Сайт о телевидении

Сайт о телевидении

» » Ряд фурье последовательности прямоугольных импульсов. Представление периодических сигналов рядом фурье

Ряд фурье последовательности прямоугольных импульсов. Представление периодических сигналов рядом фурье

1.3 Сделать общие выводы.

Часть 2

Цель работы: углубление теоретических знаний, полученных в ходе изучения преобразования Фурье (Fourier Transform)

Необходимые теоретические сведения.

Изменяя период Т и длительность импульса как показано на рис. 7, можно изменять спектр сигнала. С увеличением периода гармоники сближаются, не изменяя форму огибающей.


Рис.7 – Изменение спектра

Смоделируем одиночный прямоугольный импульс, периодическую последовательность импульсов с периодом Т и 10Т .

t = 0:.0314:25;

y= square(2*pi*t/10, pi*pi);

z = rectpuls(2*pi*t1/10);

subplot(4,2,1); plot(t,x)

subplot(4,2,2); plot(t,y)

subplot(4,2,3); plot(t1,z)

Проведем спектральный анализ полученных сигналов. Непериодические процессы - таковыми являются информационные сигналы , одиночные импульсы , хаотические колебания (шумы ) - обладают сплошным или непрерывным спектром. Интуитивно к такому выводу можно прийти, представляя одиночный импульс частью периодической последовательности, период которой неограниченно увеличивается. Действительно, при увеличении интервала между импульсами гармоники на спектральных диаграммах периодических последовательностей импульсов сближаются: чем реже следуют импульсы, тем меньше расстояние между соседними гармониками (оно равно 1/T ). Спектр одиночного импульса (предельный случай увеличения периода) становится непрерывным, и вводится он не рядами, а интегралами Фурье .

Преобразование Фурье (Fourier transform) является инструментом спектрально­го анализа непериодических сигналов.

В описанных ниже функциях реализован особый метод быстрого преобразования Фурье (БПФ) - Fast Fourier Transform (FFT ), позволяющий резко уменьшить число арифметических операций в ходе приведенных выше преобразований. Метод особенно эффективен, если число обрабатываемых элементов (отсчетов) составляет 2 n , где n - целое положительное число. В MatLab используются следующие функции:

fft(X ) - возвращает для вектора X дискретное преобразование Фурье, по возможности используя алгоритм быстрого преобразования Фурье. Если X - матрица, функция fft возвращает преобразование Фурье для каждого столбца матрицы;

fft(X.n) - возвращает n-точечное преобразование Фурье. Если длина вектора X меньше n, то недостающие элементы заполняются нулями. Если длина X больше п, то лишние элементы удаляются. Когда X - матрица, длина столбцов корректируется аналогично;

ft(X,[ Ldirn) и fft(X,n,dim) - применяют преобразование Фурье к одной из размерностей массива в зависимости от значения параметра dim .

Возможно одномерное обратное преобразование Фурье, реализуемое следующими функциями:

ifft(F) - возвращает результат дискретного обратного преобразования Фурье вектора F . Если F - матрица, то ifft возвращает обратное преобразование Фурье для каждого столбца этой матрицы;

ifft(F.n) - возвращает результат n-точечного дискретного обратного преобразования Фурье вектора F ;

ifft(F.,dim) иу = ifft(X,n,dim) - возвращают результат обратного дискретного преобразования Фурье массива F по строкам или по столбцам в зависимости от значения скаляра dim .

Для любого X результат последовательного выполнения прямого и обратного преобразований Фурье ifft(fft(x)) равен X с точностью до погрешности округления. Если X - массив действительных чисел, ifft(fft(x)) может иметь малые мнимые части.

Получим спектры смоделированных сигналов.

Вызовем программу SPTool (Signal Processing Tool) . Импортируем смоделированные сигналы и рассчитаем спектр сигнала. С этой целью выделяем сигнал в списке сигналов и нажмите кнопку Create , расположенную под списком спектров. В окне Spectrum Viewer в поле Parameters нужно указать метод спектрального анализа. Указываем метод ДПФ (используется быстрое преобразование Фурье БПФ (FFT)). Указав метод, следует щёлкнуть мышью по кнопке Apply . Будет выведен график спектральной плотности мощности. Имеется возможность выводить спектры в линейном или в логарифмическом масштабе (меню Options ).

Непрерывным (сплошным) является спектр хаотических (шумовых ) колебаний . В этом случае спектральная характеристика, как функция частоты, также представляет собой хаотический (случайный ) процесс , статистические параметры которого определяются спецификой конкретного случайного временного процесса. Сформируем сигнал, содержащий регулярные составляющие с частотами 50 Гц и 120 Гц и случайную аддитивную компоненту с нулевым средним.

ЗАДАНИЕ 2

ЛАБОРАТОРНАЯ РАБОТА № 1

РАЗЛОЖЕНИЯ СИГНАЛОВ В РЯД ФУРЬЕ

Цель задания

Ознакомиться с примерами разложения сигналов в ряд Фурье и практически реализовать разложение различного вида сигналов в системе MatLab.

Постановка задачи

Осуществить разложения сигналов различного вида в ряд Фурье. Разложению подлежат следующие сигналы: последовательность прямоугольных импульсов, меандр, пилообразный сигнал и последовательность треугольных импульсов.

Для каждого варианта и каждого вида сигнала заданы параметры:

для последовательности прямоугольных импульсов – амплитуда, период повторения и длительность импульсов;

для меандра, пилообразного сигнала и последовательности треугольных импульсов – амплитуда и период повторения импульсов.

Для всех видов сигналов задано число ненулевых гармоник.

Cоставить программы в системеMatLabи построить графики.

    Постановка задачи.

    Код программ для разложения последовательности прямоугольных импульсов, меандр, пилообразного сигнала и последовательности треугольных импульсов.

    Результаты выполнения программ – графики промежуточных стадий суммирования.

Методические указания

Ряд Фурье

Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций либо комплексных экспонент с частотами, образующими арифметическую прогрессию.

Ряд Фурье может быть применен для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчета коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

Синусно-косинусная форма

В этом варианте ряд Фурье имеет следующий вид:

Здесь
– круговая частота, соответствующая периоду повторения сигнала, равному. Входящие в формулу кратные ей частоты
называются гармониками, гармоники нумеруются в соответствии с индексом ; частота
называется –й гармоникой сигнала. Коэффициенты ряда ирассчитываются по формулам:

,

.

Константа рассчитывается по общей формуле для. Само же это слагаемое представляет собой среднее значение сигнала на периоде:

.

Если
является четной функцией, то всебудут равны нулю и в формуле ряда Фурье будут присутствовать только косинусные слагаемые. Если
является нечетной функцией, равны нулю будут, наоборот, косинусные коэффициентыи в формуле останутся лишь синусные слагаемые.

ПОСЛЕДОВАТЕЛЬНОСТЬ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ

Последовательность прямоугольных импульсов с амплитудой , длительностьюи периодом повторения.

Рис. 1 Периодическая последовательность прямоугольных импульсов

Данный сигнал является четной функцией, поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье – в ней будут присутствовать только косинусные слагаемые , равные

.

Отношение периода к длительности импульсов называют скважностью последовательности импульсов и обозначают буквой :
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье:

.

Амплитуды гармонических слагаемых ряда зависят от номера гармоники.

МЕАНДР

Частным случаем предыдущего сигнала является меандр – последовательность прямоугольных импульсов со скважностью, равной двум, когда длительности импульсов и промежутков между ними становятся равными (рис.2).

Рис. 2 Меандр

При
, получим

Здесь m – произвольное целое число.

При разложении в ряд Фурье четные составляющие будут отсутствовать.

ПИЛООБРАЗНЫЙ СИГНАЛ

В пределах периода он описывается линейной функцией:

Рис. 3. Пилообразный сигнал

Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

.

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

ПОСЛЕДОВАТЕЛЬНОСТЬ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ

Рис.4. Последовательность треугольных импульсов

Сигнал является четной функцией, поэтому будут присутствовать косинусные составляющие.

Вычислим коэффициенты ряда Фурье:

Сам ряд Фурье имеет следующий вид:

Как видите, в отличие от последовательностей прямоугольных и пилообразных импульсов, для треугольного периодического сигнала амплитуды гармоник убывают пропорционально второй степени номеров гармоник .

Код программы для меандра

N= 8; % число ненулевых гармоник

t= -1:0.01:1; % вектор моментов времени

A= 1; % амплитуда

T= 1; % период

nh= (1:N)*2-1; % номера ненулевых гармоник

harmonics = cos(2*pi*nh"*t/T);

Am= 2/pi./nh; % амплитуды гармоник

Am(2:2:end) = -Am(2:2:end); % чередование знаков

s1 = harmonics .* repmat(Am", 1, length(t));

% строки-частичные суммы гармоник

for k=1:N, subplot(4, 2, k), plot(t, s2(k,:)), end

Р
езультат работы программы

Комментарии :repmat – создание блочной матрицы или многомерного блочного массива из одинаковых блоков.repmat(Am", 1,length(t)) – матрица состоит из 1 блока по вертикали иlength(t) блоков по горизонтали, каждый блок является матрицейAm".

Cumsum – расчет частичных сумм элементов.

Subplot (Rows , Cols , N ) команда для вывода нескольких графиков. Графическое окно разбивается на клетки в виде матрицы, имеющейRows строк,Cols – столбцов, иN клетка становится текущей.

Варианты

варианта

Параметры для сигналов

амплитуда сигнала

период повторения сигналов

длительность сигнала

число ненулевых гармоник

2.1. Спектры периодических сигналов

Периодическим сигналом (током или напряжением) называют такой вид воздействия, когда форма сигнала повторяется через некоторый интервал времени T , который называется периодом. Простейшей формой периодического сигнала является гармонический сигнал или синусоида, которая характеризуется амплитудой, периодом и начальной фазой. Все остальные сигналы будут негармоническими или несинусоидальными . Можно показать, и практика это доказывает, что, если входной сигнал источника питания является периодическим, то и все остальные токи и напряжения в каждой ветви (выходные сигналы) также будут периодическими. При этом формы сигналов в разных ветвях будут отличаться друг от друга.

Существует общая методика исследования периодических негармонических сигналов (входных воздействий и их реакций) в электрической цепи, которая основана на разложении сигналов в ряд Фурье. Данная методика состоит в том, что всегда можно подобрать ряд гармонических (т.е. синусоидальных) сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма ординат которых в любой момент времени равна ординате исследуемого несинусоидального сигнала. Так, например, напряжение u на рис. 2.1. можно заменить суммой напряжений и , поскольку в любой момент времени имеет место тождественное равенство: . Каждое из слагаемых представляет собой синусоиду, частота колебания которой связана с периодом T целочисленными соотношениями.

Для рассматриваемого примера имеем период первой гармоники совпадающим с периодом негармонического сигнала T 1 = T , а период второй гармоники в два раза меньшим T 2 = T /2, т.е. мгновенные значения гармоник должны быть записаны в виде:

Здесь амплитуды колебаний гармоник равны между собой ( ), а начальные фазы равны нулю.

Рис. 2.1. Пример сложения первой и второй гармоники

негармонического сигнала

В электротехнике гармоническая составляющая, период которой равен периоду негармонического сигнала, называется первой или основной гармоникой сигнала. Все остальные составляющие называются высшими гармоническими составляющими. Гармоника, частота которой в k раз больше первой гармоники (а период, соответственно, в k раз меньше), называется

k - ой гармоникой. Выделяют также среднее значение функции за период, которое называют нулевой гармоникой. В общем случае ряд Фурье записывают в виде суммы бесконечного числа гармонических составляющих разных частот:

(2.1)

где k - номер гармоники; - угловая частота k - ой гармоники;

ω 1 = ω =2 π / T - угловая частота первой гармоники; - нулевая гармоника.

Для сигналов часто встречающихся форм разложение в ряд Фурье можно найти в специальной литературе. В таблице 2 приведены разложения для восьми форм периодических сигналов. Следует отметить, что приведенные в таблице 2 разложения будут иметь место, если начало системы координат выбраны так, как это указано на рисунках слева; при изменении начала отсчета времени t будут изменяться начальные фазы гармоник, амплитуды гармоник при этом останутся такими же. В зависимости от типа исследуемого сигнала под V следует понимать либо величину, измеряемую в вольтах, если это сигнал напряжения, либо величину, измеряемую в амперах, если это сигнал тока.

Разложение в ряд Фурье периодических функций

Таблица 2

График f (t )

Ряд Фурье функции f (t )

Примечание

k=1,3,5,...

k=1,3,5,...

k=1,3,5,...

k=1,2,3,4,5

k=1,3,5,...

k=1,2,3,4,5

S=1,2,3,4,..

k=1,2,4,6,..

Сигналы 7 и 8 формируются из синусоиды посредством схем, использующих вентильные элементы.

Совокупность гармонических составляющих, образующих сигнал несинусоидальной формы, называется спектром этого негармонического сигнала. Из этого набора гармоник выделяют и различают амплитудный и фазовый спектр. Амплитудным спектром называют набор амплитуд всех гармоник, который обычно представляют диаграммой в виде набора вертикальных линий, длины которых пропорциональны (в выбранном масштабе) амплитудным значениям гармонических составляющих, а место на горизонтальной оси определяется частотой (номером гармоники) данной составляющей. Аналогично рассматривают фазовые спектры как совокупность начальных фаз всех гармоник; их также изображают в масштабе в виде набора вертикальных линий.

Следует заметить, что начальные фазы в электротехнике принято измерять в пределах от –180 0 до +180 0 . Спектры, состоящие из отдельных линий, называют линейчатыми или дискретными . Спектральные линии находятся на расстоянии f друг от друга, где f - частотный интервал, равный частоте первой гармоники f .Таким образом, дискретные спектры периодических сигналов имеют спектральные составляющие с кратными частотами - f , 2f , 3f , 4f , 5f и т.д.

Пример 2.1. Найти амплитудный и фазовый спектр для сигнала прямоугольной формы, когда длительности положительного и отрицательного сигнала равны, а среднее значение функции за период равно нулю

u (t ) = Vпри0<t <T /2

u (t ) = -VприT /2<t <T

Для сигналов простыхчасто используемых форм решение целесообразно находить с помощью таблиц.

Рис. 2.2. Линейчатый амплитудный спектр прямоугольного сигнала

Из разложения в ряд Фурье сигнала прямоугольной формы (см. табл.2 - 1) следует, что гармонический ряд содержит только нечетные гармоники, при этом амплитуды гармоник убывают пропорционально номеру гармоники. Амплитудный линейчатый спектр гармоник представлен на рис. 2.2. При построении принято, что амплитуда первой гармоники (здесь напряжения) равна одному вольту: B; тогда амплитуда третьей гармоники будет равна B, пятой - B и т.д. Начальные фазы всех гармоник сигнала равны нулю, следовательно, фазовый спектр имеет только нулевые значения ординат.

Задача решена.

Пример 2.2. Найти амплитудный и фазовый спектр для напряжения, изменяющегося по закону: при -T /4<t <T /4; u (t ) = 0 при T /4<t <3/4T . Такой сигнал формируется из синусоиды посредством исключения (схемным путем с использованием вентильных элементов) отрицательной части гармонического сигнала.


а)б)

Рис. 2.3. Линейчатый спектр сигнала однополупериодного выпрямления: а)амплитудный; б)фазовый

Для сигнала однополупериодного выпрямления синусоидального напряжения (см. табл.2 - 8) ряд Фурье содержит постоянную составляющую (нулевую гармонику), первую гармонику и далее набор только четных гармоник, амплитуды которых быстро убывают с ростом номера гармоники. Если, например, положить величину V = 100 B, то, умножив каждое слагаемое на общий множитель 2V/π , найдем (2.2)

Амплитудный и фазовый спектры этого сигнала изображены на рис.2.3а,б.

Задача решена.

В соответствии с теорией рядов Фурье точное равенство негармонического сигнала сумме гармоник имеет место только при бесконечно большом числе гармоник. Расчет гармонических составляющих на ЭВМ позволяет анализировать любое число гармоник, которое определяется целью расчета, точностью и формой негармонического воздействия. Если длительность сигнала t независимо от его формы много меньше периода T , то амплитуды гармоник будут убывать медленно, и для более полного описания сигнала приходится учитывать большое число членов ряда. Эту особенность можно проследить для сигналов, представленных в таблице 2 - 5 и 6, при выполнении условия τ <<T . Если негармонический сигнал по форме близок к синусоиде (например, сигналы 2 и 3 в табл.2), то гармоники убывают быстро, и для точного описания сигнала достаточно ограничиться тремя - пятью гармониками ряда.

Среди разнообразных систем ортогональных функций, которые могут использоваться в качестве базисов для представления радиотехнических сигналов, исключительное место занимают гармонические (синусоидальные и косинусоидальные) функции. Значение гармонических сигналов для радиотехники обусловлено рядом причин.

В частности:

1. Гармонические сигналы инвариантны относительно преобразований, осуществляемых стационарными линейными электрическими цепями. Если такая цепь возбуждена источником гармонических колебаний, то сигнал на выходе цепи остается гармоническим с той же частотой, отличаясь от входного сигнала лишь амплитудой и начальной фазой.

2. Техника генерирования гармонических сигналов относительно проста.

Если какой-либо сигнал представлен в виде суммы гармонических колебаний с различными частотами, то говорят, - что осуществлено спектральное разложение этого сигнала. Отдельные гармонические компоненты сигнала образуют его спектр.

2.1. Периодические сигналы и ряды Фурье

Математической моделью процесса, повторяющегося во времени, является периодический сигнал со следующим свойством:

Здесь Т - период сигнала.

Ставится задача найти спектральное разложение такого сигнала.

Ряд Фурье.

Зададим на отрезке времени рассмотренный в гл. I ортонормированцый базис, образованный гармоническими функциями с кратными частотами;

Любая функция из этого базиса удовлетворяет условию периодичности (2.1). Поэтому, - выполнив ортогональное разложение сигнала в этом базисе, т. е. вычислив коэффициенты

получим спектральное разложение

справедливое на всей бесконечности оси времени.

Ряд вида (2.4) называется рядом Фурье даннрго сигнала. Введем основную частоту последовательности, образующей периодический сигнал. Вычисляя коэффициенты разложения по формуле (2.3), запишем ряд Фурье для периодического сигнала

с коэффициентами

(2.6)

Итак, в общем случае периодический сигнал содержит не зависящую от времени постоянную составляющую и бесконечный набор гармонических колебаний, так называемых гармоник с частотами кратными основной частоте последовательности.

Каждую гармонику можно описать ее амплитудой и начальной фазой Для этого коэффициенты ряда Фурье следует записать в виде

Подставив эти выражения в (2.5), получим другую, - эквивалентную форму ряда Фурье:

которая иногда оказывается удобнее.

Спектральная диаграмма периодического сигнала.

Так принято называть графическое изображение коэффициентов ряда Фурье для конкретного сигнала. Различают амплитудные и фазовые спектральные диаграммы (рис. 2.1).

Здесь по горизонтальной оси в некотором масштабе отложены частоты гармоник, а по вертикальной оси представлены их амплитуды и начальные фазы.

Рис. 2.1. Спектральные диаграммы некоторого периодического сигнала: а - амплитудная; б - фазовая

Особо интересуются амплитудной диаграммой, которая позволяет судить о процентном содержании тех или иных гармоник в спектре периодического сигнала.

Изучим несколько конкретных примеров.

Пример 2.1. Ряд Фурье периодической последовательности прямоугольных видеоимпульсов с известными параметрами , четной относительно точки t = 0.

В радиотехнике отношение называют скважностью последовательности. По формулам (2.6) находим

Окончательную формулу ряда Фурье удобно записать в виде

На рис. 2.2 представлены амплитудные диаграммы рассматриваемой последовательности в двух крайних случаях.

Важно отметить, что последовательность коротких импульсов, следующих друг за другом достаточно редко , обладает богатым спектральным составом.

Рис. 2.2. Амплитудный спектр периодической последовательности ррямоугольных видеоимпульсов: а - при большой скважности; б - при малой скважности

Пример 2.2. Ряд Фурье периодической последовательности импульсов, образованной гармоническим сигналом вида ограниченным на уровне (предполагается, что ).

Введем специальный параметр - угол отсечки , определяемый из соотношения откуда

В соотаетствии с этим величина равна длительности одного импульса, выраженной в угловой мере:

Аналитическая запись импульса, порождающего рассматриваемую последовательность, имеет вид

Постоянная составляющая последовательности

Амплитудный коэффициент первой гармоники

Аналогично вычисляют амплитуды - гармонических составляющих при

Полученные результаты обычно записывают так:

где так называемые функции Берга:

Графики некоторых функций Берга приведены на рис. 2.3.

Рис. 2.3. Графики нескольких первых функций Берга

Комплексная форма ряда Фурье.

Спектральное разложение периодического сигнала можно выполнить и несколько ионному, используя систему базисных функций, состоящую из экспонент с мнимыми показателями:

Легко видеть, что функции этой системы периодичны с периодом ортонормированы на отрезке времени так как

Ряд Фурье произвольного периодического сигнала в данном случае принимает вид

с коэффициентами

Обычно используют следующую форму записи:

Выражение (2.11) представляет собой ряд Фурье в комплексной форме.

Спектр сигнала в соответствии с формулой (2.11) содержит компоненты на отрицательной полуоси частот, причем . В ряде (2.11) слагаемые с положительными и отрицательными частотами объединяются в пары, например: и строят суммы векторов - в сторону увеличения фазового угла, в то время как векторы вращаются в противоположном направлении. Конец результирующего вектора в каждый момент времени определяет текущее значение сигнала.

Такая наглядная интерпретация спектрального разложения периодического сигнала будет использована в последующем параграфе.


ЛАБОРАТОРНАЯ РАБОТА № 1

РАЗЛОЖЕНИЯ СИГНАЛОВ В РЯД ФУРЬЕ

Цель задания

Ознакомиться с примерами разложения сигналов в ряд Фурье и практически реализовать разложение различного вида сигналов в системе MatLab.

Постановка задачи

Осуществить разложения сигналов различного вида в ряд Фурье. Разложению подлежат следующие сигналы: последовательность прямоугольных импульсов, меандр, пилообразный сигнал и последовательность треугольных импульсов.

Для каждого варианта и каждого вида сигнала заданы параметры:

для последовательности прямоугольных импульсов – амплитуда, период повторения и длительность импульсов ;

для меандра, пилообразного сигнала и последовательности треугольных импульсов – амплитуда и период повторения импульсов.

Для всех видов сигналов задано число ненулевых гармоник.

Cоставить программы в системе MatLab и построить графики.

Методические указания

Ряд Фурье

Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций либо комплексных экспонент с частотами, образующими арифметическую прогрессию.

Ряд Фурье может быть применен для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчета коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

Синусно-косинусная форма

В этом варианте ряд Фурье имеет следующий вид:

Здесь
– круговая частота, соответствующая периоду повторения сигнала , равному . Входящие в формулу кратные ей частоты
называются гармониками, гармоники нумеруются в соответствии с индексом ; частота
называется –й гармоникой сигнала. Коэффициенты ряда и рассчитываются по формулам:

,

.

Константа рассчитывается по общей формуле для . Само же это слагаемое представляет собой среднее значение сигнала на периоде:

.
Если
является четной функцией , то все будут равны нулю и в формуле ряда Фурье будут присутствовать только косинусные слагаемые. Если является нечетной функцией , равны нулю будут, наоборот, косинусные коэффициенты и в формуле останутся лишь синусные слагаемые.

ПОСЛЕДОВАТЕЛЬНОСТЬ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ



Последовательность прямоугольных импульсов с амплитудой , длительностью и периодом повторения .

Рис. 1 Периодическая последовательность прямоугольных импульсов
Данный сигнал является четной функцией , поэтому для его представления удобнее использовать синусно-косинусную форму ряда Фурье – в ней будут присутствовать только косинусные слагаемые , равные

.

Отношение периода к длительности импульсов называют скважностью последовательности импульсов и обозначают буквой :
.

Представление последовательности прямоугольных импульсов в виде ряда Фурье:

.

Амплитуды гармонических слагаемых ряда зависят от номера гармоники.

МЕАНДР



Частным случаем предыдущего сигнала является меандр – последовательность прямоугольных импульсов со скважностью, равной двум, когда длительности импульсов и промежутков между ними становятся равными (рис.2).

Рис. 2 Меандр

При
, получим


Здесь m – произвольное целое число.

При разложении в ряд Фурье четные составляющие будут отсутствовать.

ПИЛООБРАЗНЫЙ СИГНАЛ

В пределах периода он описывается линейной функцией:

Рис. 3. Пилообразный сигнал
Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме будет содержать только синусные слагаемые:

.

Сам ряд Фурье для пилообразного сигнала выглядит следующим образом:

ПОСЛЕДОВАТЕЛЬНОСТЬ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ

Рис.4. Последовательность треугольных импульсов
Сигнал является четной функцией, поэтому будут присутствовать косинусные составляющие.

Вычислим коэффициенты ряда Фурье:

Сам ряд Фурье имеет следующий вид:

Как видите, в отличие от последовательностей прямоугольных и пилообразных импульсов, для треугольного периодического сигнала амплитуды гармоник убывают пропорционально второй степени номеров гармоник .

Код программы для меандра

N = 8; % число ненулевых гармоник

t = -1:0.01:1; % вектор моментов времени

A = 1; % амплитуда

harmonics = cos(2*pi*nh"*t/T);

Am = 2/pi./nh; % амплитуды гармоник

Am(2:2:end) = -Am(2:2:end); % чередование знаков

s1 = harmonics .* repmat(Am", 1, length(t));

% строки-частичные суммы гармоник

s2 = cumsum(s1);

for k=1:N, subplot(4, 2, k), plot(t, s2(k,:)), end

Р
езультат работы программы

Комментарии : repmat – создание блочной матрицы или многомерного блочного массива из одинаковых блоков. repmat(Am", 1, length(t)) – матрица состоит из 1 блока по вертикали и length(t) блоков по горизонтали, каждый блок является матрицей Am".

Cumsum – расчет частичных сумм элементов.

Subplot (Rows , Cols , N ) команда для вывода нескольких графиков. Графическое окно разбивается на клетки в виде матрицы, имеющей Rows строк, Cols – столбцов, и N клетка становится текущей.

Варианты


варианта

Параметры для сигналов

амплитуда сигнала

период повторения сигналов

длительность сигнала

число ненулевых гармоник

1

7

3

2

10

2

5

4

3

12

3

4

5

4

14

4

3

6

5

16

5

2

8

6

18

6

5

3

2

14

7

4

4

3

16

8

3

5

4

18

9

2

6

5

10

10

7

8

6

12

11

4

4

3

18

12

3

5

4

10

13

2

6

5

12

14

7

8

6

14

15

5

3

2

16

16

7

3

2

12

17

5

4

3

14

18

4

5

4

16

19

3

6

5

18

20

2

8

6

10

21

5

3

2

16

22

4

4

3

18

23

3

5

4

10

24

2

6

5

12

25

7

8

6

14

26

4

4

3

10

27

3

5

4

12

28

2

6

5

14

29

7

8

6

16

30

5

3

2

18