного таким образом отношения состоит из Первичного Ключа, который был у этого отношения до расширения и добавленного Первичного Ключа родительского отношения.
  • После этого из родительского отношения вычеркиваются все непростые домены, удаляется верхний узел дерева, и эта же процедура повторяется для каждого из оставшихся поддеревьев.

20. 2НФ: Основные определения и правила преобразования.

Очень часто первичный ключ отношения включает несколько атрибутов (в таком случае его называют составным ) - см., например, отношение ДЕТИ, показанное на рис. 3.4 вопрос 19. При этом вводится понятие полной функциональной зависимости .

Определение:

неключевой атрибут функционально полно зависит от составного ключа если он функционально зависит от всего ключа в целом, но не находится в функциональной зависимости от какого-либо из входящих в него атрибутов.

Пример:

Пусть имеется отношение ПОСТАВКИ (N_ПОСТАВЩИКА, ТОВАР, ЦЕНА).
Поставщик может поставлять различные товары, а один и тот же товар может поставляться разными поставщиками. Тогда ключ отношения - "N_поставщика + товар" . Пусть все поставщики поставляют товар по одной и той же цене. Тогда имеем следующие функциональные зависимости:

  • N_поставщика, товар -> цена
  • товар -> цена

Неполная функциональная зависимость атрибута "цена" от ключа приводит к следующей аномалии: при изменении цены товара необходим полный просмотр отношения для того, чтобы изменить все записи о его поставщиках. Данная аномалия является следствием того факта, что в одной структуре данных объединены два семантических факта. Следующее разложение дает отношения во 2НФ:

  • ПОСТАВКИ (N_ПОСТАВЩИКА, ТОВАР)
  • ЦЕНА_ТОВАРА (ТОВАР, ЦЕНА)

Таким образом, можно дать

Определение второй нормальной формы: Отношение находится во 2НФ, если оно находится в 1НФ и каждый неключевой атрибут функционально полно зависит от ключа.

21. 3НФ: Основные определения и правила преобразования.

Перед обсуждением третьей нормальной формы необходимо ввести понятие: транзитивная функциональная зависимость .

Определение:

Пусть X, Y, Z - три атрибута некоторого отношения. При этом X --> Y и Y --> Z, но обратное соответствие отсутствует, т.е. Z -/-> Y и Y -/-> X. Тогда Z транзитивно зависит от X.
Пусть имеется отношение ХРАНЕНИЕ (ФИРМА , СКЛАД, ОБЪЕМ), которое содержит информацию о фирмах, получающих товары со складов, и объемах этих складов. Ключевой атрибут - "фирма" . Если каждая фирма может получать товар только с одного склада, то в данном отношении имеются следующие функциональные зависимости:

  • фирма -> склад
  • склад -> объем

При этом возникают аномалии:

  • если в данный момент ни одна фирма не получает товар со склада, то в базу данных нельзя ввести данные о его объеме (т.к. не определен ключевой атрибут)
  • если объем склада изменяется, необходим просмотр всего отношения и изменение картежей для всех фирм, связанных с данным складом.

Для устранения этих аномалий необходимо декомпозировать исходное отношение на два:

  • ХРАНЕНИЕ (ФИРМА , СКЛАД)
  • ОБЪЕМ_СКЛАДА (СКЛАД , ОБЪЕМ)

Определение третьей нормальной формы:

Отношение находится в 3НФ, если оно находится во 2НФ и каждый не ключевой атрибут не транзитивно зависит от первичного ключа.