Сайт о телевидении

Сайт о телевидении

» » Рубрика «сети для самых маленьких. #Могу ли я использовать адрес сети и широковещательный адрес в NAT-пуле? #На каком уровне OSI работает протокол Ч

Рубрика «сети для самых маленьких. #Могу ли я использовать адрес сети и широковещательный адрес в NAT-пуле? #На каком уровне OSI работает протокол Ч

Это первая статья из серии «Сети для самых маленьких». Мы с Максимом aka Gluck долго думали с чего начать: маршрутизация, VLAN"ы, настройка оборудования.
В итоге решили начать с вещи фундаментальной и, можно сказать, самой важной: планирование. Поскольку цикл рассчитан на совсем новичков, то и пройдём весь путь от начала до конца.

Предполагается, что вы, как минимум, читали о эталонной модели

(то же на

Вы должны быть зарегистрированы, чтобы видеть ссылки.

), о стеке протоколов

Вы должны быть зарегистрированы, чтобы видеть ссылки.

Вы должны быть зарегистрированы, чтобы видеть ссылки.

), знаете о типах существующих

Вы должны быть зарегистрированы, чтобы видеть ссылки.

Вы должны быть зарегистрированы, чтобы видеть ссылки.

Вы должны быть зарегистрированы, чтобы видеть ссылки.

Вы должны быть зарегистрированы, чтобы видеть ссылки.

). Мы понимаем, что для новичков «OSI» и «TCP/IP» - это страшные слова. Но не переживайте, не для того, чтобы запугать вас, мы их используем. Это то, с чем вам придётся встречаться каждый день, поэтому в течение этого цикла мы постараемся раскрыть их смысл и отношение к реальности.

Начнём с постановки задачи. Есть некая фирма, занимающаяся, допустим, производством лифтов, идущих только вверх, и потому называется ООО «Лифт ми ап». Расположены они в старом здании на Арбате, и сгнившие провода, воткнутые в пожжёные и прожжёные коммутаторы времён 10Base-T не ожидают подключения новых серверов по гигабитным карточкам. Итак, у них катастрофическая потребность в сетевой инфраструктуре и денег куры не клюют, что даёт вам возможность безграничного выбора. Это чудесный сон любого инженера. А вы вчера выдержали собеседование, и в сложной борьбе по праву получили должность сетевого администратора. И теперь вы в ней первый и единственный в своём роде. Поздравляем! Что дальше?

Вы должны быть зарегистрированы, чтобы видеть ссылки.

Которая имеет много достоинств по сравнению с “плоской сетью”:

  • упрощается понимание организации сети
  • модель подразумевает модульность, что означает простоту наращивания мощностей именно там, где необходимо
  • легче найти и изолировать проблему
  • повышенная отказоустойчивость за счет дублирования устройств и/или соединений
  • распределение функций по обеспечению работоспособности сети по различным устройствам.
Согласно этой модели, сеть разбивается на три логических уровня: ядро сети (Core layer: высокопроизводительные устройства, главное назначение - быстрый транспорт), уровень распространения (Distribution layer: обеспечивает применение политик безопасности, QoS, агрегацию и маршрутизацию в VLAN, определяет широковещательные домены), и уровень доступа (Access-layer: как правило, L2 свичи, назначение: подключение конечных устройств, маркирование трафика для QoS, защита от колец в сети (STP) и широковещательных штормов, обеспечение питания для PoE устройств).

В таких масштабах, как наш, роль каждого устройства размывается, однако логически разделить сеть можно.
Составим приблизительную схему:



На представленной схеме ядром (Core) будет маршрутизатор 2811, коммутатор 2960 отнесём к уровню распространения (Distribution), поскольку на нём агрегируются все VLAN в общий транк. Коммутаторы 2950 будут устройствами доступа (Access). К ним будут подключаться конечные пользователи, офисная техника, сервера.

Именовать устройства будем следующим образом: сокращённое название города (msk ) - географическое расположение (улица, здание) (arbat ) - роль устройства в сети + порядковый номер.
Соответственно их ролям и месту расположения выбираем hostname:
Маршрутизатор 2811: msk-arbat-gw1 (gw=GateWay=шлюз)
Коммутатор 2960: msk-arbat-dsw1 (dsw=Distribution switch)
Коммутаторы 2950: msk-arbat-aswN, msk-rubl-asw1 (asw=Access switch)

Документация сети
Вся сеть должна быть строго документирована: от принципиальной схемы, до имени интерфейса.
Прежде, чем приступить к настройке, я бы хотел привести список необходимых документов и действий:

  • Схемы сети L1, L2, L3 в соответствии с уровнями модели OSI (Физический, канальный, сетевой)
  • План IP-адресации = IP-план
  • Список VLAN
  • Подписи (description ) интерфейсов
  • Список устройств (для каждого следует указать: модель железки, установленная версия IOS, объем RAM\NVRAM, список интерфейсов)
  • Метки на кабелях (откуда и куда идёт), в том числе на кабелях питания и заземления и устройствах
  • Единый регламент, определяющий все вышеприведённые параметры и другие
Жирным выделено то, за чем мы будем следить в рамках программы-симулятора. Разумеется, все изменения сети нужно вносить в документацию и конфигурацию, чтобы они были в актуальном состоянии.

Говоря о метках/наклейках на кабели, мы имеем ввиду это:



На этой фотографии отлично видно, что промаркирован каждый кабель, значение каждого автомата на щитке в стойке, а также каждое устройство.



Подготовим нужные нам документы:


Каждая группа будет выделена в отдельный влан. Таким образом мы ограничим широковещательные домены. Также введём специальный VLAN для управления устройствами.
Номера VLAN c 4 по 100 зарезервированы для будущих нужд.


Выделение подсетей в общем-то произвольное, соответствующее только числу узлов в этой локальной сети с учётом возможного роста. В данном примере все подсети имеют стандартную маску /24 (/24=255.255.255.0) - зачастую такие и используются в локальных сетях, но далеко не всегда. Советуем почитать о

Вы должны быть зарегистрированы, чтобы видеть ссылки.

В дальнейшем мы обратимся и к

Вы должны быть зарегистрированы, чтобы видеть ссылки.

Вы должны быть зарегистрированы, чтобы видеть ссылки.

). Мы понимаем, что ссылки на технические статьи в википедии - это моветон, однако они дают хорошее определение, а мы попробуем в свою очередь перенести это на картину реального мира.
Под сетью Point-to-Point подразумеваем подключение одного маршрутизатора к другому в режиме точка-точка. Обычно берутся адреса с маской 30 (возвращаясь к теме бесклассовых сетей), то есть содержащие два адреса узла. Позже станет понятно, о чём идёт речь.

План подключения оборудования по портам
Разумеется, сейчас есть коммутаторы с кучей портов 1Gb Ethernet, есть коммутаторы с 10G, на продвинутых операторских железках, стоящих немалые тысячи долларов есть 40Gb, в разработке находится 100Gb (а по слухам уже даже есть такие платы, вышедшие в промышленное производство). Соответственно, вы можете выбирать в реальном мире коммутаторы и маршрутизаторы согласно вашим потребностям, не забывая про бюджет. В частности гигабитный свич сейчас можно купить незадорого (20-30 тысяч) и это с запасом на будущее (если вы не провайдер, конечно). Маршрутизатор с гигабитными портами стоит уже ощутимо дороже, чем со 100Mbps портами, однако оно того стоит, потому что FE-модели (100Mbps FastEthernet), устарели и их пропускная способность очень невысока.
Но в программах эмуляторах/симуляторах, которые мы будем использовать, к сожалению, есть только простенькие модели оборудования, поэтому при моделировании сети будем отталкиваться от того, что имеем: маршрутизатор cisco2811, коммутаторы cisco2960 и 2950.


Почему именно так распределены VLAN"ы, мы объясним в следующих частях.

Вы должны быть зарегистрированы, чтобы видеть ссылки.

Схемы сети
На основании этих данных можно составить все три схемы сети на этом этапе. Для этого можно воспользоваться Microsoft Visio, каким-либо бесплатным приложением, но с привязкой к своему формату, или редакторами графики (можно и от руки, но это будет сложно держать в актуальном состоянии:)).

Не пропаганды опен сорса для, а разнообразия средств ради, воспользуемся Dia. Я считаю его одним из лучших приложений для работы со схемами под Linux. Есть версия для Виндоус, но, к сожалению, совместимости в визио никакой.

В нашем примере схема третьего уровня получилась довольно бесполезная и не очень наглядная, из-за наличия только одного маршрутизирующего устройства. Но со временем она обрастёт подробностями.

Dia-файлы со схемами сети:

Вы должны быть зарегистрированы, чтобы видеть ссылки.

,

Вы должны быть зарегистрированы, чтобы видеть ссылки.

,

Вы должны быть зарегистрированы, чтобы видеть ссылки.

Как видите, информация в документах избыточна. Например, номера VLAN повторяются и на схеме и в плане по портам. Тут как бы кто на что горазд. Как вам удобнее, так и делайте. Такая избыточность затрудняет обновление в случае изменения конфигурации, потому что нужно исправиться сразу в нескольких местах, но с другой стороны, облегчает понимание.

К этой первой статье мы не раз ещё вернёмся в будущем, равно как и вам придётся всегда возвращаться к тому, что вы изначально напланировали.
Собственно задание для тех, кто пока только начинает учиться и готов приложить для этого усилия: много читать про вланы, ip-адресацию, найти программы Packet Tracer и GNS3.
Что касается фундаментальных теоретических знаний, то советуем начать читать Cisco press. Это то, что вам совершенно точно понадобится знать.
В следующей части всё будет уже по-взрослому, с видео, мы будем учиться подключаться к оборудованию, разбираться с интерфейсом и расскажем, что делать нерадивому админу, забывшему пароль.
P.S. Спасибо соавтору статьи - Максиму aka gluck.




#На каком уровне OSI работает протокол Ч?

Первая вещь, с которой сталкивается любой, кто изучает сети - это модель OSI (Open Systems Interconnection). Это семиуровневая эталонная модель, официально определённая в IOS/IEC 7498-1. Вы встретите её в любой когда либо напечатанной учебной литературе. Это совершенно обычное дело - ссылаться на OSI при обсуждении взаимодействия между протоколами. Так, например, TCP - это протокол четвёртого уровня, и он сидит на шее IP - протоколе третьего уровня.

Но что это значит на самом деле? Кто решает какому уровню принадлежит протокол? Модель OSI была задумана ещё в 70-е годы, как часть семейства протоколов OSI, которая на полном серьёзе позиционировалась как соперник стеку TCP/IP (спойлер: TCP/IP таки выиграл). Если исключить горстку выживших (наверняка, вы слышали про протокол динамической маршрутизации IS-IS), то протоколы OSI сейчас фактически не используются. Однако эталонная модель OSI, описывающая, как они должны были взаимодействовать, живее всех живых. Что, впрочем, заставляет нас привязывать протоколы одного семейства к уровням, определённым для другого.

По большей части всё работает прекрасно: TCP и UDP едут верхом на IP, который в свою очередь передвигается на Ethernet, PPP или чём бы там ни было другом. Но сорокалетняя модель не всегда может удовлетворить нужны современных протоколов. Возьмём для примера MPLS . Часто его относят к уровню 2,5, потому что он работает поверх канального, но ниже сетевого, не осуществляя при этом ни формирования фреймов ни сквозную адресацию (в отличии от IP-адресов, метки MPLS меняются на каждом узле по мере продвижения пакета к точке назначения). Разумеется, добавление нового уровня между двумя другими разрушает стандартную модель.

Строго говоря, ни один протокол из стека TCP/IP не закреплён официально за каким-либо уровнем OSI именно по той причине, что это разные семейства. Яблоки и апельсины. Эталонная модель - это эталон (Прим. переводчика: всё-таки русское название немного не соответствует Reference Model, эталон предполагает свою идеальность и стремление ему соответствовать ). OSI помогает иллюстрировать зависимость одних протоколов от других, и кто кем погоняет, но она не может диктовать, как им функционировать.

Но если вдруг кто-то спросит, отвечайте, что MPLS - это протокол третьего уровня.

#Какая разница между маршрутизатором и многоуровневым коммутатором?

В стародавние времена, маршрутизаторы служили для того чтобы передавать пакеты на основе IP-адресов и предоставляли широкий диапазон интерфейсов: Ethernet, E1, Serial, OC-3 итд. В то же время коммутатор передавал пакеты (кадры, прим. для лиги зануд), основываясь на MAC-адресах, и имели только порты Ethernet.

Но в начале 2000-х нашему чёткому пониманию этой разницы пришёл конец - вырисовывались две важные тенденции. Во-первых, появились многоуровневые коммутаторы, которые не просто получили право передавать пакеты, основываясь на IP-адресах, но и участвовать в протоколах динамической маршрутизации, как самые настоящие маршрутизаторы. Во-вторых, операторы начали необратимый процесс миграции с технологий с коммутацией каналов на модерновый Ethernet, предоставляющий высокие скорости за низкую плату. Сегодня совершенно в порядке вещей, если маршрутизатор имеет только Ethernet-интерфейсы, как будто бы он коммутатор.

Где лежит граница между маршрутизатором и многоуровневым коммутатором? Существует ли ещё эта граница?
Фактическая разница между ними сводится к следующим нескольким пунктам:

  • Плотность портов. Коммутаторы уровня Enterprise обычно несут на борту 24 или 48 портов. Иногда они могут стекироваться для ещё большего расширения. Основная цель: засунуть настолько много интерфейсов, насколько позволяет передняя панель. Маршрутизатор напротив обычно имеет намного меньше интерфейсов, возможно, разнесённых по разным сменным платам. (Прим. переводчика: если речь идёт о оборудовании операторского класса, то плотность портов на линейных платах маршрутизатора вполне сравнится с коммутаторскими).
  • Скорость. Коммутаторы созданы для того, чтобы молотить трафик. Сейчас даже скромные офисные коммутаторы зачастую предоставляют пропускную способность на скорости линии. Это достигается засчёт того, что обработка трафика происходит на аппаратных чипсетах без участия CPU. (Прим. переводчика: следует и тут заметить, что и маршрутизаторы сейчас преимущественно используют для передачи трафика FPGA и ASIC и в своей пропускной способности не уступают коммутаторам).
  • Интеллект. Ключевое же различие, которое может вынудить вас выбрать маршрутизатор - интеллектуальная начинка. Маршрутизатор предоставляет такие функции, как NAT, DPI, Stateful файрвол, шифрование итд - всё это, как правило, не поддерживается коммутатором.
Как бы то ни было, современный мир зиждется на оборудовании, изготовленном под конкретные нужды. Однако, если заглянуть в завтра с виртуальными эплайнсами, NFV и SDN, мы приходим к тому, что одна и та же коробочка может выполнять совершенно разные роли в зависимости от своего положения в сети.

#Какая разница между forwarding и control planes?

Для новичков это, несомненно, источник путаницы.

Forwarding plane часто называют Data Plane, а по-русски самый удачный вариант - плоскость коммутации. Её задача - доставить пакет из пункта А в пункт Б. Плоскость коммутации коммутирует .

Control plane - плоскость управления - обслуживает функции предписывающие, как должна работать плоскость коммутации. Плоскость управления управляет .

Вот например, у вас есть маршрутизатор с OSPF. Он обменивается маршрутной информацией с соседними маршрутизаторами OSPF, составляет граф всей сети и вычисляет маршруты. Когда таблица маршрутизации (RIB) построена, маршрутизатор инсталлирует лучший маршрут до каждой известной точки назначения в таблицу коммутации (FIB). Это функции control plane.

Когда тот же маршрутизатор получает IP-пакет, он ищет адрес назначения в своей таблице коммутации, чтобы определить интерфейс, в который пакет нужно отправить. Далее пакет передаётся в буфер выходного интерфейса и затем в кабель. Это функции forwarding plane.

Чувствуете различие? Плоскость коммутации отвечает за приём и передачу пакетов, в то время как плоскость управления - за то, как именно принимается решение о передаче пакета.

Плоскость коммутации реализована, как правило, в железе, иными словами выполняется специальными чипсетами (например, Network Processor обращается к TCAM, чтобы быстро извлечь выходной интерфейс из FIB), не требуя обращения к CPU.

Плоскость управления же работает на CPU и в обычной памяти, что очень похоже на работу персонального компьютера. Дело в том, что уровень управления выполняет очень сложные функции, которые с одной стороны не нужны в реальном времени, а с другой их проблематично реализовать в железе. Например, совершенно не важна задержка в несколько миллисекунд, когда маршрутизатор инсталлирует маршрут в таблицу коммутации, в то время как для уровня коммутации это может быть серьёзной деградацией производительности.

#Какая разница между MTU и MSS?

Maximum transmission unit (MTU) говорит о максимальном объёме данных, который может нести один пакет. Обычно мы говорим о MTU в отношении Etherner (хотя другие протоколы, конечно, тоже имеют свои MTU). MTU по умолчанию на большинстве платформ - 1500 байтов. Это означает, что узел может передать кадр, несущий 1500 байтов полезной нагрузки. Сюда не включены 14 байтов заголовка Ethernet (18 в случае 802.1q) и 4 байта поля FSC. Итоговый же размер кадра 1518 байтов (1522 в случае 802.1q). Многие узлы сейчас поддерживают джамбофреймы (jumbo), для этого стандартный MTU увеличивается до 9000+ байтов.

Maximum segment size (MSS) - это величина характерная для TCP, которая показывает максимальную полезную TCP нагрузку в пакете, фактически это MTU для TCP. TCP MSS вычисляется, исходя из значения Ethernet MTU (а, может, и не Ethernet) на интерфейсе. Поскольку TCP должен втиснуться в кадр Ethernet, MSS должен быть меньше, чем MTU. В идеале MSS должен быть максимально возможным: MTU-размер заголовка IP-размер заголовка TCP.

Предположим MTU 1500 байтов, вычитаем из него 20 байтов IPv4 адреса и ещё 20 байтов TCP и получаем MSS 1460 байтов. IPv6 с его удлинённым заголовком оставит для MSS всего 1440 байтов.

TCP MSS определяется один раз в ходе установления соединения. Каждый узел включает свой MSS в опции TCP в первый пакет (тот, что с флагом SYN), и оба узла выбирают наименьшее значение из двух как MSS сессии. Однажды установленный MSS уже не меняется в течение жизни сессии.

#Какая разница между интерфейсами VLAN и BVI?

VLAN-интерфейс , известный также как SVI (Switch Virtual Interface) или RVI (Routed VLAN Interface) - это виртуальный интерфейс на многоуровневом коммутаторе. Он обеспечивает маршрутизацию и часто служит шлюзом по умолчанию для локального сегмента сети. VLAN-интерфейс обычно ведёт себя и настраивается как физический интерфейс маршрутизатора: на него можно назначить IP, он участвует в VRRP, может иметь ACL итд. Вы можете представить себе, что это физический интерфейс внутри коммутатора, а можете, наоборот, вообразить, что это маршрутизирующий интерфейс вне коммутатора, на котором терминируется данный VLAN.

Bridge group Virtual Interface (BVI) служит похожим целям, но существует на маршрутизаторе, на котором нет концепции VLAN, потому что всего его порты обычно работают на L3 (Прим. переводчика: на маршрутизаторах концепция VLAN вполне может присутствовать ). Bridge group заставляет два или более портов работать на L2, разделяя между ними широковещательный домен. BVI связывает интерфейсы в Bridge Group и служит виртуальными L3-интерфейсом для всех сегментов, подключенных к нему. Когда маршрутизатор работает одновременно на L2 и L3, его называют Integrated Routing and Bridging (IRB).

В то время, как VLAN-интерфейс - жизненная необходимость многоуровневого коммутатора, IRB - нишевая вещь, которая может использоваться, например, на точках доступа WiFi.

#Как работает туннельный интерфейс?

Многие люди испытывают трудности с пониманием концепции туннельных интерфейсов (Прим. переводчика: действительно? ). Туннелирование - это просто инкапсуляция одних пакетов внутрь других при передаче их между двумя точками. Туннельный интерфейс используется для достижения такой инкапсуляции для маршрутизируемых VPN, которые позволяют защититься и абстрагироваться от топологии нижележащей сети. Существует много методов инкапсуляции, включающие IPSec, GRE, MPLS итд.

Несмотря на то, что туннельный интерфейс имеет виртуальную природу, ведёт себя он как и любой другой, когда дело доходит до маршрутизации, с той лишь разницей, что когда пакет выходит через туннельный интерфейс, он упаковывается в новый пакет, для которого снова принимается решение о маршрутизации. Новый беременный пакет отправляется в среду и достигает в конечном счёте точки назначения. На другом конце туннеля внешние заголовки снимаются, и на свет выходит оригинальный пакет, над которым снова принимается решение о маршрутизации.

#Что означают четыре типа адресов в NAT?

Существует четыре класса IP-адресов в контексте NAT:
  • Inside global
  • Inside local
  • Outside local
  • Outside global
К сожалению, эти термины редко объясняются в документации достаточно понятно.
Каждый из них описывает два атрибута: местоположение (location ) и точка зрения (perspective ).
Местоположение сообщает о каком узле идёт речь. Внутри сети (до NAT) - Inside; во внешней сети (после NAT) - Outside.
Точка зрения сообщает о том, откуда мы смотрим на этот узел. Изнутри нашей сети - Local; из внешней сети - Global.

Возьмём для примера случай, когда вы с компьютера с приватным адресом 192.168.0.10 хотите зайти по telnet на адрес в Интернете 94.142.241.111. Из пула NAT вам выделен IP-адрес 192.0.2.10.
Вот так будет выглядеть таблица трансляций:

R2# show ip nat translations Pro Inside global Inside local Outside local Outside global tcp 192.0.2.10:32978 192.168.0.10:32978 94.142.241.111:23 94.142.241.111:23
Разберёмся?

Inside Global - как внутренний узел выглядит извне. Сервер в Интернете действительно видит адрес из вашего пула NAT.
Inside Local - как внутренний адрес выглядит изнутри - приватный адрес компьютера
Outside Local - как внешний адрес выглядит инзнутри - видим его публичный адрес и порт 23.
Outside Global - тут должно быть то, как выглядит внешний адрес извне, но ваш NAT таких трансляций не умеет, поэтому адрес совпадает с Outside Local.

#Могу ли я использовать адрес сети и широковещательный адрес в NAT-пуле?

Да.

Во-первых, в контексте пула NAT вообще нет понятий маски адрес сети и широковещательный адрес.

Далее прим. переводчика.

Во-вторых адрес сети и широковещательный адрес определяются маской подсети - без неё они теряют смысл. Поэтому считать ли адрес 192.168.0.255 широковещательным адресом, а 192.168.1.0 адресом сети зависит целиком и полностью от маски: для /23 ответ нет, для /24 и более ответ да, а для /32 снова нет.

Поэтому адрес 192.168.0.255 вы можете не только указать в пуле, но даже настроить на интерфейсе с маской /23.

#Почему нам нужны IP-адреса? Разве нам не хватит MAC-адресации для всего?

Когда новичок начинает изучение MAC-адресов, он видит, что они должны быть уникальными глобально. И возникает закономерный вопрос, почему бы не использовать MAC-адреса для сквозной адресации через весь Интернет, не прибегая вообще к IP? Однако существует несколько достаточно весомых причин привлечь IP.

Во-первых, не все сети имеют MAC-адресацию. Вообще такой тип свойственен только семейству 802. Очень легко забыть об этом в мире, где практически всё - Ethernet или его вариации (например IEEE 802.11 WiFi). Но во времена юности Ethernet несколько десятилетий назад буйствовало беззаконие в сфере протоколов: Token Ring, Ethernet, Frame Relay, ATM боролись за место в маршрутизаторе. И обеспечить взаимодействие узлов из Token Ring с узлами из ATM посредством MAC-адресов было проблематично - нужен был протокол сетевого уровня.

Во-вторых, IP-адреса мобильны - они могут назначаться администраторами или даже выдаваться автоматически, в то время, как MAC-адреса вшиты в сетевой адаптер на веки вечные. Технически MAC-адрес, конечно, тоже можно поменять, но это не предполагалось изначально и сейчас нет никаких средств для удобного управления ими.

Но самая главная причина третья - IP масштабируем и может связывать огромные сети, а Ethernet - удел небольших сегментов. Пространство IP-адресов иерархично, MAC-адресов - плоско. 254 узла одной локальной сети могут быть агрегированы в одну подсеть /24. 8 подсетей /24 могут быть агрегированы в одну /21. Это возможно, потому что блоки адресов обычно располагаются рядом в Интернете. Всё, о чём нужно заботиться в этом случае маршрутизатору - как добраться до подсети.

MAC-адреса же каждый сам по себе, так как назначаются псевдослучайным образом на производстве, и два адреса, различающихся только в последнем бите, могут оказаться в диаметральных концах планеты. Если вдруг кому-то взбредёт в голову использовать MAC-адреса для сквозной адресации в Интернете, он столкнётся с тем, что маршрутизаторам будет нужно знать адрес каждого отдельно взятого узла в глобальной сети. Здравствуй, интернет вещей.

Далее прим. переводчика.
Освещённый в оригинальной статье вопрос на самом деле простой - одного отсутствия масштабирования достаточно для того, чтобы отказаться от этой идеи.

Гораздо интереснее обратный вопрос: Почему нам нужны MAC-адреса? Разве нам не хватит IP-адресации для всего? Тут всё не так однозначно. Почему бы действительно в современном мире, где скоро название стека можно менять на TCP/IP/Ethernet, не отказаться совсем от адресации на L2 и позволить узлам в сегменте взаимодействовать по IP?

ARP больше не нужен - пакет коммутируется по IP (кстати, уже сейчас существуют коммутаторы, которые действительно могут производить IP Learning вместо MAC Learning). Широковещание доступно так же через адрес 255.255.255.255.

При этом, я не предлагаю отказаться от Ethernet или L2 совсем, нет - утот уровень абстракции необходим - сетевой не должен работать напрямую с физическим, заниматься фреймингом, проверкой целостности итд; мы просто убираем адресацию из L2.

Сложность начинается на самом деле при передаче пакета из одной подсети в другую через череду маршрутизаторов. Тут даёт о себе знать широковещательная природа Ethernet. В заголовке IP, адрес назначения фиксирован и не меняется по мере продвижения пакета. Поэтому встаёт вопрос, как правильно переслать пакет между маршрутизаторами. Сейчас как раз для этого используются MAC-адреса Next-Hop. Дело в том, что за Ethernet-интерфейсом маршрутизатора может быть не один соседний маршрутизатор, а два, три, десяток, и здесь придётся добавлять ещё какой-то идентификатор Next-hop.

В реальном мире в 99,9% мы используем P2P линии между маршрутизаторами и тут нет необходимости в добавлении адреса Next-hop в пакет - больше ведь и слать некому - просто отправляем кадр в кабель. Тут можно вспомнить PPP, где хоть формально поле «адрес» и есть, но оно фактически не используется.

Но концепция Ethernet, который изначально планировался только для локальных сегментов с пользовательскими машинами, не предусматривает сценарий P2P отдельно.

В итоге адресацию с уровня Ethernet мы не можем убрать. Однако тут до сих пор остаётся вопрос - зачем MAC-адреса, ведь в заголовке Ethernet мы могли бы указывать IP-адрес Next-Hop, который менялся бы также на каждом узле.

В целом это верно, но такой подход ломает идеологию стека протоколов, предполагающую независимость уровней друг от друга. Сейчас, например, легко можно выкинуть Ethernet и вместо него использовать xDSL или PON или, прости Лейбниц, Frame Relay - сложности лишь административные и финансовые. Также, поверх Ethernet технически вы можете пустить собственный сетевой протокол IPЧ - и это всё будет работать с минимальными изменениями (добавить новый Ethertype).

Замечу, что этот вопрос нельзя обсуждать в отрыве от исторического и административного контекста. Даже если мы возьмём на себя смелость предположить, что мы нашли идеальное сочетание идеальных протоколов IP+Ethernet, и ближайшие 300 лет нам не грозят глобальные изменения, нужно помнить, что 20 лет назад мир был другим, как мы уже говорили выше, и Ethernet был лишь одним из. Мы не могли так жёстко связывать сетевой и канальный уровни. А теперь сети, которые уже работают, и нам для этого как правило не нужно прилагать титанических усилий, никто не будет переделывать просто потому, что кажется избыточным одновременное использование IP и MAC-адресации.

Кстати, возможно, вы будете несколько удивлены, но часть описанных идей войдут в нашу с вами жизнь в лице IPv6 с его концепцией Link-Local адресов.

#Позволяет ли QoS расширить пропускную способность?

Среди новичков иногда существует заблуждение, что QoS - это волшебная технология, позволяющая пропихнуть через линию больше пакетов, чем она может. Это не так. К примеру, если ваш интернет-канал ограничен 10Мб/с, вы никогда не сможете отправить в него больше. Задача QoS - отдавать предпочтения одним типам трафика над другими. Таким образом во время перегрузки на линии (при попытке отправить больше 10 Мб/с) менее важный трафик будет отброшен в пользу свободной передачи более приоритетного.

Обычно QoS применяется для того, чтобы защитить трафик реального времени, такой как голос или видеоконференции от трафика, терпимого к задержкам и потерям - WEB, почта, FTP, Torrent итд. Кроме того QoS поможет избежать оккупирования всей полосы передачей большого объёма трафика, типа резервного копирования серверов.

Рассмотрим ситуацию, когда у вас есть офис, подключенный через два канала E1 с общей пропускной способностью 4Мб/с. По этой линии передаётся и голос и данные. Чтобы во время перегрузки голосовой трафик не испытывал деградацию, с помощью QoS можно выделить гарантированную полосу для него. Оставшаяся часть будет доступна для данных. Однако если после этого трафик с данными заметно ухудшится, то QoS уже не поможет - в этом случае придётся расширять канал.

Переводчик позволил себе некоторые вольности в русскоязычных терминах, которые позволят, как ему кажется, лучше понять смысл.

Вы можете помочь и перевести немного средств на развитие сайта



После скучного рассказа о подключении к кошкам переходим к настройке сети. В этот раз темы будут для новичков сложные, для старичков избитые. Впрочем сетевым аксакалам едва ли удастся почерпнуть что-то новое из этого цикла. Итак, сегодня:
а) аккуратно впитываем теорию о коммутаторах, уровнях сетевой модели, понятии инкапсуляции и заголовков (не пугайтесь - еще не время),
б) собираем спланированную в нулевой части цикла сеть,
в) настраиваем VLAN"ы, разбираемся с access и trunk-портами и тегированными Ethernet-фреймами,
г) соотносим текущие знания со стеком протоколов TCP/IP и моделью OSI (да, наконец-то мы ее коснёмся).

Перед тем, как вы обратитесь к практике, настоятельно рекомендуем почитать нулевую часть, где мы всё спланировали и запротоколировали.

Теория

Для начала необходимо определится с определениями и детерминировать терминологию. В начале пути с этим могут быть трудности, несмотря на горы википедии и прорву технических статей.
Рассмотрим самые общие термины, поскольку что такое коммутатор и маршрутизатор вы, во-первых, представляете, во-вторых, по ходу не раз ещё их затронем. Итак, тронулись:
СКС - структурированная кабельная система - это определение вы в любом яндексе найдёте. На деле это все провода, розетки, патчпанели и патчкорды, то есть грубо говоря, это физика вашей сети в узком смысле, в широком - это совокупность сетей: ЛВС, телефонные сети, системы видеонаблюдения и прочее. Это отдельный очень большой и порой сложный пласт знаний и технологий, который вообще не имеет точек пересечения с настройкой, поэтому к нему мы более обращаться не будем. Привели мы этот термин по большей части для того, чтобы читатель чувствовал отличие от следующего.
ЛВС = Локальная Вычислительная Сеть = LAN = Local Area Network. Актуальность слова “Вычислительная” сейчас можно поставить под сомнение, так же, как в слове ЭВМ. Всё-таки, говоря о современных сетях и устройствах, мы давно уже не держим в уме термин "вычисления", несмотря на то, что глубинная суть осталась неизменной. В этом плане буржуйские термин более универсален и даёт более простое представление о своём значении.
Итак, локальная сеть - в первом приближении - это сеть вашей организации. Вот, к примеру, обслуживаем мы сейчас сеть компании "Лифт ми Ап" с двумя офисам, так вот сети этих двух офисов и будут являться локальной сетью.
При втором приближении, локальной называют сеть, которая находится под управлением одного сетевого администратора. То есть, например, вы отвечаете за районный сегмент сети провайдера, в таком случае ваша районная сеть со всеми подсетями будет являться локальной, в то время, как вышестоящая сеть и сети других районов уже нет, так как за них отвечает уже другие люди. С точки зрения меня, как абонента этого провайдера, моя локальная сеть - это всё, что до моего домашнего роутера. Интуитивно, наверно, все понимают о чём идёт речь.
Именно с локальными сетями мы и будем иметь дело в ближайших выпусках.

И последнее, что хотелось бы отметить в связи с ЛВС - это IP-адресация.
Все вы знаете, что когда вы включаете какой-нибудь домашний Wi-Fi-роутер в сеть, он обычно выдаёт вам IP-адрес, вроде 192.168.1.x. Почему именно 192.168 в начале?

Дело в том, что все IP адреса делятся на приватные (private, он же внутренний, “серый”, локальный), и публичные. Публичные используются в интернет, каждый адрес уникален, их распределение контролирует организация IANA (Internet Assigned Numbers Authority).

Приватные используются для адресации хостов (ну, строго говоря, не хостов, а интерфейсов) внутри ЛВС, их распределение никто не контролирует. Для них выделили три диапазона адресов (по одному из каждого класса):

10.0.0.0 - 10.255.255.255
172.16.0.0 - 172.31.255.255
192.168.0.0 - 192.168.255.255

Важный момент касаемо “классов адресов”, об этом уже как-то писали на хабре: классов адресов уже давно не существует. Позже мы обстоятельно поговорим об адресации, но пока рекомендация такая: забыть про существование классов адресов, чтобы не попасть впросак на собеседовании или в разговоре.

Это те адреса, которые вы можете использовать в своей частной сети. Они вполне могут повторяться (и повторяются) в разных локальных сетях, и за её пределы они не выходят. Приватный адрес на то и приватный, поэтому любой пакет с адресом из диапазонов, указанных выше, попавший к провайдеру, будет отбрасываться.

Если вернуться к нашей старой схеме то вы увидите, что для своей сети мы выбрали приватные адреса из диапазона 172.16.0.0 - 172.31.255.255.
Достаточно подробно об IP-адресах можно почитать и .
У всех провайдеров и во внутренней сети любой крупной организации используются именно эти серые подсети. Если только вы не государственный ВУЗ, которому в своё время выпала сеть на несколько тысяч публичных адресов: Кемеровский Государственный Университет, к примеру, не озадачивается NAT’ом и прочей чепухой - просто на все компьютеры университетской сети раздаются белые IP.

Широковещательный домен - область сети, в которой происходит обмен широковещательными сообщениями, и устройства могут отправлять друг другу сообщения непосредственно, без участия маршрутизатора.
О чём это мы тут говорим? Ну, например, послал ваш компьютер широковещательный запрос в сеть в поисках DHCP-сервера. Фрейм этот (он же кадр ) адресован всем устройствам и имеет MAC-адрес получателя FF:FF:FF:FF:FF:FF. Сначала он попадает на коммутатор, с которого его копии рассылаются на все порты. Потом часть попадает на другие компьютеры, часть уходят в соседние коммутаторы, кто-то доходит до маршрутизатора, а одну копию принимает-таки DHCP-сервер. И вот участок сети, внутри которого могут жить эти кадры и называется широковещательным доменом. А кончают свою жизнь они на конечных хостах (компьютеры, серверы) или на маршрутизаторах, которые их отбрасывают, если они им не предназначены:

Если же на коммутаторе заведены VLAN’ы, то они также разделяют широковещательные домены, потому что пакет между ними обязательно должен проходить через маршрутизатор, который отбросит широковещательные сообщения. Таким образом, один VLAN - это один широковещательный домен.

Ещё раз: у нас есть три способа разграничить широковещательные домены:
1) Поставить маршрутизатор и разнести хосты в разные подсети,
2) Разделить сеть VLAN’ами,
3) Порвать кабель.

Ну и самая жесть, которой часто сторонятся начинающие: OSI . Open System Interconnection. Вообще в двух словах, чтобы мозг не захламить за одно занятие. Эту модель называют эталонной, потому что в реальном мире дело не дошло до реализации. Но она само совершенство, поэтому инженеры и админы вворачивают это слово повсюду.
В основе лежат 7 китов сетевой иерархии: 7 уровней. Сегодня коснёмся двух нижних: первый - физический - это представление информации в виде сигналов, прямо скажем, битов. Задача этого уровня сгенерировать электрический, оптический или радиосигнал, передать его в среду и принять его. К нему относится вся физика: интерфейсы, кабели, антенны, медиаконвертеры (конвертеры среды), репитеры, старые хабы. В общем низкоуровневая это работа. Это первый уровень модели OSI и стека TCP/IP.
Второй - канальный . На этом уровне работают коммутаторы. Идентификатор устройства здесь, это MAC-адрес . У каждого узла (компьютер, маршрутизатор, ноутбук, IP-телефон, любой Wi-Fi-клиент) есть этот уникальный адрес, который однозначно определяет устройство в локальной сети. В теории MAC-адреса не должны повторяться вообще, но на практике такое однако случается и в рамках одного широковещательного домена может приводить к сложноотлавливаемым проблемам.
Наиболее известным протоколом этого уровня является Ethernet. Данные на этом уровне передаются кусками, каждый из которых называется Ethernet-фрейм (он же Ethernet-кадр, он же PDU канального уровня). Что он представляет из себя?

*Картинку гнусно спёрли из википедии, потому что красивее не нарисуем*

Payload - это полезная нагрузка - данные сетевого уровня, которые вкладываются (инкапсулируются ) в кадр. MAC Header (Заголовок) - это служебная информация канального (второго) уровня. Самые важные пока для нас элементы - это source MAC-address (адрес отправителя кадра) и Destination MAC-address (адрес получателя кадра).

Третий уровень - сетевой (IP, ARP)
Четвёртый - транспортный (TCP, UDP, ICMP)
С пятого по седьмой - сеансовый, представления и прикладной (в стеке TCP/IP они не различаются и называются просто прикладным. На нём работают протоколы вроде HTTP, FTP, telnet и многие другие)


В википедии утверждается, что ICMP относится к 3-му уровню, что является спорным моментом.

Сегодня мы акцентируемся на 1-м и 2-м уровнях, особенно на втором. Третьего и четвертого коснёмся в следующих выпусках.

Теперь проследим нелёгкий путь кадра.
Состояние покоя сети - утопия.

Вы пытаетесь пропинговать, например, адрес соседнего компьютера командой ping 192.168.1.118 . Данные этого приложения показаны фиолетовым параллелепипедом.

Ещё один небольшой инструмент, который может немного увеличить удобство работы: banner. Это объявление, которое циска покажет перед авторизацией на устройство.

Switch(config)#banner motd q
Enter TEXT message. End with the character "q".
It is just banner.
q

После motd вы указываете символ, который будет служить сигналом о том, что строка закончена. В это примере мы поставили “q”.

Относительно содержания баннера. Существует такая легенда: хакер вломился в сеть, что-то там поломал\украл, его поймали, а на суде оправдали и отпустили. Почему? А потому, что на пограничном роутере(между интернет и внутренней сетью), в banner было написано слово “Welcome”. “Ну раз просят, я и зашел”)). Поэтому считается хорошей практикой в баннере писать что-то вроде “Доступ запрещен!”.

Для упорядочивания знаний по пунктам разберём, что вам необходимо сделать:

1) Настроить hostname. Это поможет вам в будущем на реальной сети быстро сориентироваться, где вы находитесь.

Switch(config)#hostname HOSTNAME

2) Создать все вланы и дать им название

Switch(config)#vlan VLAN-NUMBER
Switch(config-vlan)#name NAME-OF-VLAN

3) Настроить все access-порты и задать им имя


Switch(config-if)#switchport mode access
Switch(config-if)#switchport access vlan VLAN-NUMBER

Удобно иногда бывает настраивать интерфейсы пачками:

msk-arbat-asw3(config)#interface range fastEthernet 0/6 - 10
msk-arbat-asw3(config-if-range)#descript ion FEO
msk-arbat-asw3(config-if-range)#switchpo rt mode access
msk-arbat-asw3(config-if-range)#switchpo rt access vlan 102

4) Настроить все транковые порты и задать им имя:

Switch(config-if)#description DESCRIPTION-OF-INTERFACE
Switch(config-if)#switchport mode trunk
Switch(config-if)#switchport trunk allowed vlan VLAN-NUMBERS

5) Не забывайте сохраняться:

Switch#copy running-config startup-config

Итого: чего мы добились? Все устройства в одной подсети видят друг друга, но не видят устройства из другой. В следующем выпуске разбираемся с этим вопросом, а также обратимся к статической маршрутизации и L3-коммутаторам.
В общем-то на этом данный урок можно закончить. В видео вы сможете ещё раз увидеть, как настраиваются вланы. В качестве домашнего задания настройте вланы на коммутаторах для серверов.

Здесь вы можете скачать конфигурацию всех устройств:
Lift-me-Up_Configuration.zip
И наш проект РТ:
Lift-me-UP_v2-VLANs.pkt

P.S.
Важное дополнение: в предыдущей части, говоря о native vlan мы вас немного дезинформировали. На оборудовании cisco такая схема работы невозможна.
Напомним, что нами предлагалось передавать на коммутатор msk-rubl-asw1 нетегированными кадры 101-го влана и принимать их там в первый.
Дело в том, что, как мы уже упомянули выше, с точки зрения cisco с обеих сторон на коммутаторах должен быть настроен одинаковый номер влана, иначе начинаются проблемы с протоколом STP и в логах можно увидеть предупреждения о неверной настройке. Поэтому 101-й влан мы передаём на устройство обычным образом, кадры будут тегированными и соответственно, 101-й влан тоже необходимо создавать на msk-rubl-asw1.

Ещё раз хотим заметить, что при всём желании мы не сможем охватить все нюансы и тонкости, поэтому и не ставим перед собой такой задачи. Такие вещи, как принцип построения MAC-адреса, значения поля Ether Type или для чего нужен CRC в конце кадра, вам предстоит изучить самостоятельно.

Это первая статья из серии «Сети для самых маленьких». Мы с Максимом aka Gluck долго думали с чего начать: маршрутизация, VLAN"ы, настройка оборудования. В итоге решили начать с вещи фундаментальной и, можно сказать, самой важной: планирование. Поскольку цикл рассчитан на совсем новичков, то и пройдём весь путь от начала до конца.

Предполагается, что вы, как минимум, читали о эталонной модели OSI, о стеке протоколов TCP/IP, знаете о типах существующих VLAN’ов, о наиболее популярном сейчас port-based VLAN и о IP адресах. Мы понимаем, что для новичков «OSI» и «TCP/IP» — это страшные слова. Но не переживайте, не для того, чтобы запугать вас, мы их используем. Это то, с чем вам придётся встречаться каждый день, поэтому в течение этого цикла мы постараемся раскрыть их смысл и отношение к реальности.

Начнём с постановки задачи. Есть некая фирма, занимающаяся, допустим, производством лифтов, идущих только вверх, и потому называется ООО «Лифт ми ап». Расположены они в старом здании на Арбате, и сгнившие провода, воткнутые в пожжёные и прожжёные коммутаторы времён 10Base-T не ожидают подключения новых серверов по гигабитным карточкам. Итак, у них катастрофическая потребность в сетевой инфраструктуре и денег куры не клюют, что даёт вам возможность безграничного выбора. Это чудесный сон любого инженера. А вы вчера выдержали собеседование, и в сложной борьбе по праву получили должность сетевого администратора. И теперь вы в ней первый и единственный в своём роде. Поздравляем! Что дальше?

Следует несколько конкретизировать ситуацию:

  1. В данный момент у компании есть два офиса: 200 квадратов на Арбате под рабочие места и серверную. Там представлены несколько провайдеров. Другой на Рублёвке.
  2. Есть четыре группы пользователей: бухгалтерия (Б), финансово-экономический отдел (ФЭО), производственно-технический отдел (ПТО), другие пользователи (Д). А так же есть сервера (С), которые вынесены в отдельную группу. Все группы разграничены и не имеют прямого доступа друг к другу.
  3. Пользователи групп С, Б и ФЭО будут только в офисе на Арбате, ПТО и Д будут в обоих офисах.

Прикинув количество пользователей, необходимые интерфейсы, каналы связи, вы готовите схему сети и IP-план.

При проектировании сети следует стараться придерживаться иерархической модели сети, которая имеет много достоинств по сравнению с “плоской сетью”:

  • упрощается понимание организации сети
  • модель подразумевает модульность, что означает простоту наращивания мощностей именно там, где необходимо
  • легче найти и изолировать проблему
  • повышенная отказоустойчивость за счет дублирования устройств и/или соединений
  • распределение функций по обеспечению работоспособности сети по различным устройствам.

Согласно этой модели, сеть разбивается на три логических уровня: ядро сети (Core layer: высокопроизводительные устройства, главное назначение — быстрый транспорт), уровень распространения (Distribution layer: обеспечивает применение политик безопасности, QoS, агрегацию и маршрутизацию в VLAN, определяет широковещательные домены), и уровень доступа (Access-layer: как правило, L2 свичи, назначение: подключение конечных устройств, маркирование трафика для QoS, защита от колец в сети (STP) и широковещательных штормов, обеспечение питания для PoE устройств).

В таких масштабах, как наш, роль каждого устройства размывается, однако логически разделить сеть можно.

Составим приблизительную схему:


На представленной схеме ядром (Core) будет маршрутизатор 2811, коммутатор 2960 отнесём к уровню распространения (Distribution), поскольку на нём агрегируются все VLAN в общий транк. Коммутаторы 2950 будут устройствами доступа (Access). К ним будут подключаться конечные пользователи, офисная техника, сервера.

Именовать устройства будем следующим образом: сокращённое название города (msk ) — географическое расположение (улица, здание) (arbat ) — роль устройства в сети + порядковый номер.

Соответственно их ролям и месту расположения выбираем hostname :

  • маршрутизатор 2811: msk-arbat-gw1 (gw=GateWay=шлюз);
  • коммутатор 2960: msk-arbat-dsw1 (dsw=Distribution switch);
  • коммутаторы 2950: msk-arbat-aswN, msk-rubl-asw1 (asw=Access switch).

Документация сети

Вся сеть должна быть строго документирована: от принципиальной схемы, до имени интерфейса.

Прежде, чем приступить к настройке, я бы хотел привести список необходимых документов и действий:

  • схемы сети L1, L2, L3 в соответствии с уровнями модели OSI (физический, канальный, сетевой) ;
  • план IP-адресации = IP-план ;
  • список VLAN ;
  • подписи (description ) интерфейсов ;
  • список устройств (для каждого следует указать: модель железки, установленная версия IOS, объем RAM\NVRAM, список интерфейсов);
  • метки на кабелях (откуда и куда идёт), в том числе на кабелях питания и заземления и устройствах;
  • единый регламент, определяющий все вышеприведённые параметры и другие.

Жирным выделено то, за чем мы будем следить в рамках программы-симулятора. Разумеется, все изменения сети нужно вносить в документацию и конфигурацию, чтобы они были в актуальном состоянии.

Говоря о метках/наклейках на кабели, мы имеем ввиду это:

На этой фотографии отлично видно, что промаркирован каждый кабель, значение каждого автомата на щитке в стойке, а также каждое устройство.

Подготовим нужные нам документы:

Список VLAN

Каждая группа будет выделена в отдельный влан. Таким образом мы ограничим широковещательные домены. Также введём специальный VLAN для управления устройствами. Номера VLAN c 4 по 100 зарезервированы для будущих нужд.

IP-план

Выделение подсетей в общем-то произвольное, соответствующее только числу узлов в этой локальной сети с учётом возможного роста. В данном примере все подсети имеют стандартную маску /24 (/24=255.255.255.0) — зачастую такие и используются в локальных сетях, но далеко не всегда. Советуем почитать о классах сетей . В дальнейшем мы обратимся и к бесклассовой адресации (cisco). Мы понимаем, что ссылки на технические статьи в википедии — это моветон, однако они дают хорошее определение, а мы попробуем в свою очередь перенести это на картину реального мира.

Под сетью Point-to-Point подразумеваем подключение одного маршрутизатора к другому в режиме точка-точка. Обычно берутся адреса с маской 30 (возвращаясь к теме бесклассовых сетей), то есть содержащие два адреса узла. Позже станет понятно, о чём идёт речь.

IP-план
IP-адрес Примечание VLAN
172.16.0.0/16
172.16.0.0/24 Серверная ферма 3
172.16.0.1 Шлюз
172.16.0.2 Web
172.16.0.3 File
172.16.0.4 Mail
172.16.0.5 — 172.16.0.254 Зарезервировано
172.16.1.0/24 Управление 2
172.16.1.1 Шлюз
172.16.1.2 msk-arbat-dsw1
172.16.1.3 msk-arbat-asw1
172.16.1.4 msk-arbat-asw2
172.16.1.5 msk-arbat-asw3
172.16.1.6 msk-rubl-aswl
172.16.1.6 — 172.16.1.254 Зарезервировано
172.16.2.0/24 Сеть Point-to-Point
172.16.2.1 Шлюз
172.16.2.2 — 172.16.2.254 Зарезервировано
172.16.3.0/24 ПТО 101
172.16.3.1 Шлюз
172.16.3.2 — 172.16.3.254 Пул для пользователей
172.16.4.0/24 ФЭО 102
172.16.4.1 Шлюз
172.16.4.2 — 172.16.4.254 Пул для пользователей
172.16.5.0/24 Бухгалтерия 103
172.16.5.1 Шлюз
172.16.5.2 — 172.16.5.254 Пул для пользователей
172.16.6.0/24 Другие пользователи 104
172.16.6.1 Шлюз
172.16.6.2 — 172.16.6.254 Пул для пользователей

План подключения оборудования по портам

Разумеется, сейчас есть коммутаторы с кучей портов 1Gb Ethernet, есть коммутаторы с 10G, на продвинутых операторских железках, стоящих немалые тысячи долларов есть 40Gb, в разработке находится 100Gb (а по слухам уже даже есть такие платы, вышедшие в промышленное производство). Соответственно, вы можете выбирать в реальном мире коммутаторы и маршрутизаторы согласно вашим потребностям, не забывая про бюджет. В частности гигабитный свич сейчас можно купить незадорого (20-30 тысяч) и это с запасом на будущее (если вы не провайдер, конечно). Маршрутизатор с гигабитными портами стоит уже ощутимо дороже, чем со 100Mbps портами, однако оно того стоит, потому что FE-модели (100Mbps FastEthernet), устарели и их пропускная способность очень невысока.

Но в программах эмуляторах/симуляторах, которые мы будем использовать, к сожалению, есть только простенькие модели оборудования, поэтому при моделировании сети будем отталкиваться от того, что имеем: маршрутизатор cisco2811, коммутаторы cisco2960 и 2950.

Имя устройства Порт Название VLAN
Access Trunk
msk-arbat-gw1 FE0/1 UpLink
FE0/0 msk-arbat-dsw1 2,3,101,102,103,104
msk-arbat-dsw1 FE0/24 msk-arbat-gw1 2,3,101,102,103,104
GE1/1 msk-arbat-asw1 2,3
GE1/2 msk-arbat-asw3 2,101,102,103,104
FE0/1 msk-rubl-asw1 2,101,104
msk-arbat-asw1 GE1/1 msk-arbat-dsw1 2,3
GE1/2 msk-arbat-asw2 2,3
FE0/1 Web-server 3
FE0/2 File-server 3
msk-arbat-asw2 GE1/1 msk-arbat-asw1 2,3
FE0/1 Mail-Server 3
msk-arbat-asw3 GE1/1 msk-arbat-dsw1 2,101,102,103,104
FE0/1-FE0/5 PTO 101
FE0/6-FE0/10 FEO 102
FE0/11-FE0/15 Accounting 103
FE0/16-FE0/24 Other 104
msk-rubl-asw1 FE0/24 msk-arbat-dsw1 2,101,104
FE0/1-FE0/15 PTO 101
FE0/20 administrator 104

Почему именно так распределены VLAN"ы, мы объясним в следующих частях.

Схемы сети

На основании этих данных можно составить все три схемы сети на этом этапе. Для этого можно воспользоваться Microsoft Visio, каким-либо бесплатным приложением, но с привязкой к своему формату, или редакторами графики (можно и от руки, но это будет сложно держать в актуальном состоянии:)).

Не пропаганды опен сорса для, а разнообразия средств ради, воспользуемся Dia. Я считаю его одним из лучших приложений для работы со схемами под Linux. Есть версия для Виндоус, но, к сожалению, совместимости в визио никакой.

L1

То есть на схеме L1 мы отражаем физические устройства сети с номерами портов: что куда подключено.


L2

На схеме L2 мы указываем наши VLAN’ы.


L3

В нашем примере схема третьего уровня получилась довольно бесполезная и не очень наглядная, из-за наличия только одного маршрутизирующего устройства. Но со временем она обрастёт подробностями.


Как видите, информация в документах избыточна. Например, номера VLAN повторяются и на схеме и в плане по портам. Тут как бы кто на что горазд. Как вам удобнее, так и делайте. Такая избыточность затрудняет обновление в случае изменения конфигурации, потому что нужно исправиться сразу в нескольких местах, но с другой стороны, облегчает понимание.

К этой первой статье мы не раз ещё вернёмся в будущем, равно как и вам придётся всегда возвращаться к тому, что вы изначально напланировали. Собственно задание для тех, кто пока только начинает учиться и готов приложить для этого усилия: много читать про вланы, ip-адресацию, найти программы Packet Tracer и GNS3. Что касается фундаментальных теоретических знаний, то советуем начать читать Cisco press. Это то, что вам совершенно точно понадобится знать. В следующей части всё будет уже по-взрослому, с видео, мы будем учиться подключаться к оборудованию, разбираться с интерфейсом и расскажем, что делать нерадивому админу, забывшему пароль.

Долго думали с чего начать: маршрутизация, VLAN"ы, настройка оборудования.
В итоге решили начать с вещи фундаментальной и, можно сказать, самой важной: планирование. Поскольку цикл рассчитан на совсем новичков, то и пройдём весь путь от начала до конца.

Предполагается, что вы, как минимум читали о эталонной модели OSI (то же на англ.), о стеке протоколов TCP/IP (англ.), знаете о типах существующих VLAN’ов (эту статью я настоятельно рекомендую к прочтению), о наиболее популярном сейчас port-based VLAN и о IP адресах (). Мы понимаем, что для новичков «OSI» и «TCP/IP» - это страшные слова. Но не переживайте, не для того, чтобы запугать вас, мы их используем. Это то, с чем вам придётся встречаться каждый день, поэтому в течение этого цикла мы постараемся раскрыть их смысл и отношение к реальности.

Начнём с постановки задачи. Есть некая фирма, занимающаяся, допустим, производством лифтов, идущих только вверх, и потому называется ООО «Лифт ми ап». Расположены они в старом здании на Арбате, и сгнившие провода, воткнутые в пожжёные и прожжёные коммутаторы времён 10Base-T не ожидают подключения новых серверов по гигабитным карточкам. Итак у них катастрофическая потребность в сетевой инфраструктуре и денег куры не клюют, что даёт вам возможность безграничного выбора. Это чудесный сон любого инженера. А вы вчера выдержали собеседование и в сложной борьбе по праву получили должность сетевого администратора. И теперь вы в ней первый и единственный в своём роде. Поздравляем! Что дальше?

Следует несколько конкретизировать ситуацию.

  1. В данный момент у компании есть два офиса: 200 квадратов на Арбате под рабочие места и серверную. Там представлены несколько провайдеров. Другой на Рублёвке.
  2. Есть четыре группы пользователей: бухгалтерия (Б), финансово-экономический отдел (ФЭО), производственно-технический отдел (ПТО), другие пользователи (Д). А так же есть сервера (С), которые вынесены в отдельную группу. Все группы разграничены и не имеют прямого доступа друг к другу.
  3. Пользователи групп С, Б и ФЭО будут только в офисе на Арбате, ПТО и Д будут в обоих офисах.
Прикинув количество пользователей, необходимые интерфейсы, каналы связи, вы готовите схему сети и IP-план.
При проектировании сети следует стараться придерживаться иерархической модели сети , которая имеет много достоинств по сравнению с “плоской сетью”:
  • упрощается понимание организации сети
  • модель подразумевает модульность, что означает простоту наращивания мощностей именно там, где необходимо
  • легче найти и изолировать проблему
  • повышенная отказоустойчивость засчет дублирования устройств и/или соединений
  • распределение функций по обеспечению работоспособности сети по различным устройствам.

Согласно этой модели, сеть разбивается на три логических уровня: ядро сети (Core layer: высокопроизводительные устройства, главное назначение - быстрый транспорт), уровень распространения (Distribution layer: обеспечивает применение политик безопасности, QoS, агрегацию и маршрутизацию в VLAN, определяет широковещательные домены), и уровень доступа (Access-layer: как правило, L2 свичи, назначение: подключение конечных устройств, маркирование трафика для QoS, защита от колец в сети (STP) и широковещательных штормов, обеспечение питания для PoE устройств).

В таких масштабах, как наш, роль каждого устройства размывается, однако логически разделить сеть можно.
Составим приблизительную схему:

На представленной схеме ядром (Core) будет маршрутизатор 2811, коммутатор 2960 отнесём к уровню распространения (Distribution), поскольку на нём агрегируются все VLAN в общий транк. Коммутаторы 2950 будут устройствами доступа (Access). К ним будут подключаться конечные пользователи, офисная техника, сервера.

Именовать устройства будем следующим образом: сокращённое название города (msk ) - географическое расположение (улица, здание) (arbat ) - роль устройства в сети + порядковый номер.
Соответственно их ролям и месту расположения выбираем hostname :
Маршрутизатор 2811: msk-arbat-gw1 (gw=GateWay=шлюз)
Коммутатор 2960: msk-arbat-dsw1 (dsw=Distribution switch)
Коммутаторы 2950: msk-arbat-aswN, msk-rubl-asw1 (asw=Access switch)

Документация сети

Вся сеть должна быть строго документирована: от принципиальной схемы, до имени интерфейса.
Прежде, чем приступить к настройке, я бы хотел привести список необходимых документов и действий:
Схемы сети L1, L2, L3 в соответствии с уровнями модели OSI (Физический, канальный, сетевой)
План IP-адресации = IP-план.
Список VLAN
Подписи (description ) интерфейсов
Список устройств (для каждого следует указать: модель железки, установленная версия IOS, объем RAM\NVRAM, список интерфейсов)
Метки на кабелях (откуда и куда идёт), в том числе на кабелях питания и заземления и устройствах
Единый регламент, определяющий все вышеприведённые параметры и другие.

Жирным выделено то, за чем мы будем следить в рамках программы-симулятора. Разумеется, все изменения сети нужно вносить в документацию и конфигурацию, чтобы они были в актуальном состоянии.

Говоря о метках/наклейках на кабели, мы имеем ввиду это:


На этой фотографии отлично видно, что промаркирован каждый кабель, значение каждого автомата на щитке в стойке, а также каждое устройство.

Подготовим нужные нам документы:

Список VLAN

Каждая группа будет выделена в отдельный влан. Таким образом мы ограничим широковещательные домены. Также введём специальный VLAN для управления устройствами.
Номера VLAN c 4 по 100 зарезервированы для будущих нужд.

IP-план
IP-адрес
Примечание
VLAN
172.16.0.0/16
172.16.0.0/24
Серверная ферма
3
172.16.0.1 Шлюз
172.16.0.2 Web
172.16.0.3 File
172.16.0.4 Mail
172.16.0.5 - 172.16.0.254 Зарезервировано
172.16.1.0/24
Управление
2
172.16.1.1 Шлюз
172.16.1.2 msk-arbat-dswl
172.16.1.3 msk-arbat-aswl
172.16.1.4 msk-arbat-asw2
172.16.1.5 msk-arbat-asw3
172.16.1.6 msk-rubl-aswl
172.16.1.6 - 172.16.1.254 Зарезервировано
172.16.2.0/24
Сеть Point-to-Point
172.16.2.1 Шлюз
172.16.2.2 - 172.16.2.254 Зарезервировано
172.16.3.0/24
ПТО
101
172.16.3.1 Шлюз
172.16.3.2 - 172.16.3.254 Пул для пользователей
172.16.4.0/24
ФЭО
102
172.16.4.1 Шлюз
172.16.4.2 - 172.16.4.254 Пул для пользователей
172.16.5.0/24
Бухгалтерия
103
172.16.5.1 Шлюз
172.16.5.2 - 172.16.5.254 Пул для пользователей
172.16.6.0/24
Другие пользователи
104
172.16.6.1 Шлюз
172.16.6.2 - 172.16.6.254 Пул для пользователей

Выделение подсетей в общем-то произвольное, соответствующее только числу узлов в этой локальной сети с учётом возможного роста. В данном примере все подсети имеют стандартную маску /24 (/24=255.255.255.0) - зачастую такие и используются в локальных сетях, но далеко не всегда. Советуем почитать о классах сетей . В дальнейшем мы обратимся и к бесклассовой адресации (cisco). Мы понимаем, что ссылки на технические статьи в википедии - это моветон, однако они дают хорошее определение, а мы попробуем в свою очередь перенести это на картину реального мира.
Под сетью Point-to-Point подразумеваем подключение одного маршрутизатора к другому в режиме точка-точка. Обычно берутся адреса с маской 30 (возвращаясь к теме бесклассовых сетей), то есть содержащие два адреса узла. Позже станет понятно, о чём идёт речь.

План подключения оборудования по портам

Разумеется, сейчас есть коммутаторы с кучей портов 1Gb Ethernet, есть коммутаторы с 10G, на продвинутых операторских железках, стоящих немалые тысячи долларов есть 40Gb, в разработке находится 100Gb (а по слухам уже даже есть такие платы, вышедшие в промышленное производство). Соответственно, вы можете выбирать в реальном мире коммутаторы и маршрутизаторы согласно вашим потребностям, не забывая про бюджет. В частности гигабитный свич сейчас можно купить незадорого (20-30 тысяч) и это с запасом на будущее (если вы не провайдер, конечно). Маршрутизатор с гигабитными портами стоит уже ощутимо дороже, чем со 100Mbps портами, однако оно того стоит, потому что FE-модели (100Mbps FastEthernet), устарели и их пропускная способность очень невысока.
Но в программах эмуляторах/симуляторах, которые мы будем использовать, к сожалению, есть только простенькие модели оборудования, поэтому при моделировании сети будем отталкиваться от того, что имеем: маршрутизатор cisco2811, коммутаторы cisco2960 и 2950.

Имя устройства
Порт
Название
VLAN
Access
Trunk
msk-arbat-gw1 FE0/1 UpLink
FE0/0 msk-arbat-dsw1 2,3,101,102,103,104
msk-arbat-dsw1 FE0/24 msk-arbat-gw1 2,3,101,102,103,104
GE1/1 msk-arbat-asw1 2,3
GE1/2 msk-arbat-asw3 2,101,102,103,104
FE0/1 msk-rubl-asw1 2,101,104
msk-arbat-asw1 GE1/1 msk-arbat-dsw1 2,3
GE1/2 msk-arbat-asw2 2,3
FE0/1 Web-server 3
FE0/2 File-server 3
msk-arbat-asw2 GE1/1 msk-arbat-asw1 2,3
FE0/1 Mail-Server 3
msk-arbat-asw3 GE1/1 msk-arbat-dsw1 2,101,102,103,104
FE0/1-FE0/5 PTO 101
FE0/6-FE0/10 FEO 102
FE0/11-FE0/15 Accounting 103
FE0/16-FE0/24 Other 104
msk-rubl-asw1 FE0/24 msk-arbat-dsw1 2,101,104
FE0/1-FE0/15 PTO 101
FE0/20 administrator 104

Почему именно так распределены VLAN"ы, мы объясним в следующих частях.

Схемы сети

На основании этих данных можно составить все три схемы сети на этом этапе. Для этого можно воспользоваться Microsoft Visio, каким-либо бесплатным приложением, но с привязкой к своему формату, или редакторами графики (можно и от руки, но это будет сложно держать в актуальном состоянии:)).

Не пропаганды опен сорса для, а разнообразия средств ради, воспользуемся Dia. Я считаю его одним из лучших приложений для работы со схемами под Linux. Есть версия для Виндоус, но, к сожалению, совместимости в визио никакой.

То есть на схеме L1 мы отражаем физические устройства сети с номерами портов: что куда подключено.

L2
На схеме L2 мы указываем наши VLAN’ы

L3

В нашем примере схема третьего уровня получилась довольно бесполезная и не очень наглядная, из-за наличия только одного маршрутизирующего устройства. Но со временем она обрастёт подробностями.

Dia-файлы со схемами сети.