Сайт о телевидении

Сайт о телевидении

» » Самовозбуждение генераторов. Что такое самовозбуждение в генераторе переменного тока

Самовозбуждение генераторов. Что такое самовозбуждение в генераторе переменного тока

Условия самовозбуждения такого генератора следующие:

Первое условие- заключается в том, чтобы у такого генератора существовал остаточный магнитный поток, который индуцирует первоначальную ЭДС в обмотке якоря

Такой магнитный поток обычно существует в машине вследствие остаточного намагничивания полюсов.

Второе условие- заключается в том, что, ког­да по обмотке возбуждения начинает протекать ток (под дей­ствием остаточной ЭДС), магнитодвижущая сила должна быть направлена согласно с Fост . Тогда под воздействием результирующей МДС, равной у генератора возрастает ЭДС . Если МДС и направлены встречно, то машина размагничивается и процесс самовозбуждения не произойдет. В этом случае необходимо изменить направление протекания тока в обметке возбуждения, изменив полярность напряжения, прило­женного к ней.

Третье условие- заключается в том, чтобы со­противление цепи обмотки возбуждения было меньше некоторого значения, называемого критическим.

Принципиальная электрическая схема генератора с самовоз­буждением приведена на рис. 1.3. Генераторы данного типа имеют две обмотки возбуждения: параллельную и последовательную.

Рис. 1.3. Принципиальная электрическая схема генератора

У генераторов параллельного возбуждения цепь обмотки возбуждения подключается параллельно якорю. Ток возбуждения может быть определён:

где - сопротивление обмотки возбуждения.

Характеристика холостого хода генератора параллельного возбуждения аналогична такой же характеристике генератора не­зависимого возбуждения.

Нагрузочная характеристика генератора параллельного воз­буждения будет располагаться ниже, чем соответствующая харак­теристика генератора независимого возбуждения из-за наличия явления саморазмагничивания.

Внешней характеристикой генератора параллельного возбуж­дения называется зависимость при и . В отличие от генераторов с независимым возбужден­ием, у которых при снятии внешней характеристики ток возбужде­ния , у генераторов параллельного возбуждения - является переменной величиной, зависящей от тока нагрузки . Это связано с тем, что при изменении изменяется напряжение на зажимах якоря генератора, к которому подключена обмотка возбуждения.

У генераторов параллельного возбуждения с ростом тока на­грузки напряжение генератора уменьшается значительнее, чем у генераторов независимого возбуждения. Это связано с тем, что помимо двух причин, вызывающих понижение напряжения U с рос­том тока нагрузки (падение напряжения в якоре и размагничивающего действия реакции якоря) существует ещё и третья причина: яв­ление саморазмагничивания. Это явление заключается в том, что с возрастанием тока нагрузки уменьшается ток возбуждения за счет понижения напряжения U из-за влияния первых двух причин.

Генератор параллельного возбуждения может быть загружен до некоторого максимального значения тока якоря . При дальнейшем уменьшении сопротивления нагрузки ток нагрузки начи­нает резко уменьшаться, т.к. напряжение U падает быстрее, чем уменьшается сопротивление .Это связано с тем, что при больших токах нагрузки магнитная система переходит в ненасыщенное состояние вследствие саморазмагничивания и преобладающее значение имеют факторы, вызывающие падение напряжения на сопротивление якоря.

Ток якоря , достигнув значения начинает уменьшаться и при достигает значения тока ко­роткого замыкания генератора. Значение определяется только остаточной ЭДС и сопротивлением обмотки якоря (U=0 и I в =0 ).

Регулировочная характеристика генератора с параллельным возбуждением имеет такой же вид, как и у генератора независимого возбуждения.

Генераторы смешанного возбуждения имеют две обмотки возбуждения: параллельную и последовательную (см. рис. 1.3). Как правило, параллельная обмотка возбуждения является основной, а последовательная – вспомогательной.

Обмотки возбуждения могут выключаться согласно, т.е. так, чтобы их магнитодвижущие силы складывались. Целью включения последовательной обмотки является компенсация падения напряжения на сопротивлении обмотки якоря и размагничивающего действия ре­акции якоря. За счет этой обмотки можно обеспечить автоматичес­кую стабилизацию напряжения генератора в определенном диапазоне

изменения нагрузки.

Это объясняется тем, что возрастающий ток нагрузки, протекая по последовательной обмотке возбуждения, вызывает увеличе­ние МДС этой обмотки. МДС последовательной обмотки, суммируясь с МДС параллельной обмотки, компенсирует уменьшение напряжения генератора.

Если последовательную обмотку включить встречно, так что­ бы МДС последовательной и параллельной обмоток были бы противоположно направлены, то внешняя характеристика такого генератора будет крутопадающей, поскольку рост тока нагрузки приводит к резкому уменьшению магнитного потока и ЭДС, наводимой в обмотке якоря.

Встречное включение последовательной и параллельной обмо­ток возбуждения используется в тех случаях, когда необходимо ограничить ток короткого замыкания, (сварочные генераторы и т.п.)

ГЕНЕРАТОРЫ С САМОВОЗБУЖДЕНИЕМ

На практике, наиболее широко используемыми являются ультразвуковые генераторы, выполненные по схемам самовозбуждения, в которых весь тракт усилителя и колебательной системы охвачен положительной обратной связью так, что в нем возникают автоколебания на частоте максимальных механических колебаний рабочей колебательной системы.

Примером генераторов с самовозбуждением могут служить генераторы технологических аппаратов фирмы "KLN Ultraschal GVBH" (ФРГ) для ультразвуковой сварки, генераторы аппаратов фирмы " Вranson " (Великобритания) для УЗ ванн очистки и отечественные аппараты типа УЗ01-01.

Для формирования сигнала обратной связи в генераторах с самовозбуждением применяются мостовые схемы, схемы с дифференциальным трансформатором, а также различные индуктивные и емкостные схемы положительной обратной связи. Основным недостатком генераторов с самовозбуждением является необходимость его перенастройки при смене колебательной системы или рабочих инструментов для выполнения различных технологических операций. Кроме того, в генераторах с самовозбуждением невозможно осуществлять регулирование выходных параметров аппарата (например, интенсивности УЗ колебаний на рабочем инструменте колебательной системы), поскольку необходимыми условиями оптимальной работы аппарата с самовозбуждением являются баланс фаз и баланс амплитуд, нарушение которых ведет к срыву автоколебаний. Происходит это потому, что нарушение режимов работы ультразвуковой колебательной системы (изменение нагрузки, нагрев и т.п., а также изменение электрических и геометрических параметров самой колебательной системы) приводит к расстройке одновременно двух взаимосвязанных систем: системы выделения сигнала обратной связи и системы согласования колебательной системы с генератором. Поэтому перестройка аппарата требует изменения и взаимной увязки всех элементов, что представляет собой сложную техническую задачу, решение которой практически трудно осуществимо в процессе эксплуатации аппарата.

На практике, при выполнении различных технологических операций, требуется быстрая настройка аппарата при изменении параметров колебательной системы путем изменения характеристик (регулирования) одного электронного элемента, а также осуществление регулирования выходных параметров аппарата в процессе выполнения технологических операций.

По этой причине, для многофункционального УЗ аппарата необходимо использовать генераторы с самовозбуждением, позволяющие осуществлять широкий спектр операций с различными по конструкции рабочими инструментами колебательных систем и позволяющего легко осуществлять перестройку электронным способом характеристик аппарата в процессе его эксплуатации при обработке различных материалов, сред и объектов при различных уровнях нагрузки и т.п. Принципиальные схемы ультразвуковых генераторов для использования в составе многофункциональных УЗ аппаратов показаны на рис. 4.3. и рис. 4.4. Принципиальные схемы отличаются способами формирования сигнала обратной связи и перестройки характеристик аппарата, а также мощностными характеристиками. Генератор, показанный на рис. 4.3. более прост в реализации, имеет мощность 40 Вт и предназначен для комплектации многофункционального аппарата 2 типа. В нем обратная связь формируется с помощью перестраиваемого емкостного элемента. Генератор, принципиальная схема которого приведена на рис.4.4, более сложен, имеет электронные регулировки частоты и мощности. Такой генератор может использоваться для комплектации аппаратов второго и третьего типов.

Ввиду большей универсальности этого генератора рассмотрим подробно его устройство и принцип работы.

Схема ультразвукового генератора, показанная не рис. 4.4 содержит усилитель УЗ частоты, выполненный на транзисторах VT2, VT3, рабочую колебательную систему ZQ1, схему согласования усилителя с колебательной системой, содержащую дроссель L, трансформатор TR3, а также схему положительной обратной связи, выполненную на элементах С1, С2, С3, R1, TR1, схема обратной связи своим входом электрически соединена с выходом усилителя через комплексное сопротивление, включающее выходное сопротивление усилителя и разделительный конденсатор С4, и выполнена в виде последовательно включенных конденсатора и первичной обмотки дополнительного трансформатора TR1, вторичная обмотка которого соединена с механически или электрически перестраиваемым резистивным элементом R1, при этом схема согласования подключена параллельно схеме выделения сигнала обратной связи и выполнена в виде последовательно включенных компенсирующего дросселя L и выходного трансформатора TR3.

Рис.4.3. Принципиальная схема генератора мощностью 40вт

Рис.4.4.Принципиальная схема генератора с самовозбуждением мощностью 160 вт.

УЗ аппарат содержит усилитель на транзисторах VT2 и VT3 , работающих в режиме переключения, что позволяет обеспечить максимальный коэффициент преобразования биполярного напряжения питания в электрические колебания УЗ частоты. Нагрузкой усилителя являются последовательно включенные через разделительный конденсатор С4, компенсирующий дроссель L и первичная обмотка выходного трансформатора TR3. Ко вторичной обмотке трансформатора TR3 подключена рабочая колебательная система ZQ1, содержащая пьезоэлектрический преобразователь, согласующий концентратор и рабочий орган, для ввода УЗ колебаний в обрабатываемые материалы, объекты и среды. Компенсирующий дроссель L и трансформатор TR3 обеспечивают согласование усилителя с рабочей колебательной системой. Схема выделения сигнала обратной связи, являющаяся одновременно схемой настройки и регулирования параметров аппарата, содержит последовательно включенные конденсаторы С1, С2, С3 и первичную обмотку трансформатора TR1. Выделенный сигнал подается на последовательно включенную со схемой выделения сигнала обратной связи первичную обмотку трансформатора TR2.

Параллельно вторичной обмотке трансформатора TR1 подключен резистивный элемент R1, сопротивление которого может изменяться механическим или электронным способом (например, переменный резистор для ручной регулировки аппарата или электронная схема с перестраиваемым выходным сопротивлением для автоматизированной перестройки аппарата).

Схема выделения сигнала обратной связи с последовательно подключенной к нему первичной обмоткой трансформатора TR2 соединена с выходом усилителя на транзисторах VT2 и VT3 через комплексное сопротивление, представляющее собой выходное сопротивление усилителя и разделительный конденсатор C4, т.е. подключена параллельно схеме согласования усилителя с рабочей колебательной системой. Обмотки трансформатора TR1 выполнены на общем магнитопроводе.



Применение вторичной обмотки трансформатора TR1, расположенной на одном магнитопроводе с первичной обмоткой, позволяет за счет изменения величины нагрузочного сопротивления R1 (или выходного сопротивления перестраиваемых электронных схем) изменять индуктивность первичной обмотки трансформатора TR1 Изменение индуктивности первичной обмотки трансформатора TR1 обеспечивает перестройку схемы обратной связи.

Для пояснения работы аппарата предположим, что при подключении рабочей колебательной системы, используемой для осуществления определенного технологического процесса, не обеспечивается режим самовозбуждения УЗ аппарата из-за отсутствия баланса фаз и амплитуд. В предложенном УЗ аппарате фазовые соотношения между напряжением в точке между конденсатором C4, и дросселем L и выходным током усилителя приводят к изменению формы напряжения обратной связи на входе усилителя за счет наличия конечного выходного сопротивления усилителя.

В этом случае небаланс фаз и амплитуд приводит к тому, что нагрузка усилителя может носить индуктивный характер и тогда сигнал обратной связи на входе усилителя начинает опережать по фазе выходной сигнал, или может носить емкостной характер и тогда, выходной сигнал опережает сигнал обратной связи. В обоих случаях изменение сопротивления R1 обеспечивает изменение индуктивности первичной обмотки трансформатора TR1 и перестройку параметров схемы обратной связи. Перестройка обратной связи приводит к изменению фазовых соотношений на входе и выходе усилителя и при определенной величине сопротивления R1 обеспечивается условие самовозбуждения. При этом происходит изменение частоты генерации до величины, равной частоте механического резонанса рабочей колебательной системы, и УЗ генератор работает в режиме самовозбуждения. Таким образом, за счет изменения сопротивления R1 частотно зависимая обратная связь обеспечивает перестройку частоты генерации до частоты механического резонанса и в начальный момент обеспечивает работу с любой из необходимых рабочих колебательных систем. При этом на выходе усилителя можно установить определенный сдвиг фаз, обеспечив режим самовозбуждения на частоте, близкой к частоте механического резонанса. Поэтому, обеспечив работу аппарата на частоте, близкой к резонансной, можно снизить интенсивность УЗ колебаний, возбуждаемых в обрабатываемой среде или объекте, т.е. установить оптимальный режим ведения процесса. Такое же изменение, можно осуществлять в процессе эксплуатации аппарата, оперативно изменяя режимы УЗ воздействия. При настройке аппарата для работы в режиме самовозбуждения с выбранной рабочей колебательной системой или необходимыми рабочими инструментами обеспечивается проведение определенного технологического процесса. В ходе проведения этого процесса может происходить изменение параметров колебательной системы (за счет нагревания пьезоэлементов и материала накладок, изменений условий ввода колебаний и т.п.). В этом случае, изменение частоты механического резонанса рабочей колебательной системы, происходящее в небольших пределах, приводит также к изменению характера нагрузки (т.е. нагрузка, приведенная ко входу генератора, начинает носить индуктивный или емкостной характер) и в небольших пределах к изменению фазовых соотношений между током и напряжением на выходе усилителя. В обоих случаях для сохранения условий самовозбуждения, т.е. сохранения на выходе усилителя первоначально установленного сдвига фаз, автоматически осуществляется изменение частоты генерации в небольших пределах до величины, равной резонансной частоте колебательной системы, и условие самовозбуждения постоянно выполняется.

Таким образом, рассмотренный УЗ генератор позволяет осуществлять технологические процессы с помощью различных рабочих колебательных систем или одной колебательной системы с различными рабочими инструментами, регулировать выходные параметры аппарата, в частности интенсивность УЗ колебаний, в ходе настройки и эксплуатации аппарата, а также обеспечивает сохранение условий первоначально установленного режима самовозбуждения в процессе эксплуатации при изменении параметров колебательной системы и условий воздействия УЗ колебаний на объекты, среды и материалы. Принципиальная схема генератора содержит также реле времени, выполненное на элементе DD1 и обеспечивающее включение технологического аппарата на время проведения технологического процесса. На транзисторе VT1 выполнена схема стабилизации амплитуды колебаний генератора. Перечисленные достоинства делают рассмотренные генераторы пригодными для комплектации многофункциональных УЗ аппаратов мощностью от 40 до 160 Вт.

Основное достоинство генераторов с самовозбуждением - простота конструкции и удобство эксплуатации. Однако, изготовление таких генераторов требует очень точной предварительной балансировки схемы согласования генератора с колебательной системой и схемы выделения сигнала обратной связи. Кроме того, генераторы с самовозбуждением, не обеспечивают автоматическое изменение параметров генератора (рабочей частоты) в очень широких пределах, например, при изменении параметров акустической нагрузки от газовой среды до твердого тела. Для решения подобных задач используются генераторы с независимым возбуждением, выполненные по схемам с автоподстройкой частоты.

Генератор качающейся частоты - это генератор, который вырабатывает электрические колебания.

Генератор в переводе с латинского языка означает «производитель», т. е. это устройство, которое производит определенный продукт. Колебания в нем не затухают при подаче части переменного напряжения с выхода на вход генератора. В радиотехнике его называют осциллятором - системой, возбуждающей колебания относительно какого-нибудь положения равновесия.

Генератор с самовозбуждением представляет собой устройство, благодаря которому энергия постоянного тока преобразуется в энергию электромагнитных колебаний, возникающих без внешнего воздействия.

Структура такого генератора содержит два основных звена. Это звено обратной связи с коэффициентом передачи и усилительное звено.

К самовозбуждению генератор подталкивает положительная обратная связь, которая позволяет генератору перейти в режим установившихся колебаний.

При включении напряжения питания в генераторе возникают малые колебания. На них влияет положительная обратная связь, действие которой увеличивается за счет усилительного каскада. Колебания передаются по цепи положительной обратной связи на выход усилителя. Сигнал постоянно возрастает при обходе усилителя и обратной связи, пока не устанавливается режим колебаний. Переход к такому режиму возможен за счет уменьшения наклона амплитуды сигнала. Усилитель должен быть нелинейным, потому что линейное звено способствовало бы возрастанию амплитуды самовозбужденных колебаний.

Генератор производит, как правило, одночастотное колебание, а нагрузкой является параллельный колебательный контур. Сопротивление контура активно, на резонансной частоте максимально.
В усилительном звене генератора применяются операционные усилители и транзисторы, биполярные и полевые. Частоту производящихся колебаний определяет баланс амплитуд на определенной частоте, в связи с соответствием усилителя с резонансной нагрузкой резонансной же частоте контура.

От выбранного рабочего режима для генератора с самовозбуждением зависит процесс генерации колебаний. Режим определяется коэффициентом обратной связи и питающим напряжением. При выборе режима важно обращать внимание на положение рабочей точки на усилительном элементе, зависящей от напряжения смещения. Самовозбуждение легко возникает при расположении рабочей точки в области большой крутизны. Обратное положение рабочей точки приостанавливает, затрудняет самовозбуждение генератора. Существует два режима возбуждения: жесткий и мягкий. При жестком режиме рабочая точка смещается в левую сторону, напряжение смещения отсутствует. В результате этого небольшие колебания контура не могут вызвать самовозбуждение. Мягкий режим возникает тогда, когда рабочая точка лежит на прямолинейном участке усилительного элемента.

Процесс самовозбуждения проходит беспрепятственно, увеличивается амплитуда тока базы и в то же время возрастает амплитуда выходного напряжения.

Для эксплуатации генератора с самовозбуждением необходимо использовать оба перечисленных режима возбуждения, т. е. комбинированную схему смещения. В момент включения удобен мягкий режим, но в дальнейшем он приводит к большим потерям в схеме генератора, поэтому после установления мягкого надо перейти к жесткому режиму.

Одним из главнейших параметров генератора с самовозбуждением считается стабильность частоты. Ее количественной оценкой выступает обратная величина. Эта обратная величина представляет собой относительную нестабильность частоты. Под влиянием дестабилизирующих факторов параметры генератора меняются, в результате чего изменяются и фазовые углы. Любопытно, что после этой операции в генераторе устанавливается другой стационарный режим колебаний и сумма фазовых углов снова соответствует соотношению.

Повысить стабильность, так необходимую генератору с самовозбуждением, можно с помощью нескольких приемов. Путем параметрической стабилизации - при поддержке постоянства колебательной системы и нужных параметров генератора. Для осуществления такой стабилизации необходимо поддерживать постоянство питающих напряжений и защищать колебательную систему от влияния внешних воздействий. Повысить стабильность можно и другим путем. Для этого необходимо выбрать такие схему и режим работы генератора, при которых фазовые углы изменялись бы незначительно. Еще один вариант повышения стабильности заключается в компенсации изменений температуры элементов генератора, причем они должны быть противоположными другим изменениям по своему характеру. Этим элементом может быть колебательный контур, который увеличивается с повышением температуры. И, наконец, последний способ добиться стабилизации - с использованием кварцевых резонаторов, которые обладают высокой стабильностью как колебательные системы.

Существуют синхронные генераторы с самовозбуждением серии SJ, которые предназначаются для долгого режима работы как источник переменного тока. Они работают в составе передвижных и стационарных агрегатов. Такие генераторы могут" работать автономно, параллельно с другими генераторами, а также с жесткой сетью.

Двигатели внутреннего сгорания, электродвигатели и различные турбины используются в качестве привода такого генератора.

Генератор с самовозбуждением применяется в радиопередающих устройствах, где он генерирует энергию постоянного и переменного тока в энергию радиочастотных колебаний.

Магнитное поле в генераторах создается, как мы говорили в § 167, электромагнитами, через обмотки которых должен проходить постоянный ток. В генераторах переменного тока ток для обмоток индуктора получают либо от отдельной аккумуляторной батареи, либо – чаще – от отдельного генератора постоянного тока, укрепленного на одном валу с главным генератором (рис. 326). Такого рода генераторы, в которых ток для создания магнитного поля берется от отдельного источника, называются генераторами с независимым возбуждением.

В генераторах постоянного тока можно использовать для создания постоянного магнитного поля постоянный ток, вырабатываемый самим генератором. Такого типа генераторы называют генераторами с самовозбуждением.

Соединить цепь индуктора, цепь якоря и сеть можно двумя различными способами, которые схематически показаны на рис. 339 и 340.

Рис. 339. Схема соединения индуктора, якоря и сети в генераторе с последовательным возбуждением

Рис. 340. Схема соединения якоря, индуктора и сети в генераторе с параллельным возбуждением: – регулировочный реостат в цепи индуктора, – пусковой реостат в цепи якоря

На рис. 339 изображен так называемый генератор с последовательным возбуждением, или, как его иногда называют, сериесный генератор. Здесь цепь индуктора, цепь якоря и сеть соединены последовательно, так что весь ток, индуцированный при работе генератора в якоре, проходит последовательно через индуктор и через сеть. Ток через индуктор равен току в сети.

В генераторе с параллельным возбуждением, называемом также шунтовым генератором (рис. 340), цепь якоря и цепь индуктора соединены параллельно, и к ним присоединена сеть (нагрузка).

Таким образом, ток, возникающий в цепи якоря, разветвляется: часть его проходит через сеть, а другая часть ответвляется и проходит через обмотки индуктора, создавая магнитное поле, необходимое для работы генератора. В этом случае ток в индукторе составляет лишь часть – обычно небольшую – тока в сети.

169.1. По внешнему виду легко сразу отличить, имеем ли мы дело с сериесным или шунтовым генератором (или двигателем). В сериесных генераторах обмотка возбуждения состоит из относительно небольшого числа витков толстой проволоки; обмотка же шунтовых генераторов делается из более тонкой проволоки, но содержит значительно большее число витков. Чем это объясняется?

169.2. Можно ли запустить сериесный генератор без нагрузки, т. е. отключив его от сети? Можно ли таким же образом запустить шунтовый генератор?

Если бы при запуске генератора его электромагниты были совершенно размагничены, т. е. не создавали никакого магнитного поля, то, очевидно, при вращении якоря в нем не возникала бы индуцированная э. д. с. и неоткуда было бы взяться току для питания электромагнитов. Но фактически сердечники один раз намагниченных электромагнитов сохраняют всегда некоторое, хотя бы и очень слабое остаточное намагничивание. Таким образом, в генераторе всегда имеется магнитное поле, хотя до начала работы генератора это поле очень слабо. Как только в этом поле начнет вращаться якорь, в нем возникнет слабый индуцированный ток. Проходя по обмоткам электромагнита, этот ток усиливает магнитное поле, возрастание которого приводит к усилению индуцированной э. д. с. и тока. При этом еще более усиливается поле, еще более возрастает индуцированный ток и т. д. Таким образом, в первые моменты напряжение на зажимах генератора очень мало, но оно быстро возрастает и достигает того значения, на которое генератор рассчитан.

169.3. На генераторах постоянного тока всегда указывается, в какую сторону нужно вращать их ротор. Никогда не следует пускать генератор в обратную сторону. Почему? Что произойдет, если мы пустим генератор в обратную сторону?

169.4. Что следует сделать, если случайно индуктор генератора размагнитится и он при запуске не будет давать напряжения?

Эксплуатационные свойства генераторов с последовательным и параллельным возбуждением существенно различны. В генераторах первого типа, если мы отключим их от внешней сети, цепь якоря и индуктора оказывается разомкнутой, и ток через них проходить не может. Поэтому не будет иметь места и описанный выше процесс самовозбуждения, т. е. постепенного нарастания э. д. с., индуцируемой в якоре; следовательно, генератор с последовательным возбуждением нельзя запустить вхолостую, т. е. без нагрузки. По мере того, как мы увеличиваем эту нагрузку, т. е. уменьшаем сопротивление внешней цепи и, стало быть, увеличиваем ток в ней, возрастает и ток в индукторе, равный току в сети. До тех пор, пока железо в индукторе не достигло состояния магнитного насыщения, будет соответственно возрастать и создаваемый индуктором магнитный поток, а вместе с ним будут возрастать и индуцируемая в якоре э. д. с. и напряжение на зажимах генератора. Когда же железо в индукторе намагнитится до насыщения, то дальнейшее увеличение тока в его обмотках будет вызывать очень малое возрастание магнитного потока, которое уже не в состоянии компенсировать возрастающую потерю напряжения на обмотках якоря. Поэтому напряжение на зажимах генератора начнет падать; при коротком замыкании внешней сети напряжение упадет до нуля, а ток короткого замыкания будет в несколько раз превосходить нормальный ток, на который рассчитан генератор.

Таким образом, зависимость напряжения на зажимах генератора с последовательным возбуждением от силы тока, который он посылает во внешнюю сеть, имеет вид, изображенный на рис. 341 (за 100% приняты нормальные значения напряжения на зажимах генератора и силы тока в сети). Эта кривая, называемая внешней характеристикой генератора, показывает, что с ростом нагрузки напряжение сначала круто растет, достигая нормального значения при нормальном токе, а затем спадает до нуля. Ясно, что такая резкая зависимость напряжения генератора от силы потребляемого тока практически очень неудобна. Поэтому генераторы с последовательным возбуждением на практике в качестве генераторов постоянного тока применяются чрезвычайно редко.

Рис. 341. Внешняя характеристика генератора с последовательным возбуждением

Внешняя характеристика генератора с параллельным возбуждением имеет совершенно иной вид (рис. 342). По мере того как мы уменьшаем сопротивление сети, т. е. увеличиваем ток в ней, напряжение на зажимах генератора падает. Нетрудно понять, чем это обусловлено. Когда уменьшается сопротивление сети (растет нагрузка), то все большая часть тока в якоре ответвляется в сеть и все меньшая – в индуктор, так как отношение силы тока в этих параллельно по отношению к якорю включенных цепях обратно пропорционально их сопротивлениям (§ 50). Поэтому с ростом нагрузки уменьшается ток в цепи индуктора, а следовательно, и его магнитный поток и индуцированная в якоре э. д. с. Однако вначале, пока железо индуктора находится в состоянии насыщения, это падение происходит довольно медленно, и при изменении тока от нуля до нормального значения, принятого на рисунке за 100%, не превышает 10-15 % от нормального значения напряжения, на которое генератор рассчитан. Таким образом, в довольно широком интервале изменений нагрузки напряжение генератора изменяется очень мало.

Рис. 342. Внешняя характеристика генератора с параллельным возбуждением

Если в генераторе с параллельным возбуждением мы будем еще больше уменьшать сопротивление сети, то ток сначала будет продолжать расти, несмотря на уменьшение напряжения на зажимах генератора. При некоторой нагрузке, примерно вдвое превышающей нормальную, на которую генератор рассчитан, ток достигает максимального значения и потом начинает падать, потому что, после того как железо индуктора выйдет из состояния магнитного насыщения, падение напряжения, вызванное уменьшением тока в обмотках индуктора, происходит очень круто, и влияние этого фактора пересиливает влияние уменьшения сопротивления сети. При коротком замыкании сети ток упадет до относительно небольшого значения ( на рис. 342), так что для генератора с параллельным возбуждением короткое замыкание не опасно.

Еще большего постоянства напряжения при изменениях силы тока в сети можно добиться в генераторах с так называемым смешанным возбуждением или компаунд-генераторах. В этих генераторах на полюсных наконечниках индуктора имеется по две обмотки. Одна из них соединена с якорем по схеме последовательного соединения, а другая – по схеме параллельного соединения. Так как при увеличении нагрузки э. д. с., обусловленная первыми обмотками, возрастает, а э. д. с., связанная со вторыми, падает, то при надлежащем расчете можно осуществить почти полное постоянство напряжения на зажимах генератора при очень больших изменениях силы тока в сети.

Многим автомобилистам интересно, как возбудить генератор, не используя АКБ. Это бывает нужно тем автомобилистам, которые часто отправляются на дальние расстояния, а машина без подзарядки продержится за счет аккумулятора не более 2 часов. Давайте выяснять, как это сделать.

Основное про эффект возбуждения

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

Как известно, вольтаж, формируемый геном на различных оборотах двигателя, регулируется посредством обмоток возбуждения. Ток поддерживается на постоянном вольтаже – 13,8-14,2 V.

Чтобы обеспечивать автомобильную систему (многочисленные потребители) током, предусмотрен регулятор или РН. Он бывает на отечественных автомобилях и некоторых иномарках, как правило, встроен внутрь генератора. В обиходе такой регулятор называется шоколадкой, таблеткой и т.д.

Ген связан с плюсовым зажимом АКБ через вывод «30». Его также называют плюсом, «В» или «ВАТ». Что касается отрицательного вывода, то он обозначается, как «31» или минус. Также в обиходе встречаются другие его обозначения: «D», «В-» и т.д. Клемма таблетки, используемая для подачи питания от автомобильной сети при включенном зажигании – вывод «15» или «S». Наконец, вывод, рассчитанный для подавания тока на поверочную лампу зарядки, обозначается, как «61» или «D+».

Если прекращается подзарядка АКБ, то это в большинстве случаев свидетельствует о порче шоколадки. Однако здесь не стоит отчаиваться, ведь достаточно будет подать напряжение на обмотки, т.е, возбудить генератор, чтобы доехать до магазина или ближайшего СТО.

Итак, чтобы доехать до нужного места, не подвергая АКБ глубокому разряду, надо снять шоколадку и возбудить ген.

Схема генераторов

Возникает вопрос, как подключить генератор? Для того чтобы суметь возбудить ген, без использования АКБ, рекомендуется тщательно изучить схему и принцип функционирования генов различных модификаций.

Также важно понимать, зачем нужен ген, что он делает конкретно. Иначе говоря, ген – это электромашина, служащая для преобразования механической энергии в электроток. Благодаря гену происходит обратная зарядка батареи и обеспечение всех электрических потребителей, находящихся в рабочем положении, током.

Ген расположен в передней части двигателя, а приводится в движение от кривошипного вала. На автомобилях-гибридах ген осуществляет работу стартера. Примечательно, что такая же схема наблюдается и в некоторых «полноценных» автомобилях, оснащенных конструкцией стоп-старт.

Становится ясно, что автомобильные гены могут иметь две схемы, два конструктивных вида. Их отличие в разнице компоновки вентилятора, выпрямительного блока и приводного шкива. Также генераторы с разной схемой отличаются геометрическими размерами.

Общие параметры обоих типов генераторов остаются неизменными. Любой ген должен иметь в своем составе ротор или индуктор, статор и другие части.

Рассмотрим схему автогенератора отечественной «классики». Такой ген ставился практически на все модели старых отечественных машин.

Теперь рассмотрим другую схему, более современную. В частности, она используется на «восьмерке» и других автомоделях от ВАЗ.


А это схема, как соединяется ген и, собственно, как он функционирует.

Основной функцией ротора гена является создание магнитполя. Для этого на валу имеется обмотка или ВО (возбудитель). ВО расположен на клювах или выступах полюсных половинок. На валу также предусмотрена контактная группа, состоящая из 2-х медных колец. Через них идет напряжение на ВО. Кольца припаиваются к выводам ВО.

Примечание. Довольно редко, но все же, могут встречаться не медные, а стальные или латунные кольца.

Кроме того, на роторном валу нашли место для крыльчаток вентилятора (кол-во их зависит от конструкции модели). В этом же месте зафиксирован бывает ВПД (шкив приводной).

Еще один узел ротора – подшипники.

Что касается статора, то он выполняет функцию создания переменного напряжения. В нем нашли место сердечник и обмотка. Металлический сердечник собран из пластин.

В статоре бывает 36 пазов, служащих для укладывания обмотки. Всего получается устанавливать три обмотки, тем самым, обеспечивая 3-фазное соединение.

Интересно, что помещают обмотки в выемки двумя путями – волной либо петлей. А взаимосоединяются обмотки либо по схеме «звездочка», либо — «треугольник».

Выпрямительный блок или ВБ необходим для перестройки значений тока, производимого геном. Он преобразует синусоидальный ток в постоянный автомобильной бортовой сети.

ВБ – это просто пластины, траки, эффективно отводящие тепло. В них вмонтированы диоды. ВБ содержит 6 силовых диодов-полупроводников. На каждую фазу идет по два диода, естественно, один на плюс, а другой – на минусовой вывод гена.

Щетки – это узел, обеспечивающий токопередачу на контактные кольца. Щеточный узел состоит из графитовых элементов, собственно самих щеток, пружин-прижимателей и держателя. В генах современного типа щеточный узел создает вместе с регулятором (шоколадкой) единый блок.

Таблетка – предназначена поддерживать ток гена в определенных значениях. Современные регуляторы бывают электронными (едиными) или гибридными. Если в ходу гибридное исполнение, то в схему внедряются радиокомпоненты и электроприборы, если интегральное (единое) – все элементы исполнены с помощью ТМТ (микроэлектроники).

Генераторный привод функционирует за счет вращения ременной передачи. Тем самым, он обеспечивает индуктору вращение с той скоростью, которая необходима (она, как известно, должна превышать скорость вращения кривошипного вала в несколько раз).

Итак, на большинстве моделей генов ВО подключается через отдельную группу, состоящую из 2-х диодов. Последние еще называют выпрямителями, они препятствуют прохождению напряжения разряда АКБ при стоячем ДВС.

Примечание. Если обмотки соединены по схеме «звездочка», то на нулевом выводе ставится 2 добавочных диода силового типа, что позволяет увеличить мощность гена аж на 15%. ВБ монтируется в схему гена посредством электропайки или механической фиксации.

Регулятор или таблетка в генераторе – штука важнейшая. Именно она в ответе за стабилизацию напряжения. А это, как известно, очень требуется при изменениях частоты вращения кривошипного вала и ДВС. Стабилизация шоколадкой производится на автомате, путем воздействия на ВО. Таким образом, таблетка управляет и частотой сигналов напряжения, и продолжительностью импульсов.

Интересный момент. Таблетка изменяет ток, идущий для зарядки АКБ за счет термокомпенсации напряжения. Другими словами, чем становится теплее вокруг, тем меньше тока идет к батарее.

Как возбудить ген

Итак, что же надо сделать, чтобы возбудить генератор? Как и говорилось выше, следует демонтировать таблетку с генератора, так как неисправность возникла именно в нем. Далее, соединить плюсовые выводы обоих устройств, а минусовой выход в шоколадке разрезать. В процессе сборки соединить его с массой щеток.

От клеммы «30» гена изолировать провод, подсоединить в выводную цепь «15» индикатор, мощностью не более 15 Вт. Это касается генов серии Г222. Если агрегаты других моделей, то возбуждать надо, подключая индикатор к выводу «В».

Самовозбуждение генератора можно представить себе и так.

На представленной выше схеме левыми крайними стрелками отмечены диоды. Они устанавливаются только в генераторы современных моделей, в старых агрегатах их не бывает. Точнее говоря, схема без представленных диодов считается классической, а с ними – модернизированной, современной.

На некоторых моделях генов якори подразумевают наличие щеток. Они тоже снимаются, высверливается таблетка. Один контакт напрямую идет к якорю через диоды на плюс, как видно на схеме, второй контакт – на минус (самая нижняя стрелка).

Соответственно, на схеме отмечено: плюс и минус.

Ток начнет подаваться не сразу, т.е, не с малых оборотов. Где-то, если смотреть по тахометру, напряжение начнет вырабатываться после 4000 об/мин. Другими словами, газуем до 4 тысяч оборотов, появляется ток. Если спускаемся до 1 тысячи оборотов в минуту или меньше, напряжение пропадает, нужно будет заново газануть. Примерно таков принцип генерации тока при самовозбуждении.

На некоторых автомоделях двигатель установлен малооборотистый. В этом случае придется делать что-то со шкивами, чтобы увеличить начальную скорость вращения. Для обычного двигателя все должно быть нормально.

Идем дальше. На выходе получается не 12 вольт, это следует знать изначально. Без регулятора ген будет выдавать все, что он сможет, вплоть до 20-30 вольт. К примеру, во время старта и до 36 вольт доходит. Это можно проверить по лампочке такого вольтажа, подключенной к выходам. Дальше уже опускается до 20 вольт.

Схему, безусловно, можно доработать. Например, врезать конденсатор в плюсовой провод, идущий на якорь. Делается это для того, чтобы при падении оборотов двигателя, не допустить спада напряжения. Хороший конденсатор можно поставить также на выходе, чтобы сгладить первый скачок напряжения и регулировать, сглаживать спады.

Реализуя данную схему, важно помнить о выдаче большого напряжения. Это не 12 вольт, можно легко спалить лампочки, ЭБУ и всю автомобильную электрику в принципе.

Предупреждение. В режиме самовозбуждения ген будет отдавать все, что сможет без каких-либо ограничений, что чревато перегревом и для него самого. Чуть больше нагрузки, и пиши панегирик генерирующему устройству. Поэтому данный способ применим только, как вынужденная мера, опять же, если вы остались на дороге и надо доехать до ближайшего СТО.