Сайт о телевидении

Сайт о телевидении

» » Анализ и синтез логических устройств. Методы минимизации логических функций и схем

Анализ и синтез логических устройств. Методы минимизации логических функций и схем

для первого – X 3 X 4 ;

для второго – X 1 X 3 ;

для третьего – X 2 X 3 ;

для четвертого – X 1 X 2 X 4 ;

для пятого – X 1 X 2 X 4 ;


Минимальная ДНФ будет выглядеть так:

Сравнивая метод карт Карно с другими методами минимизации функции можно сделать вывод, что первый больше всего подходит для ручного исполнения. Время ручной работы значительно сокращается (за счет наглядного представления склеивающихся импликант). Программная реализация данного метода имеет свои сложности. Так, очень сложно будет реализовать оптимальный выбор правильных прямоугольников, особенно для большого числа аргументов.

1.3.5 Метод неопределенных коэффициентов

Этот метод может быть использован для любого числа аргументов. Но так как этот метод достаточно громоздок, то применяется только в тех случаях, когда число аргументов не более 5-6.

В методе неопределенных коэффициентов используются законы универсального и нулевого множеств и законы повторения. В начале все коэффициенты неопределенны (отсюда и название метода).

Построим матрицу неопределенных коэффициентов для четырех аргументов. В этом случае мы будем иметь систему из 16-ти уравнений.

Система приведена на следующей странице.

Приравняем все коэффициенты 0 в тех строках, которым соответствует 0 в векторе столбце. Затем приравняем 0 соответствующие коэффициенты в других строках. После этих преобразований система примет следующий вид:

V = 1 VVVVVV = 1 VVV V VV = 1 V = 1 VVV = 1 VVVVVV = 1 VVV = 1 VVVVV = 1 VVV = 1

Теперь в каждой строке необходимо выбрать коэффициент минимального ранга и приравнять его единице, а остальные коэффициенты – 0. После этого вычеркиваем одинаковые строки, оставляя при этом одну из них (те строки, у которых все коэффициенты равны 0, также вычеркиваются).

= 1 = 1 = 1 = 1 = 1

Запишем теперь конъюнкции, соответствующие коэффициентам, равным единицам. Мы получим минимальную ДНФ.

F(X 1 X 2 X 3 X 4) = X 1 X 3 V X 2 X 3 V X 3 X 4 V X 1 X 2 X 4 V X 1 X 2 X 4 .

Итак, мы получили несколькими способами минимальную ДНФ, Во всех случаях она получилась одинаковой, то есть любой из описанных методов может быть использован для минимизации функции. Однако эти методы существенно отличаются друг от друга как по принципу нахождения МДНФ, так и по времени исполнения. Для ручных расчетов очень удобен метод карт Карно. Он нагляден, не требует рутинных операций, а выбрать оптимальное расположение правильных прямоугольников не составляет большого труда. В то время как машинная реализация данного метода осложняется необходимостью нахождения оптимального расположения прямоугольников. Естественно применение других методов (метод Квайна, метод Квайна-Маккласки, метод неопределенных коэффициентов) для ручных расчетов нецелесообразно. Они больше подойдут для машинной реализации, так как содержат большое число повторяющихся простых операций.

Задание 2.

2.1 Схема алгоритма для метода Квайна

1. Начало.

2. Ввести матрицу ДСНФ исходной функции.

3. Проверить на склеиваемость i-ю (i=1,m-1: где m – количество строк в ДСНФ) и j-ую (j=i+1, m) строки. Если строки склеиваются, то перейти к пункту 6, в противном случае перейти к пункту 5.

4. Формировать массив простых импликант, предварительно пометив символом ‘*’ ту переменную, по которой данные строки склеиваются.

5. Перейти к пункту 2.

6. Строку, которая не склеилась ни с одной другой строкой записать в конечный массив.

7. Перейти к пункту 2.

8. Вывод полученной матрицы.

Логическая схема алгоритма в нотации Ляпунова

V H V 1 Z 1 ­ V 2 ¯ V 3 V 4 V K

V H – начало.

V 1 – ввести матрицу ДСНФ исходной функции.

V 2 – формировать массив простых импликант, предварительно пометив символом ‘*’ ту переменную, по которой данные строки склеиваются.

V 3 – строку, которая не склеилась ни с одной другой строкой записать в конечный массив.

V 4 – вывод полученной матрицы.

Z 1 – если строки склеиваются, то перейти к пункту 3, в противном случае перейти к пункту 5.

V K – конец.

Граф-схема алгоритма.


Описание машинных процедур

Procedure Stuck(S1, S2: Diz; IndexS1, IndexS2: byte);

Данная процедура склеивает два, передаваемых ей дизъюнкта. Дизъюнкты задаются в параметрах S1, S2. Индексы IndexS1, IndexS2 определяют индексы этих дизъюнктов в главном рабочем массиве. Алгоритм работы процедуры следующий: сначала ищется количество склеивающихся символов. Если их 0, то они одинаковые, и в конечный массив записывается только один из них. Если 1, то определяется местоположение символа, по которому данные две дизъюнкции склеиваются, и заменяем этот символ на ‘*’. Все полученные результаты заносятся в массив REZ.

Все остальные функции и процедуры программы связаны с действиями над массивами, то есть не имеют непосредственного отношения к данному методу нахождения МДНФ. Поэтому нет смысла их описывать.

2.2 Схема алгоритма для метода Петрика

1. Начало.

2. Ввести матрицу ДСНФ исходной функции и простые импликанты, полученные в методе Квайна.

3. Составить таблицу меток.

4. По таблице меток построить конъюнкцию дизъюнкций, каждая из которых есть совокупность тех импликант, которые в данном столбце имеют метки.

Все логические функции задаются либо в виде формулы, либо в виде таблицы значений. Иногда бывает нужно определить простейшую форму записи этой функции с минимальным количеством элементарных логических функций И, ИЛИ, НЕ для удобства работы. Для этого используются все рассмотренные операции начиная с №4 и методы Квайна и Вейча.

Метод Квайна позволяет найти простейшую нормальную дизъюнктивную форму логического выражения, т.е. записать логическое выражение в виде дизъюнкции или конъюнкции, при этом знак инверсии может стоять только над одним аргументом или не стоять вообще. Алгоритм дается в специальной литературе.

Метод Вейча (карты Карно)

В этом методе для изображения функции n переменных рисуется специальная таблица, которая содержит 2 n клеток. В каждой клетке ставится соответствие одному из наборов n переменных. В клетке записывается значение, принимаемое функцией при этом наборе аргументов. Все клетки, соответствующие наборам содержащие некоторую переменную без знака инверсии образуют область из 2 n -1 клеток. Эта область называется областью данной переменной (например, область переменной х). Остальные клетки образуют область этой инверсной переменной. Возможные наборы аргументов распределены по клеткам таким образом, чтобы границы областей всех переменных и их инверсии были четки, а принадлежность любой клетки к той или иной область зрительно легко выявлялась.

1) Функция одной переменной:

2) Функция двух переменных:

3) Диаграмма для дизъюнкции:

4) Диаграмма для конъюнкции:

5) Для трех аргументов:

6) Для четырех аргументов:

Можно минимизировать заданное логическое выражение, объединив в группы стоящие рядом единицы и при этом исключать ту переменную, которая переходит из прямого в инверсное состояние. Объединять можно не только по вертикали и горизонтали, но и по краям, так как в общем случае карта Карно образует тор. Пример:

б)

Работа по теме

МЕТОДЫ МИНИМИЗАЦИИ
ЛОГИЧЕСКИХ ФУНКЦИЙ

Ключевые понятия: логические выражения, логические функции, методы минимизации, инверсия, конъюнкция, дизъюнкция, импликация, эквиваленция.

Содержание

Введение

Люди, далекие от техники, часто смотрят на ЭВМ и другие цифровые электронные устройства как на нечто таинственное и непостижимое. Тем не менее, все эти устройства работают в строгом соответствии с четкими логическими законами. Знание и понимание этих законов помогает в общении с компьютером и другими цифровыми устройствами.

Принципы построения схемы цифрового устройства задается логическими функциями. Сложность логической функции, а отсюда сложность и стоимость реализующей ее схемы (цепи), пропорциональны числу логических операций и числу вхождений переменных или их отрицаний. В принципе любая логическая функция может быть упрощена непосредственно с помощью аксиом и теорем логики, но, как правило, такие преобразования требуют громоздких выкладок .

К тому же процесс упрощения булевых выражений не является алгоритмическим. Поэтому более целесообразно использовать специальные алгоритмические методы минимизации, позволяющие проводить упрощение функции более просто, быстро и безошибочно.

Упрощенная функция будет содержать меньше операций и комбинаций аргументов, а значит и схема, реализующая функцию, будет содержать меньше элементов, т.е. будет дешевле и надежнее .

В связи с этим минимизация логических функций особенно актуальна.

Целью работы является изучение методов минимизации функций алгебры логики.

Объектом работы стал процесс минимизации логических функций.

Предмет исследования – методы минимизации логических функций и методика преподавания этой темы в профильных классах.

Задачи исследования:

    изучить основные элементы математической логики;

    исследовать методы минимизации логических функций;

    подобрать задачи для самостоятельной работы;

    решить описанными методами подобранные задачи.

Работа состоит из введения, двух разделов, заключения и списка использованной литературы.

Во введении обосновывается актуальность темы, определяется цель и задачи исследования.

В первом разделе рассматриваются логические основы функционирования ЭВМ.

Во втором разделе раскрываются методы минимизации логических функций, приводятся примеры решения задач описанными методами.

В заключении подводятся общие итоги исследования.

Логические основы функционирования ЭВМ

Элементы математической логики

Компьютеры – это автоматические устройства, принципы работы которых базируются на элементарных законах двоичной логики.

Вычислительные машины всех поколений состояли и состоят из логических элементов и элементов памяти, принимающих два значения (бита) 0 и 1. Вся обработка информации в ЭВМ всех ее логических блоков, логических схем и устройств опиралась и будет опираться на законы и принципы математической логики .

Логика (от древнегреческого logos, означающего «слово, мысль, понятие, рассуждение, закон») – это древнейшая наука, изучающая правильность суждений, рассуждений и доказательств.

Математическая логика – это математическая дисциплина, изучающая технику доказательств .

Основоположником математической логики является великий немецкий математик Готфрид Вильгельм Лейбниц (1646 – 1716 гг.). Он выдвинул идею о применении в логике математической символики и построении логических исчислений, поставил задачу логического обоснования математики, сыграл важную роль в истории создания электронно-вычислительных машин: предложил использовать для целей вычислительной математики бинарную систему счисления. На заложенном Лейбницем фундаменте ирландский математик Джордж Буль построил здание новой науки – математической логики, – которая в отличие от обычной алгебры оперирует не числами, а высказываниями. В честь Д.Буля логические переменные в языке программирования «Паскаль» впоследствии назвали булевскими.

Математическая логика изучает вопросы применения математических методов для решения логических задач и построения логических схем, которые лежат в основе работы любого компьютера. Суждения в математической логике называют высказываниями или логическими выражениями.

Высказывание – это любое утверждение, относительно которого можно сказать истинно оно или ложно, т.е. соответствует оно действительности или нет; это символическая запись, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками) .

Различные логические выражения (высказывания) могут принимать только два значения: «истинно» или «ложно». Каждая логическая переменная может принимать только одно значение. Существуют разные варианты обозначения истинности и ложности:

Истина

И

True

T

1

Ложь

Л

False

F

0

Высказывания могут быть простыми и сложными. Простые соответствуют алгебраическим переменным, а сложные являются аналогом алгебраических функций. Функции могут получаться путем объединения переменных с помощью логических действий (операций) .

Рассмотрим логические операции, с помощью которых можно записать любое логическое выражение.

Самой простой логической операцией является операция НЕ (по-другому ее часто называют отрицанием, дополнением или инверсией и обозначают ). Результат отрицания всегда противоположен значению аргумента. Другими простыми слова, данная операция означает, что к исходному логическому выражению добавляется частица «не» или слова «неверно, что».

Таким образом, отрицанием некоторого высказывания называется такое высказывание, которое истинно, когда ложно, и ложно, когда истинно .

Логическая операция НЕ является унарной, т.е. имеет всего один операнд. Определение отрицания может быть записано с помощью так называемой таблицы истинности, в которой указано, указано, какие значения истинности (1, 0) принимает отрицание в зависимости от значений истинности исходного высказывания :

1

0

0

1

Логическое И (логическое умножение или конъюнкция) – это сложное логическое выражение, которое считается истинным в том и только том случае, когда оба простых выражения являются истинными, во всех остальных случаях данное сложное выражение ложно. Конъюнкцию высказываний и обозначают: , а иногда пишут просто . Высказывания в составе конъюнкции соединены союзом «и». Определение конъюнкции может быть записано в виде таблицы истинности, в которой для каждого из четырех возможных наборов значений исходных высказываний и задается соответствующее значение конъюнкции :

1

1

1

1

0

0

0

1

0

0

0

0

Определение конъюнкции двух высказываний естественным образом распространяется на любое конечное число составляющих: конъюнкция А 1 & A 2 & A 3 &...& A N истинна тогда и только тогда, когда истинны все высказывания А 1 , A 2 , A 3 , ...A N (а, следовательно, ложна, когда ложно хотя бы одно из этих высказываний) .

Логическое ИЛИ (логическое сложение или дизъюнкция) – это сложное логическое выражение, которое истинно, если хотя бы одно из простых логических выражений истинно и ложно тогда и только тогда, когда оба простых логических выражения ложны. Дизъюнкцию высказываний и мы обозначим символом и будем читать: или . Определение дизъюнкции может быть записано в виде таблицы истинности:

1

1

1

1

0

1

0

1

1

0

0

0

Определение дизъюнкции двух высказываний естественным образом распространяется на любое конечное число составляющих: дизъюнкция А 1 А 2 А 3 ... А N истинна тогда и только тогда, когда истинно хотя бы одно из высказываний А 1 , А 2 , А 3 , ..., А N (а следовательно, ложна, когда ложны все эти высказывания).

Операции И, ИЛИ, НЕ образуют полную систему логических операций, из которой можно построить сколь угодно сложное логическое выражение. Но помимо них существуют и другие логические операции.

Логическое следование (импликация) – это сложное логическое выражение, которое истинно во всех случаях, кроме как из истины следует ложь. То есть данная логическая операция связывает два простых логических выражения, из которых первое является условием ( ), а второе ( ) является следствием. Обозначим импликацию символом и запись « » будем читать: «Из следует ».

Запишем это определение в виде таблицы истинности:

1

1

1

1

0

0

0

1

1

0

0

1

Высказывание «Если , то » с логической точки зрения имеет тот же смысл, что и высказывание «неверно, что истинно и ложно». Это означает, что функцию импликации можно заменить комбинацией двух функций (отрицания и конъюнкции).

Логическое тождество (эквиваленция) – это сложное логическое выражение, которое является истинным тогда и только тогда, когда оба простых логических выражения имеют одинаковую истинность. Обозначают эквиваленцию символом и запись « » читают « эквивалентно », или « равносильно », или « , если и только если », « тогда и только тогда, если ». Определение эквиваленции может быть записано в виде таблицы истинности:

1

1

1

1

0

0

0

1

0

0

0

1

Логические функции и их преобразование

Логическая функция – это функция логических переменных, которая может принимать только два значения: 0 или 1. В свою очередь, сама логическая переменная (аргумент логической функции) тоже может принимать только два значения: 0 или 1 .

Каждая логическая функция может быть задана большим количеством различных по виду функций. Но даже любую достаточно сложную логическую функцию можно реализовать, имея относительно простой набор базовых логических операций. Наиболее известный базис – это набор функций «и», «или», «не».

Для операций конъюнкции, дизъюнкции и инверсии определены законы, позволяющие производить тождественные (равносильные) преобразования логических выражений :

;

.

Основываясь на законах, можно выполнять упрощение сложных логических выражений.

Исходными, из соображений удобства последующих преобразований, приняты следующие две канонические формы представления функций: совершенная дизъюнктивная нормальная форма (СДНФ) и совершенная конъюнктивная нормальная форма (СКНФ).

Прежде чем перейти к СДНФ и СКНФ введем некоторые понятия.

Элементарной конъюнкцией называется конъюнкция нескольких переменных, взятых с отрицанием или без отрицания, причём среди переменных могут быть одинаковые .

Элементарной дизъюнкцией называется дизъюнкция нескольких переменных, взятых с отрицанием или без отрицания, причём среди переменных могут быть одинаковые .

Всякую дизъюнкцию элементарных конъюнкций называют дизъюнктивной нормальной формой, то есть ДНФ .

Например, выражение является ДНФ.

Всякую конъюнкцию элементарных дизъюнкций называют конъюнктивной нормальной формой, то есть КНФ .

Например, выражение является КНФ.

Совершенной ДНФ (СДНФ) называется ДНФ, в которой нет равных элементарных конъюнкций, и все они содержат одни и те же переменные, причём каждую переменную только один раз (возможно с отрицанием) .

Например, выражение является ДНФ, но не является СДНФ; выражение является СДНФ.

Совершенной КНФ (СКНФ) называется КНФ, в которой нет равных элементарных дизъюнкций, и все они содержат одни и те же переменные, причём каждую переменную только один раз (возможно с отрицанием) .

Например, выражение .

Приведу алгоритмы переходов от одной формы к другой. Естественно, что в конкретных случаях (при определенном творческом подходе) применение алгоритмов бывает более трудоемким, чем простые преобразования, использующие конкретный вид данной формы :

    переход от произвольного задания функции к ДНФ

Этот переход сводится к опусканию общих для нескольких переменных инверсий, раскрытию скобок и объединению, если они возникают, одинаковых членов с использованием законов:

Например:

    переход от ДНФ к КНФ

Алгоритм этого перехода следующий: ставим над ДНФ два отрицания и с помощью правил де Моргана (не трогая верхнее отрицание) приводим отрицание ДНФ снова к ДНФ. При этом приходится раскрывать скобки с использованием правила поглощения. Отрицание (верхнее) полученной ДНФ (снова по правилу де Моргана) сразу дает нам КНФ:

Второй способ перехода от ДНФ к КНФ – использование дистрибутивного закона:

    переход от КНФ к ДНФ

Этот переход осуществляется простым раскрытием скобок (при этом опять-таки используется правило поглощения):

    переход от КНФ к СКНФ

Этот переход осуществляется способом, аналогичным предыдущему: если в простой дизъюнкции не хватает какой-то переменной, например, z , то добавляем в нее выражение (это не меняет самой дизъюнкции), после чего раскрываем скобки с использованием распределительного закона:

    переход от ДНФ к СДНФ

Если в какой-то простой конъюнкции недостает переменной, например, z , то умножаем неполную конъюнкцию на выражение вида , после чего раскрываем скобки (при этом повторяющиеся дизъюнктные слагаемые не пишем). Например:

Для получения СДНФ и СКНФ из таблиц истинности необходимо выполнить следующие 4 пункта алгоритма :

СДНФ

СКНФ

    Конструирование СДНФ и СКНФ начинается с таблицы истинности.

    Отметим те строки таблицы, выходы которых равны

1

0

    Выписываем для каждой отмеченной строки комбинацию переменных через знак

конъюнкция (&)

дизъюнкция (V)

Знаки операции отрицания расставляем следующим образом:

если переменная равна 1, то запишем саму эту переменную, если же она равна 0, то запишем ее отрицание.

если переменная равна 0, то запишем саму эту переменную, если же она равна 1, то запишем ее отрицание.

    Все полученные выражения связываем операцией

дизъюнкции

конъюнкции

Получив СДНФ или СКНФ, можно составить электронную схему, реализующую данную логическую функцию. Для ее постороения требуется 3 логических элемента :

инвертор

конъюнктор

дизъюнктор

Но чаще всего СДНФ содержит много слагаемых и задача заключается в том, чтобы уменьшить их число и упростить логическое выражение. Для упрощения логических функций можно использовать законы логики, приведенные выше. С этой же целью были разработаны и специальные методы, речь о которых пойдет в следующем разделе.

Минимизация логических функций

Как отмечалось в предыдущей главе, логическая функция может быть представлена в виде таблицы истинности или в виде СДНФ (совершенной дизъюнктивной нормальной формы) или СКНФ (совершенной конъюнктивной нормальной формы) и может быть использована для получения логической схемы устройства. Однако полученная логическая схема, как правило, не будет оптимальна. Поэтому важным этапом синтеза логических схем является минимизация логических функций.

Минимизацией называется преобразование логических функций с целью упрощения их аналитического представления.

Существуют два направления минимизации:

    Кратчайшая форма записи (при этом получаются кратчайшие формы КДНФ, ККНФ, КПНФ);

    Получение минимальной формы записи (получение минимального числа символов для записи всей функции сразу).

Но следует учесть, что ни один из способов минимизации не универсален.

Для минимизации функций алгебры логики был разработан ряд методов:

    метод непосредственных преобразований логических функций;

    метод минимизации логических функций при помощи карт Карно;

    метод Квайна-Мак-Класки;

    метод Блейка-Порецкого;

    метод Петрика и другие.

Остановимся более подробно на первых двух методах.

Метод непосредственных преобразований логических функций

Одним из простых методов минимизации является метод непосредственных преобразований, который осуществляется с использованием основных теорем алгебры логики .

При применении данного метода:

    Записываются СДНФ логических функций,

    Форма преобразуется и упрощается с использованием аксиом алгебры логики, при этом, в частности, выявляются в исходном СДНФ соседние термы (члены), в которых есть по одной не совпадающей переменной.

По отношению к соседним термам применяется закон склейки.

Термы, образованные при склеивании называются импликантами.

Полученные после склейки импликанты по возможности склеивают до тех пор, пока склеивание становится невозможным.

Полученная в результате минимизации функция называется тупиковой.

Пусть дана функция

Минимизируем ее описанным выше методом. Для этого добавим еще одно слагаемое и воспользуемся законами склеивания .

Получили минимальную функцию

Рассмотренный метод минимизации путем непосредственных преобразований достаточно прост, особенно при небольшом числе переменных. Недостатком метода является то, что он не указывает строго формализованный путь минимизации. При большом числе переменных минтермы могут группироваться по-разному, в результате чего можно получить различные упрощенные формы заданной функции. При этом нельзя быть уверенным в том, что какая-то из этих форм является минимальной. Возможно, что получена одна из тупиковых форм, которая больше не упрощается, не являясь при этом минимальной.

Метод минимизации логических функций при помощи карт Карно

Карта Карно или карта (диаграмма) Вейча – графический способ минимизации функций алгебры логики.

Карты Карно удобны при небольшом числе переменных.

Карты Карно представляют собой определенную таблицу истинности обычно для двух, трех и четырех переменных и отличаются друг от друга способом обозначения строк и столбцов таблиц истинности.

На рис. 1 представлены карты Вейча для двух, трех и четырех переменных соответственно .

рис. 1

Расположение групп переменных x не имеет значения, необходимо лишь, чтобы каждая клетка отличалась от любой соседней лишь на одну переменную. Согласно принятой форме построения карт соседними также считаются клетки первой и последней строк, клетки первого и последнего столбцов. Число клеток карты равно числу возможных комбинаций значений переменных (термов) и в каждую клетку записывается значение логической функции, соответствующее данному набору переменных. Если какая-то из возможных комбинаций присутствует в совершенной дизъюнктивной нормальной форме (СДНФ) записи функции, то в соответствующей клетке карты Карно ставится «1». Если какого-то терма в полученной функции нет, то в соответствующей клетке карты Карно ставится «0» .

Например, рассмотренная в предыдущем примере функция

заданная таблицей истинности (рис. 2 а), может быть минимизирована и с помощью карт Карно. Карта Карно для нее будет иметь вид, показанный на рис. 2 б.

рис. 2

В карте Карно логические 1 , записанные в соседних клетках, обозначают, что соответствующие этим 1 конъюнкции (произведения) отличаются лишь по одной переменной, которые дополняют друг друга и их можно опустить.

Так в первой строке карты Карно (см. рис. 2 б) переменная х , встречается в комбинации с х 1 и х 2 , которые дополняют друг друга:

Таким образом, группируя две соседние клетки в верхней строке (контур на рис. 2 б), можно исключить одну переменную – х 1 .

Аналогично, группируя две соседние клетки в левом столбце (контур на рис. 2 б) и исключая отличающиеся переменные, получим упрощенное выражение – х 2 .

Полученные упрощенные выражения объединяют с помощью операции ИЛИ.

Таким образом, соседние клетки карты Карно можно группировать для исключения переменной. Число группируемых клеток может быть и больше двух, но их число должно быть четным и они должны соприкасаться (являться соседними) друг с другом.

Допускается также иметь несколько групп перекрывающихся клеток, как в только что рассмотренном примере.

Группироваться могут также клетки первой и последней строк, первого и последнего столбцов, т. е. карту допускается сворачивать в цилиндр как по вертикальной, так и по горизонтальной оси.

Для исключения n переменных общее число группируемых клеток должно быть равно 2 n . Так, для исключения одной переменной требуется объединить две соседние клетки, а для исключения трех переменных уже требуется объединить восемь соседних клеток .

Таким образом, для того чтобы получить минимизированную логическую функцию, необходимо сгруппировать все соседние клетки карты Карно, содержащие 1, а затем объединить полученные группы с помощью операции ИЛИ. Клетки, содержащие 1, которые не удалось объединить с другими клетками, образуют в минимизированной логической функции самостоятельные члены, каждый из которых содержит все переменные .

Рассмотрим несколько примеров карт Вейча и способы построения контуров группировки соседних клеток для получения упрощенной логической функции.

Так, карта Вейча для логической функции

приведена на рисунке 3.

рис. 3

На этом рисунке показан правильный способ объединения соседних ячеек, т. е. карта Вейча как бы свернута в вертикально расположенный цилиндр.

Упрощенное выражение логической функции имеет вид

Таким образом, группируя соседние клетки в единый квадрат, удалось исключить две переменные (х 1 и х 2 ) и получить простое выражение для логической функции.

Рассмотрим пример минимизации логической функции

Карта Карно для этой функции представлена на рисунке 4:

рис. 4

Группируемые ячейки обведены двумя контурами. Нижний контур дает возможность исключить одну переменную х 3 и после этого в нем остается член .

В верхнем контуре можно исключить две переменные (х 2 и х 4 ) и после этого в нем остается член . Упрощенное булево выражение логической функции имеет вид

Рассмотрим минимизацию логической функции, карта Вейча которой представлена на рис. 5.

рис. 5

Булево выражение этой функции имеет вид

Четыре угловые клетки можно объединить в одну группу. Это объединение позволяет исключить две переменные (х 1 и х 2 ) и получить член .

Две единицы из первой строки можно объединить с двумя единицами из нижней строки, получить группу из четырех ячеек, которая позволяет исключить две переменные (х 1 и х 3 ) и получить член .

Наконец, единственную оставшуюся единицу (из второй строки и последнего столбца) можно объединить с клеткой, находящейся над ней, и это позволит исключить одну переменную (х 4 ) и получить член .

Таким образом, мы получим минимизированную логическую функцию

Метод карт Карно (диаграмм Вейча), по существу, упрощает нахождение склеиваемых конъюнкций в СДНФ исходной логической функции.

Минимизация функций алгебры логики описанными методами

В данной главе представлены подобранные нами функции и примеры их минимизации с помощью рассмотренных выше методов.

    Упростить, используя карты Карно для функции 2 переменных:

Карта Карно (диаграмма Вейча) для этой функции будет иметь вид:

В первой строке можно исключить переменную х 2 и получить упрощенное выражение х 1 .

Во втором столбце можно исключить переменную х 1

Таким образом, упрощенное выражение логической функции будет иметь вид

В первом столбце можно исключить переменную х 1 и получить упрощенное выражение х 2 .

Во второй строке можно исключить переменную и получить упрощенное выражение .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

    Упростить, используя карты Карно для функции 3 переменных:

Диаграмма Вейча для этой функции будет иметь вид:

х 3 и получить упрощенное выражение .

х 3 и получить упрощенное выражение .

В последнем столбце можно исключить переменную х 1 и получить упрощенное выражение .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

Диаграмма Вейча для этой функции будет иметь вид:

В первой строке можно исключить переменную х 3 и получить упрощенное выражение и переменную х 2 и получить упрощенное выражение .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

Нами был найден и второй способ минимизации данной функции.

Тогда диаграмма Вейча для этой функции будет иметь вид:

В первой строке можно исключить переменную х 3 и получить упрощенное выражение .

В первой строке остается выражение .

Полученные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

Очевидно, что полученная функция не является минимальной, поэтому воспользуемся методом непосредственных преобразований логических функций. Вынесем за скобки переменную х 1 и для выражения в скобках применим правило свертки. Получили тот же результат, что и в первом случае.

Это значит, что соседние клетки можно группировать разными способами, главное, не забывать основное правило: для исключения n переменных общее число группируемых клеток должно быть равно 2 n .

Диаграмма Вейча для этой функции будет иметь вид:

первой строке можно исключить переменную х 3 и получить упрощенное выражение .

0 1 0 0

О втором столбце можно исключить переменную х 1 .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

Диаграмма Вейча для этой функции будет иметь вид:

В первой строке можно исключить переменную х 3 и получить упрощенное выражение .

Во второй строке можно исключить переменную х 3 и получить упрощенное выражение .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

Диаграмма Вейча для этой функции будет иметь вид:

В первом и последнем столбце можно исключить переменные х 1 и х 2 и получить упрощенное выражение .

Во второй строке можно исключить переменную х 2 и получить упрощенное выражение . О .

Полученные упрощенные выражения соединим операцией ИЛИ.

Таким образом, упрощенное выражение логической функции будет иметь вид

В данной главе были представлены функции двух, трех и четырех переменных, которые минимизировались с помощью диаграмм Вейча. Мною были наглядно продемонстированы и описаны особенности применения данного метода минимизации на различных функциях, в том числе и в совокупности с методом непосредственного преобразования функций алгебры логики.

Заключение

Представленная работа посвящена методам минимизации функций алгебры логики. В процессе работы были:

  1. изучены основные элементы математической логики;

    исследованы методы минимизации логических функций;

    подобраны задачи для самостоятельной работы;

    решены описанными методами подобранные задачи.

Мною было подробно рассмотрено 2 метода минимизации логических функций:

    метод непосредственных преобразований логических функций, осуществляемый с использованием теорем алгебры логики;

    метод минимизации с помощью диаграмм Вейча (карт Карно).

Первый метод получил широкое распространение даже в школьных учебниках информатики (например, учебники 10-11 класса Н. Угриновича , Л. Щауцуковой ), поскольку является одним из простых методов упрощения функций алгебры логики. Задания, представленные в учебниках указанных авторов, достаточно разнообразны:

    упростить логическую формулу с помощью законов алгебры логики;

    по заданной функции построить логическую схему;

    упростить переключательную схему;

    доказать с помощью таблицы истинности логическое выражение;

    построить для данной функции таблицу истинности.

Второй метод позволяет быстро и легко исключить отличающиеся переменные и получить упрощенное выражение, которое не всегда может быть минимальным. Поэтому данный метод следует рассматривать в совокупности с методом непосредственных преобразований логических функций.

Данная тема имеет практическое значение в микроэлектронике. Кроме того, ЕГЭ по информатике и ИКТ содержит некоторое количество заданий, связанных с алгеброй логики, которые мы разделили на 4 группы .

Первая группа – это задания, требующие указать логическое выражение, равносильное данному.

Вторая группа – задания на нахождение фрагментов таблиц истинности, соответствующих данному выражению.

Третья группа включает задания на нахождение инстинности высказываний при любых значениях переменных х и у .

И четвертая группа – это задания на определение структурной формулы, соответствующей данной логической схеме.

Заданий конкретно касающихся минимизации логических функций мне не встретилось, но имеющиеся в тестах задания требуют достаточно глубоких знаний в области алгебры логики.

В связи с усложнением вступительных испытаний в высшие учебные заведения можно предположить, что в скором времени в тестах, а значит и в образовательных программах, могут появиться задания на упрощение и минимизацию логических функций.

Список литературы

    Гаврюкова Г. А. Логика в информатике [Электронный ресурс]. – Режим доступа: окт. 2010).

    Ивин А. А. Логика: Учебное пособие. – 2-е изд. – М.: Знание, 1998. – 233 с.

    Игошин В. И. Математическая логика и теория алгоритмов: Учебное пособие для студ. высш. учеб. заведений. – 2-е изд., стер. – М.: Академия, 2008. – 448 с.

    Информатика и ИКТ. Подготовка к ЕГЭ-2009. Вступительные испытания. / Под ред. Ф. Ф. Лысенко. – Ростов н/Д: Легион-М, 2009. – 208 с.

    Информатика: Учебник / Б. В. Соболь [и др.]. – 3-е изд., доп. и перераб. – Ростов н/Д: Феникс, 2007. – 446 с.

    Информатика: Учебное пособие / А. В. Могилев, Н. И. Пак, Е. К. Хеннер. – 3-е изд. – М.: Академия, 2004. – 848 с.

    Калабеков Б. А. Цифровые устройства и микропроцессорные системы: Учебник для техникумов связи. – М.: Горячая линия – Телеком, 2000. – 336 с.

    Каймин В. А. Информатика: Учебник. – 2-е изд., перераб. и доп. – М.: ИНФРА-М, 2001. – 272 с.

    Коваленко А. А, Петропавловский М. Д. Основы микроэлектроники: Учебное пособие. – М.: Академия, 2006. – 240 с.

    Львовский М. Б. Методическое пособие по информатике для учащихся 9-11 классов, изучающих IBM PC [Электронный ресурс]. – Режим доступа: сент. 2010).

    Математические основы информатики. Элективный курс: Учебное пособие / Е. В. Андреева, Л. Л. Босова, И. Н. Фалина. – М.: БИНОМ. Лаборатория знаний, 2005. – 328 с.

    Минимизация логических функций [Электронный ресурс]. – Режим доступа: авг. 2010).

    Основы микроэлектроники: Учебное пособие для вузов / Н. А. Аваев, Ю. Е. Наумов, В. Т. Фролкин. – М.: Радио и связь, 1991. – 288 с.: ил.

    Практикум по информатике и информационным технологиям / Н. Д. Угринович, Л. Л. Босова, Н. И. Михайлова. – 2-е изд., испр. – М.: БИНОМ. Лаборатория знаний, 2004. – 394 с.

    Прикладная математика: Пособие / И. Н. Ревчук, В. К. Пчельник. – Гродно: ГрГУ им. Я. Купалы, 2007. – 128 с.

    Рабкин Е. Л., Фарфоровская Ю. Б. Дискретная математика: булевы функции и элементы теории графов: Методические указания и контрольные задания [Электронный ресурс]. – Режим доступа: 7 авг. 2010).

    Савельев А. Я. Основы информатики: Учебник для вузов. – М.: МГТУ им. Н. Э. Баумана, 2001. – 328 с., ил.

    Степаненко И. П. Основы микроэлектроники: Учебное пособие для вузов. – 2-е изд., перераб. и доп. – М.: Лаборатория Базовых Знаний, 2001. – 488 с.

    Теория и методика обучения информатике: Учебник / [М. П. Лапчик, И. Г. Семакин, Е. К. Хеннер, М. И. Рагулина и др.]; под ред. М. П. Лапчика. – М.: Академия, 2008. – 592 с.

    Угринович Н. В. Информатика и ИКТ. 10 класс. Профильный уровень. – 3-е изд., испр. – М.: Бином. Лаборатория знаний, 2008. – 387 с.

    Угринович Н. В. Информатика и информационные технологии: Учебник для 10-11 классов. – М.: БИНОМ. Лаборатория знаний, 2003. – 512 с.

    Шауцукова Л. З. Информатика 10 – 11. – М.: Просвещение, 2004. – 420 с.

Метод применим для функций от любого числа переменных, но мы рассмотрим его для функций от 3-х переменных.

Представим в виде ДНФ с неопределенными коэффициентамиk:

(**)

В этой ДНФ представлены все возможные элементарные коньюнкции, которые могут входить в функцию, а коэффициенты kмогут принимать значения 0 или 1. Значения коэффициентов нужно выбрать так, чтобы данная ДНФ была минимальной.

Будем рассматривать данную нам функцию на всех наборах и приравнивать выражение (**) на каждом из наборов (отбрасывая нулевые конъюнкции) соответствующему значению функции. Получим систему изуравнений вида:

Если в каком-то из этих уравнений правая часть равна 0, то все слагаемые левой части тоже равны 0. Эти коэффициенты можно исключить из всех уравнений, правые части которых равны 1. В этих уравнениях значение 1 следует присвоить тому коэффициенту, который соответствует коньюнкции наименьшего ранга. Эти коэффициенты и определят МДНФ.

Пример

Составляем систему, используя выражение (**).

После исключения нулевых слагаемых получаем

Полагаем остальные коэффициенты считаем нулевыми. Получаем МДНФ:

2.2. Метод Квайна - Мак - Класки

Рассмотренный метод неопределенных коэффициентов эффективен, если число аргументов функции не больше, чем 5 – 6. Это связано с тем, что число уравнений равно 2 n . Более эффективным является выписывание не всех возможных конъюнкций для функции, а только тех, которые могут присутствовать в ДНФ данной функции. На этом основан метод Квайна. При этом предполагается, что функция задана в виде СДНФ. В данном методе элементарные конъюнкции рангаn, входящие в ДНф, называются минитермами рангаn. Метод Квайна состоит из последовательного выполнения следующих этапов.

1. Нахождение первичных импликант

Просматриваем последовательно каждый минитерм функции и производим склеивание его со всеми минитермами, с которыми это возможно. В результате склеивания минитермов n-го ранга, мы получим минитермы (n-1)-га ранга. Минитермыn-го ранга, которые участвовали в операции склеивания, помечаем. Затем рассматриваем минитермы (n-1)-го ранга и операцию склеивания применяем к ним. Помечаем склеивающиеся минитермы (n-1)-го ранга и записываем получившиеся в результате склеивания минитермы (n-2)-го ранга и т. д. Этап заканчивается, если вновь полученные минитермыl -го ранга уже не склеиваются между собой. Все неотмеченные минитермы называются первичными импликантами. Их дизъюнкция представляет собой Сокр. ДНФ функции.

Склеиваем минитермы 4-го ранга и помечаем склеивающиеся минитермы звездочками

Образуем минитермы 2-го ранга:

Первичными (простыми) импликантами являются:

2. Расстановка меток

Для данной функции Сокр. ДНФ имеет вид:

Для построения тупиковых ДНФ и Сокр. ДНФ нужно выбросить лишние интервалы. Строим таблицу, строки которой соответствуют первичным импликантам, а столбцы – минитермам СДНФ. Если в некоторый из минитерм входит какой-то из импликант, то на пересечении соответствующей строки и столбца ставится метка, например, 1.

Продолжение примера

3. Нахождение существенных импликант

Если в каком-либо столбце содержится только одна единица, то первичная импликанта, определяющая эту строку, называется существенной. Например, существенной импликантой является . Существенная импликанта не может быть удалена из Сокр. ДНФ, т. к. только она способна покрыть некоторые минитермы СДНФ. Поэтому из таблицы исключаем строки, соответствующие этим импликантам, и столбцы, имеющие единицы в этих строках.

В рассматриваемом примере исключаем строку и столбцы.

В результате получаем таблицу

4. Вычеркивание лишних столбцов и строк

Если в полученной таблице есть одинаковые столбцы, то вычеркиваем все, кроме одного. Если после этого в таблице появятся пустые строки, то их вычеркиваем.

5. Выбор минимального покрытия максимальными интервалами

В полученной таблице выбираем такую совокупность строк, которая содержит единицы во всех столбцах. При нескольких возможных вариантах такого выбора, предпочтение отдается варианту с минимальным числом букв в строках, образующих покрытие.

Продолжение примера

Минимальное покрытие таблицы образуют строки, соответствующие импликантам . Тогда МДНФ имеет вид:

В методе Квайна есть одно существенное неудобство, связанное с необходимостью полного по парного сравнивания минитермов на этапе построения Сокр. ДНФ. В 1956 г. Мак - Класки предположил модернизацию первого этапа метода Квайна, дающую существенное уменьшение количества сравнений минитермов.

Идея метода Мак - Класки заключается в следующем. Все минитермы записываются в виде двоичных номеров, например, как 1010. Эти номера разбиваются на группы по числу единиц в номере, т. е. вi-ю группу попадают номера, имеющие в своей записиiединиц. По парное сравнение производится только между соседними по номеру группами, т. к. минитермы, пригодные для склеивания, отличаются друг от друга только в одном разряде. При образовании минитермов с ранга выше нулевого, в разряды, соответствующие исключенным переменным, ставится тире.

Пример

Найдем МДНФ для функции:

Минитермы 4-го ранга по группам

Минитермы 3-го ранга

Минитермы 2-го ранга

Непомеченные минитермы или простые импликанты

Строим таблицу меток

Обе первичные импликанты существенны и определяют минимальное покрытие, т. е. МДНФ имеет вид.

Наиболее употребляемая операция при минимизации функций - это операция склеивания.

AB+ ВB=B (A+ В)=B.

Рассмотрим три наиболее распространенных метода минимизации.

1. Пусть будут заданы номера наборов четырех переменных, на которых логическая функция принимает единичное значение: f (2,5,6,7,10,12,13,14)=1.

Выразим эту логическую функцию в СДНФ (символ конъюнкции писать не будем):

f (0010,0101, 0110, 0111, 1010, 1100, 1101, 1110) =

На первом этапе минимизации исходную СДНФ можно упростить за счет использования закона склеивания, тогда получим:

Обращаем внимание на то, что одну и ту же конституенту (импликанту) можно склеивать с другими конституентами (импликантами) многократно, так как в логике Буля действует закон идемпотентности:

поэтому любую конституенту можно размножить.

На втором этапе воспользуемся таблицей Куайна (табл. 8), в соответствии с которой данный метод минимизации получил свое наименование - метод Куайна. В таблице по вертикали перечислены все полученные на первом этапе упрощения импликанты, а по горизонтали - исходные конституенты. Единица в табл. 8 стоит там, где импликанта «накрывает» конституенту. Дело в том, что конституента всегда может быть заменена импликантой или даже отдельным термом по закону поглощения:

Таблица 8

После заполнения таблицы Куайна у нас получилось так, что почти в каждой графе оказалось по две единицы; между тем достаточно иметь одну единицу в графе. Поэтому, по возможности, нужно исключить избыточные единицы. Выбор единиц производится из соображений минимальности числа термов (выбранные единицы затемнены). В итоге оказалось, что можно обойтись только тремя импликантами вместо шести:

С помощью таблиц истинности легко проверить, что полученная в МНФ функция воспроизводит все значения исходной функции. Отметим, что в общем случае решений по критерию минимума термов может быть несколько.

2. Не менее эффективным способом минимизации логических функций является метод сочетания индексов. Для его изложения составим табл. 9, в графах которой записаны возможные сочетания индексов. В последней графе выписаны значения функции. Анализ таблицы начинается слева по столбцам. Принцип исключения i, j_кода следующий. На пересечении i_столбца, например, с сочетанием индексов 23, и j_строки, например, 3_ей, находится код 10, что соответствует импликанте. Следовательно, в этом столбце везде, где встречается код 10, т. е. в строках 2, 3, 10 и 11, эти коды исключаются, поскольку значение функции в 3_ей строке равно нулю. Теперь возьмем столбец с сочетанием индексов 124. Здесь во 2_ой и 6_ой строках оставлены коды 010, а в 10_ой и 14_ой строках - код 011. Сделано это потому, что эти коды встречаются только на строках со значением функции, равным единице. Напротив, код 110 этого же столбца встречается как при единичных значениях функции, так и при нулевых.

Таблица 9

Итак, все коды на строках, заканчивающихся нулевыми значениями функции, исключаются автоматически. Если эти коды попадают на строки, заканчивающиеся единичным значением функции, то они также не учитываются. Остаются только те коды, которые расположены на строках с единичным значением функции (эти коды затемнены).

Далее руководствуются следующим правилом. Для того чтобы функция приняла значение, равное единице, достаточно того, чтобы только какая-нибудь одна импликанта на строке приняла единичное значение. Прежде всего, оставляем минимальную импликанту, которая перекрывает единицы в строках 2, 6, 10 и 14. Затем, естественно, обращаемся к 12_ой строке. Здесь оставляем единственный на строке код 011, что отвечает импликанте. Эта же импликанта ответственна за 13_ую строку, оканчивающуюся тоже единицей. Осталось рассмотреть 5_ую и 7_ую строки. Общей для них является импликанта: . Таким образом, тремя импликантами мы перекрыли все единичные значения функции, что совпадает с результатом, полученным на основе таблиц Куайна.

3. Существует графический способ склеивания, который получил название метод карты Карно (представлен в табл. 10). Выделяем смежные единицы, это и будут слагаемые нашей функции.

Таблица 10

Получили два слагаемых

Хотя табл. 9 более громоздка, чем табл. 8, метод сочетания индексов не считается более сложным, чем метод Куайна, если помнить, что до составления таблиц Куайна необходимо произвести многочисленные склейки конституент и импликант. Реализация на компьютере алгоритма метода сочетания индексов оказывается сравнительно простой. И напротив, внешняя простота и наглядность третьего метода минимизации логических функций с помощью карт Карно оборачивается сложной программой при реализации алгоритма на компьютере.

Таблица 11

Таблица 12

Карта Карно для четырех переменных представлена в виде табл. 11. Каждая клетка карты соответствует конституенте. Заполненная карта представлена табл. 12 (функция взята та же, что и в первых двух методах). Согласно закону склеивания, две смежные конституенты с единичными значениями всегда можно объединить для получения соответствующей импликанты. Причем смежными считаются и те, которые лежат на границах карты. Какие именно единицы требуется объединить для получения подходящей импликанты, легко определить визуально. Следует также помнить, что в соответствии с законом идемпотентности одна и та же единица табл. 12 может склеиваться с двумя или тремя смежными единицами.