Сайт о телевидении

Сайт о телевидении

» » RFID –это просто. Реализация собственного RFID транспондера и ридера. Чтение и запись RFID меток. Модуль RC522 для Arduino

RFID –это просто. Реализация собственного RFID транспондера и ридера. Чтение и запись RFID меток. Модуль RC522 для Arduino

Любая система радиочастотной идентификации (RFID) состоит из считывающего устройства (считыватель, ридер или интеррогатор) и транспондера (он же RFID-метка, иногда также применяется термин RFID-тег). В статье мы рассмотрим простое устройство для считывания RFID ключей, поддерживающих протокол EM4100 и работающие на частоте 125 кГц. Данный тип RFID-ключей может иметь форму брелока или кредитной карточки (Рисунок 1).

Основным компонентом считывающего устройства является микроконтроллер AVR , который считывает 10-значный уникальный идентификационный номер ключа и передает его в кодировке ASCII по последовательному интерфейсу (UART) со скоростью 2400 бит/с Host-устройству. Другими словами, считыватель представляет собой отдельный модуль, подключаемый к основному процессору или микроконтроллеру системы (Рисунок 2).

Принципиальная схема RFID считывателя изображена на Рисунке 3.

Рисунок 3.

Рассмотрим основные особенности работы схемы. Микроконтроллер использует встроенный ШИМ модулятор для генерирования на выходе PB0 прямоугольных импульсов с частотой 125 кГц. Если на выходе PB0 лог. 0 (спадающий фронт импульса), транзистор T1 находится в закрытом состоянии, и на катушку L1 подается напряжение питания +5 В через резистор R1. Нарастающий фронт на выходе PB0 (лог. 1) открывает транзистор T1, и верхний по схеме вывод катушки подключается к «земле». В этот момент катушка оказывается включенной параллельно конденсатору С2, образуя LC генератор (колебательный контур). Переключение транзистора происходит 125,000 раз в секунду (125 кГц).). В итоге, катушкой генерируется сигнал синусоидальной формы с частотой 125 кГц (Рисунок 4).

Модуль считывателяя генерирует электромагнитное поле, энергия которого используется для питания RFID-ключа. В основе передачи энергии между RFID-ключом и считывателем лежит принцип работы обычного трансформатора: первичная обмотка трансформатора создает ЭДС индукции во всех остальных обмотках. Для нашего случая первичной обмоткой является катушка считывателя, а вторичной - катушка RFID-ключа. Элементы D1, C3 и R5 образуют демодулятор сигнала с амплитудной модуляцией.

Обмен данными между ключом и считывающим устройством

Процесс обмена данными между RFID-ключом и считывателем очень прост, но продуман до мелочей. Если RFID-ключ должен передать лог. 0, то он к своему источнику питания подключает определенную «нагрузку», что требует больше энергии, передаваемой считывателем. Это вызовет небольшую «просадку» напряжения на стороне считывателя; именно этот уровень воспринимается считывателем как лог. 0 (Рисунок 5).

RFID ключ в общем случае передает 64 бита данных в следующей последовательности (Рисунок 6):

  1. Первые 9 бит (всегда лог. 1) - стартовые биты, свидетельствующие о начале обмена данными.
  2. 4 бита - младшие значащие биты пользовательского идентификационного номера (D00 - D03).
  3. 1 бит (P0) - бит контроля четности предыдущих 4 бит.
  4. 4 бита - старшие значащие биты пользовательского идентификационного номера (D04 - D07).
  5. 1 бит (P1) - бит контроля четности предыдущих 4 бит.
  6. 4 бита - первая часть 32-битного серийного номера RFID ключа (D08 - D11).
  7. 1 бит (P2) - бит контроля четности предыдущих 4 бит.
  8. Далее передаются следующие группы по 4 бита серийного номера ключа, каждая с битом контроля четности.
  9. Затем передаются 4 бита контроля четности битов по столбцам. К примеру, бит контроля четности PC0 для битов D00, D04, D08, D12, D16, D20, D24, D28, D32 и D36.
  10. 1 стоп-бит.

Проверка целостности данных осуществляется микроконтроллером посредством вычисления битов контроля четности для каждой строки и столбца и сравнения с полученными данными от RFID-ключа.

Конструкция катушки.

Бескаркасная катушка индуктивности в считывающем устройстве диаметром 120 мм намотана проводом диаметром 0.5 мм и имеет 58 витков, однако автор рекомендует при намотке добавить еще 2 - 3 витка. С целью повышения эффективности катушки и увеличения расстояния считывания данных RFID-ключа необходимо выполнить калибровку колебательного контура. Если, подключив осциллограф в точку соединения R1 и L1, на экране прибора вы увидите искаженные пики (Рисунок 7), то это говорит о необходимости калибровки катушки L1.

Калибровку можно выполнить двумя способами после подачи напряжения питания на модуль.

  1. Подключите щупы осциллографа в точку соединения R1 и L1 и, увеличивая или уменьшая количество витков катушки L1, добейтесь устранения искажения сигнала.
  2. Если у вас нет осциллографа, то медленно подносите RFID-ключ к катушке до момента распознавания ключа, о чем свидетельствует звуковой сигнал. Если ключ определяется с расстояния 2 см, то необходимо добавить/удалить несколько витков и после этого снова проверить расстояние, с которого уверенно считывается ключ. С помощью калибровки автор схемы добился уверенного считывания RFID-ключа с 3 см.

При программировании микроконтроллера необходимо установить следующую конфигурацию Fuse-битов: младший байт 0x7A и старший байт 0x1F (микроконтроллер работает от встроенного тактового генератора 9.6 МГц, делитель тактовой частоты на 8 отключен). Программный код занимает в памяти микроокнтроллера 1024 Байт - используется весь доступный объем памяти микроконтроллера ATtiny13. Поэтому в дальнейшем при расширении функционала считывателя лучше использовать другой 8-выводный микроконтроллер AVR, например .

Загрузки:

Исходный код программы микроконтроллера (AVRStudio 6), прошивка (.hex) и принципиальная схема -

Схема эмулятора RFID транспондера стандарта EM-Marine (EM4100).
Бесконтактные карты стандарта Em-Marine являются на сегодняшний день наиболее популярным средством идентификации в нашей стране и используются для идентификации пользователей в системах контроля и управления доступом (СКУД).
Второй, не менее популярной, областью применения карт Em-Marine является их использование в системах логического доступа при авторизации пользователей по ID номеру карты в операционной системе компьютера и рабочих приложениях и тп.

Карты и брелки Em-Marine.
Соответственно подобные системы идентификации очень распространены и могут представлять интерес для реализации собственных систем идентификации и автоматизации. Поскольку протокол обмена и аппаратная часть подобных низкочастотных систем является более простой для самостоятельной реализации собственных устройств большинство радиолюбительских конструкций тематики RFID посвящена низкочастотным системам.

Рабочая частота карт Em-Marine составляет 125 КГц. Для их чтения используются специализированные считыватели бесконтактных карт (считыватели RFID). Взаимодействие идентификатора с таким считывателем осуществляется дистанционно.
Вариантов внешнего исполнения данных идентификаторов существует огромное количество: пропуска Em-Marine изготавливаются в виде тонких и толстых карт, браслетов для аквапарков, различных брелоков, радио-меток для интеграции в RFID-изделия.
Для стандарта транспондеров EM4100 карта содержит 64 бита данных, при этом карты, как правило, не перезаписываемые. Для удобства регистрации карт код, записанный в карте, продублирован печатью на одной из сторон карты. Кодировка передаваемых транспондером данных - манчестер кодирование. При этом периоды сигнала передаваемого транспондером являются кратными частоте 125Кгц - частота сигнала считывателя транспондеров. Сами транспондеры реализованы без внешнего питания (пассивный тэг), питание осуществляется за счет контура LC (катушка и конденсатор) при попадании тэга в зону действия поля считывателя карт. Тактирование транспондера также осуществляется сигналом считывателя - 125Кгц. Поэтому параметры результирующего сигнала в манчестер кодировке являются кратными сигналу 125Кгц.

Схема взаимодействия транспондера и считывателя RFID.
Для более полного понимания рассмотрим структуру пакета RFID транспондера формата EMMarine EM4100. Приведено описание (на английском, взято из анноутов) формата пакета транспондера.
“…….EM4100 compatible RFID transponders carry 64 bits of Read Only memory. This means that information can be read from the Tag but no data can be changed, or new data written to the card once the card has been programmed with the initial data. The format of the data is as shown here.
1 1 1 1 1 1 1 1 1 9 bit header bits, all 1"s
8 bit version number D00 D01 D02 D03 P0
or customer ID.
D04 D05 D06 D07 P1
D08 D09 D10 D11 P2 Each group of 4 bits
D12 D13 D14 D15 P3 is followed by an Even 32 Data Bits
D16 D17 D18 D19 P4 parity bit
D20 D21 D22 D23 P5
D24 D25 D26 D27 P6
D28 D29 D30 D31 P7
D32 D33 D34 D35 P8
D36 D37 D38 D39 P9
4 column Parity bits PC0 PC1 PC2 PC3 S0 1 stop bit (0)
The first 9 bits are logic 1“.
Соответственно мы имеем 9 стартовых бит пакета (всегда логическая 1), 11 групп по 4 бит данных с 1 битом четности по строке, 4 бита четности по столбцам в конце пакета, завершающий бит (всегда 0).
Для примера возьмем транспондер с данными номера 06001259E3.
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 00
0 6 0 0 1 2 5 9 E 3

Байт с данными 0x06 считается номером версии. На картах EM-Marine, которые попадались мне, выбиты десятичные значения соответствующие последним 3 байтам пакета. В любом случае нам нужно будет для реализации воспроизводить все 64 бита пакета согласно данному описанию.
Теперь обратимся внимательно к описанию модуляции данных транспондера. Данные взяты из анноута AN680. На рисунке сделал отметки красным относительно интересующих нас диаграмм.

Теперь подробнее опишем нужные нам диаграммы. Сигнал CLK тактирования - это и есть сигнал считывателя RFID, о чем уже было сказано ранее. Данные в кодировке NRZ следует подготовить транспондеру в соответствии с записанными данными пакета (64 бит). Видно, что реализация кодирования NRZ по пакету транспондера элементарная и требует минимальных затрат ресурсов. Собственно разбираем пакет на битовый поток и меняем логическое значения сигнала по 0 и 1 в данных и все. Для получения результирующего сигнала делаем программно XOR текущего состояния сигнала в формате NRZ и CLK тактирующего сигнала считывателя. В итоге получаем манчестер кодирование результирующего сигнала. Подробнее про манчестер кодирование описывать не буду - данные можно найти в отдельных анноутах. Для более подробного описания методов модуляции можно ознакомиться с данными из “Modulation Methods H.R. Walker Data Systems 05/01/04(reviewed 4/18/10)”, мною изучались именно данные примеры. Главное, что с минимальными затратами ресурсов мы можем таким образом реализовать транспондер формата EM-Marine. Для примера можно взять контроллер AVR серии tiny45 (можно и на tiny13 сделать). На контроллере tiny45 тестировалось поскольку именно такой оказался в наличии для экспериментов.
Теперь представим функциональную схему транспондера на основе модели в Proteus для контроллера tiny45.

Функциональная схема транспондера в Proteus.

Вот так выглядит сигнал генерируемый транспондером. Красным отмечено начало пакета.
По схеме видно, что ножка контроллера T0 (PORTB.2) используется для подачи тактового сигнала для 8 битного таймера TIMER0. В программе реализовано прерывание по совпадению на таймере TIMER0 (TIM0_COMPA). Тактирование установлено от внешнего сигнала для данного таймера. Для нас тактовым сигналом является 125Кгц от считывателя карт. На схеме удалено все, что касается питания контроллера и цепей тактирования от считывателя. В реальной схеме сам контроллер тактируется от кварца 4 Мгц установленного между 2 и 3 ножкой контроллера. Также можно добавить блокировочные конденсаторы для кварца по 22 pF на данных ножках контроллера.
Настройки симуляции Proteus для контроллера указанны следующим образом:

При программировании контроллера tiny45 фьюзы (биты конфигурации) устанавливаем таким же образом, как указано на рисунке.2. Для тактирования контроллера используется кварц 4 Мгц.
Относительно реализации внешней схемы обвязки контроллера рассмотрим данный вопрос подробнее. Для примеров были взяты материалы RFID Handbook (E2E_chapter03-rfid-handbook) где описываются фундаментальные принципы построения RFID систем. Сам документ прилагается к статье. Рассмотрим пример схемы пассивного транспондера (часть схемы на странице 46). Для понимания я сделал пометки на схеме красным цветом.
Видно, что мы имеем приемный контур на L1C1, который служит для питания схемы транспондера и тактирования. Все что касается счетчика-делителя IC1(4024), логических элементов IC3 (7400) можем смело выкидывать - нам это не потребуется. Делитель для таймера реализован настройками таймера без внешних делителей - счетчиков, логическая часть также реализована программно. Однако данный пример позволяет более полно понять работу пассивной схемы транспондера. Максимальное расстояние считывания для транспондера данного формата составляет 200см. В реальности большинство схем работает на расстояниях 2-10см. Параметры контура емкости и индуктивности LC подбираются максимально точно на резонансную частоту 125Кгц. Для примера использовался контур с емкостью 1nF и катушкой 60 витков на оправке диаметром 50мм проволокой ПЭВ 0.2. Рассчитать нужный контур можно в специальной программе (можно рассчитать контур для прямоугольно катушки, печатной и тп.). Главное подобрать точные номиналы под частоту 125 Кгц иначе расстояние считывания и чувствительность схемы значительно ухудшатся. При плохо настроенных контурах будет работать только при поднесении катушки транспондера вплотную к считывателю. Устройство работает по принципу Full Duplex (FDX) - генерация данных транспондера непрерывно при наличии питания схемы. Тактирование схемы от считывателя и передача данных осуществляется непрерывно. Некоторые схемы транспондеров используют схему работы HDX (Half Duplex) - считыватель излучает в импульсном режиме, транспондер передает данные в промежутках данных импульсов зарядки от считывателя. Это относится, например к TIRIS транспондерам от Texas Instruments.

Схема пассивного транспондера на основе схемы из RFID Handbook.


С учетом той части схемы, которая нам не нужна на основе оригинальной схемы, получаем схему обвязки контроллера в таком виде.



Как вам эта статья?

После нескольких лет работы по RFID тематике и разработки разнообразных считывателей для моделей транспондеров популярных стандартов типа Mifare, EMMARINE, TIRIS… меня часто начал озадачивать такой вопрос - буквально в последний год широкую популярность приобрели разного рода эмуляторы под тэги популярных протоколов и разнообразные копировальщики ключей/брелков.

Учитывая большое количеcтво доступных в продаже спец микросхем популярных протоколов RFID и дешевых ридеров, широкого распространения оборудования типа цифровых осцилографов, сниферов и спектроанализаторов, данный вопрос стал для многих разработчиков более актуальным. Тогда я решился сделать для одного из проектов протокол для обмена отличающийся от описанных выше стандартов.

Безусловно данная идея не решает глобальных проблем защищенности новой системы и может быть проанализирована другими разработчиками при наличии оборудования, однако суть в том, что все это не совпадает с существующими стандартами и все железки копировальщиков не позволят по-быстрому скопировать и воссоздать подобный алгоритм. Разумеется подобная система не преподносится тут не как полное решение проблем безопасности, а как опыт адаптации RFID под закрытую систему. Хорошим плюсом в вопросе безопасности среди прочих подобных беспроводных систем является сама технология низкочастотных RFID - она не позволяет считать тэги на большом расстоянии. Пассивные тэги достаточно маломощны и нуждаются для своего питания в достаточно мощном генераторе считывателя, особенности распространения радиоволн на данных частотах также ограничивают пределы работы данной системы. Реальная дальность считывания транспондеров редко превышает 20см для 125 Кгц стандартов типа EmMarine, скажем стандарта EM4001, для других протоколов типа Mifare (13,56Мгц) может быть побольше (1,5 метра для iso15693). Можно добиться большего расстояния считывания для низкочастотных ридеров если увеличить размеры катушки и напряжение питания, соответственно и мощность ридера. Однако такие системы имеют громоздки и как правило их тяжело сделать портативными. Как правило, такие системы реализуются только стационарно - скажем для автомобилей.

Итак, теперь собственно по архитектуре нашей RFID системы. Для экспериментов был выбран контроллер atmel atmega8. Для целей изготовления транспондера это кажется несомненным излишеством. Однако в данном случае решалась первостепенная задача разработки нового интерфейса на готовой отладочной платке c atmega с последующим портированием данного кода на более дешевые контроллеры типа tiny13.

Для транспондера алгоритм работы был построен на основе режима ШИМ генерации при помощи таймера T1 в режиме CTC с прерыванием и сбросом по совпадению с OCR1. Данные для передачи транспондера считываются из EEPROM при включении питания контроллера. Всего транспондер передает 10 байт. Содержимое EEPROM транспондера можно видеть на рисунке 1 . Первый байт 0xE7 является обязательным заголовком пакета, так как его наличие проверяется в первую очередь при разборе пакета считывателем. Первые 8 байт являются содержимым пакета транспондера, последние 2 байта содержат контрольную сумму CRC16 первых восьми байт пакета. Для примера в нашем транспондере были записаны такие данные - пакет 0xE7,0x05,0xE8,0x93,0x43,0x7F,0x20,0xFF и соответственно контрольную сумму 0xF5 0xA8. Для изготовления собственного уникального транспондера нужно кроме первого байта 0xE7 записать семь следующих байт в EEPROM, после чего рассчитать контрольную сумму для первых восьми байт. После этого записать в EEPROM два байта CRC16 в конце пакета. Первый байт оставляем без изменений - 0xE7. При включении транспондера данные этих байт разбиваются по битам и кодируются соответствующей длиной импульса в соответствии со значением регистра OCR. Для передачи используются 2 частоты 2Кгц и 5Кгц для передачи логических “0” и “1”. Кроме того данные разделяются импульсами синхронизации - стартовые метки пакетов.

Рис.1

Рис.2

Схему транспондера можно увидеть на рисунке 3 . Частота задающего генератора 8Мгц. Питание контроллера +5В. Можно использовать контроллер mega8 с маркировкой “L” тогда питание можно осуществлять от литиевой батарейки 3в (параметры для такого чипа +2,7…. +3,5). Вместо данного транзистора можно использовать любой другой маломощный NPN транзистор. Катушка транспондера была намотана на оправке диаметром 50мм проводом 0,22мм и насчитывает 50 витков. На данный момент транспондер сделан активным - с внешним питанием. На следующем этапе планируется сделать пассивный вариант транспондера, что достаточно просто - сделать развязку для питания от данной катушки, добавить диоды моста выпрямителя и стабилизатор.

Рис.3

Теперь поговорим о схеме считывателя для данного транспондера. Схема была адаптирована на основе раннее использованного считывателя для карт EMMARINE. Часть схемы с генератором на 74hc4060 можно на данном этапе смело удалять, так как пока мы используем активную метку.

Однако эта часть схемы нам понадобится в дальнейшем, когда мы будем делать пассивную метку и нам потребуется получить питание от считывателя. В остальном схема не имеет существенных отличий от схемы считывателя для EMMARINE: пассивный пиковый детектор - фильтр - усилитель - компаратор. Схема имеет максимально возможную простоту и позволяет считывать данные транспондера на расстоянии 10-12см при хорошо настроенных контурах.

Можно еще дальше упрощать схему оставив только детектор и фильтр, поставить один транзистор на выходе который будет играть роль компаратора, но я не стал так делать. На выходе мы получаем двоичный сигнал прямоугольной формы в соответствии с кодированными длительностями импульсов передаваемых транспондером. Допустимые отклонения номиналов элементов при котором схема работоспособна 5-10%. Питание контроллера и операционника +5В. Частота кварца задающего генератора контроллера 12Мгц. Выход компаратора на LM358 подключен к ножке внешнего прерывания контроллера INT0. В программе контроллера настроен вызов прерывания по нарастающему фронту на ножке внешнего прерывания INT0.

В обработчике прерывания происходит проверка синхронизирующих импульсов а затем проверка заголовка пакета и запись содержимого в буфер контроллера. Данные считанных пакетов передаются по интерфейсу RS232 на ПК. Для настройки терминалки указываем следующие параметры: скорость 57.6Kb/s, 8 бит данных, 1стоп бит, без контроля четности. При приеме пакета контроллер рассчитывает контрольную сумму принятых байт и передает данные в терминалку (пакет и CRC). В случае совпадения контрольных сумм расчитанной контроллером и принятой в пакете выводится сигнал на ножку PORTB.0 (14) контроллера (LED1 на схеме). Можно подключить в данную точку пищалку со встроенным генератором или светодиод через сопротивление. При считывании корректного ключа контроллер запрещает внешние прерывания и делает задержку 1с перед следующим считыванием.

Предусмотрен также режим работы данного считывателя в качестве основы RFID замка. Для этого необходимо в EEPROM контроллера считывателя записать полностью байты дампа транспондера - 10 байт. Данные пишутся в EEPROM считывателя точно также, как в EEPROM транспондера. В данном случае при считывании очередного транспондера и совпадении его с записанным в EEPROM считывателя выводится сигнал на ножку PORTB.1 (15) контроллера (LED2 на схеме). В данную точку можно подключить светодиод через сопротивление или выходной ключ (транзистор) на реле исполнительного устройства. Теперь мы получили RFID замок под конкретный ключ и обычный считыватель в одном флаконе.

Итак, подведем промежуточные итоги. Изготовлен собственный ридер и транспондер под данный считыватель. Мы защитили свое оборудование от посторонних устройств работающих с популярными протоколами RFID. Следующим шагом будет изготовление пассивной метки для нашего считывателя как делают известные производители промышленных транспондеров и портирование кода оборудования на более дешевые модели контроллеров. В архиве к статье прилагаю прошивки для транспондера и считывателя.

После нескольких лет работы по RFID тематике и разработки разнообразных считывателей для моделей транспондеров популярных стандартов типа Mifare, EMMARINE, TIRIS… меня часто начал озадачивать такой вопрос – буквально в последний год широкую популярность приобрели разного рода эмуляторы под тэги популярных протоколов и разнообразные копировальщики ключей/брелков.

Учитывая большое количеcтво доступных в продаже спец микросхем популярных протоколов RFID и дешевых ридеров, широкого распространения оборудования типа цифровых осцилографов, сниферов и спектроанализаторов, данный вопрос стал для многих разработчиков более актуальным. Тогда я решился сделать для одного из проектов протокол для обмена отличающийся от описанных выше стандартов.

Безусловно данная идея не решает глобальных проблем защищенности новой системы и может быть проанализирована другими разработчиками при наличии оборудования, однако суть в том, что все это не совпадает с существующими стандартами и все железки копировальщиков не позволят по-быстрому скопировать и воссоздать подобный алгоритм. Разумеется подобная система не преподносится тут не как полное решение проблем безопасности, а как опыт адаптации RFID под закрытую систему. Хорошим плюсом в вопросе безопасности среди прочих подобных беспроводных систем является сама технология низкочастотных RFID – она не позволяет считать тэги на большом расстоянии.

Пассивные тэги достаточно маломощны и нуждаются для своего питания в достаточно мощном генераторе считывателя, особенности распространения радиоволн на данных частотах также ограничивают пределы работы данной системы. Реальная дальность считывания транспондеров редко превышает 20см для 125 Кгц стандартов типа EmMarine, скажем стандарта EM4001, для других протоколов типа Mifare (13,56Мгц) может быть побольше (1,5 метра для iso15693). Можно добиться большего расстояния считывания для низкочастотных ридеров если увеличить размеры катушки и напряжение питания, соответственно и мощность ридера. Однако такие системы имеют громоздки и как правило их тяжело сделать портативными. Как правило, такие системы реализуются только стационарно – скажем для автомобилей.

Итак, теперь собственно по архитектуре нашей RFID системы. Для экспериментов был выбран контроллер atmel atmega8. Для целей изготовления транспондера это кажется несомненным излишеством. Однако в данном случае решалась первостепенная задача разработки нового интерфейса на готовой отладочной платке c atmega с последующим портированием данного кода на более дешевые контроллеры типа tiny13. Для транспондера алгоритм работы был построен на основе режима ШИМ генерации при помощи таймера T1 в режиме CTC с прерыванием и сбросом по совпадению с OCR1. Данные для передачи транспондера считываются из EEPROM при включении питания контроллера. Всего транспондер передает 10 байт. Содержимое EEPROM транспондера можно видеть на рисунке 1. Первый байт 0xE7 является обязательным заголовком пакета, так как его наличие проверяется в первую очередь при разборе пакета считывателем.

Первые 8 байт являются содержимым пакета транспондера, последние 2 байта содержат контрольную сумму CRC16 первых восьми байт пакета. Для примера в нашем транспондере были записаны такие данные – пакет 0xE7, 0x05, 0xE8, 0x93, 0x43, 0x7F, 0x20, 0xFF и соответственно контрольную сумму 0xF5 0xA8. Для изготовления собственного уникального транспондера нужно кроме первого байта 0xE7 записать семь следующих байт в EEPROM, после чего рассчитать контрольную сумму для первых восьми байт. После этого записать в EEPROM два байта CRC16 в конце пакета. Первый байт оставляем без изменений - 0xE7. При включении транспондера данные этих байт разбиваются по битам и кодируются соответствующей длиной импульса в соответствии со значением регистра OCR. Для передачи используются 2 частоты 2Кгц и 5Кгц для передачи логических “0” и “1”. Кроме того данные разделяются импульсами синхронизации – стартовые метки пакетов.

Рис.1 Содержимое пакета транспондера.


Рис.2 Дамп передачи транспондера на экране виртуального осцилографа.

Схему транспондера можно увидеть на рисунке 3. Частота задающего генератора 8Мгц. Питание контроллера +5В. Можно использовать контроллер mega8 с маркировкой “L” тогда питание можно осуществлять от литиевой батарейки 3в (параметры для такого чипа +2,7…. +3,5). Вместо данного транзистора можно использовать любой другой маломощный NPN транзистор. Катушка транспондера была намотана на оправке диаметром 50мм проводом 0,22мм и насчитывает 50 витков. На данный момент транспондер сделан активным - с внешним питанием. На следующем этапе планируется сделать пассивный вариант транспондера, что достаточно просто – сделать развязку для питания от данной катушки, добавить диоды моста выпрямителя и стабилизатор.


Рис.3 Схема транспондера.

Теперь поговорим о схеме считывателя для данного транспондера. Схема была адаптирована на основе раннее использованного считывателя для карт EMMARINE. Часть схемы с генератором на 74hc4060 можно на данном этапе смело удалять, так как пока мы используем активную метку. Однако эта часть схемы нам понадобится в дальнейшем, когда мы будем делать пассивную метку и нам потребуется получить питание от считывателя. В остальном схема не имеет существенных отличий от схемы считывателя для EMMARINE: пассивный пиковый детектор – фильтр – усилитель – компаратор. Схема имеет максимально возможную простоту и позволяет считывать данные транспондера на расстоянии 10-12см при хорошо настроенных контурах.

Можно еще дальше упрощать схему оставив только детектор и фильтр, поставить один транзистор на выходе который будет играть роль компаратора, но я не стал так делать. На выходе мы получаем двоичный сигнал прямоугольной формы в соответствии с кодированными длительностями импульсов передаваемых транспондером. Допустимые отклонения номиналов элементов при котором схема работоспособна 5-10%. Питание контроллера и операционника +5В. Частота кварца задающего генератора контроллера 12Мгц. Выход компаратора на LM358 подключен к ножке внешнего прерывания контроллера INT0. В программе контроллера настроен вызов прерывания по нарастающему фронту на ножке внешнего прерывания INT0. В обработчике прерывания происходит проверка синхронизирующих импульсов а затем проверка заголовка пакета и запись содержимого в буфер контроллера. Данные считанных пакетов передаются по интерфейсу RS232 на ПК. Для настройки терминалки указываем следующие параметры: скорость 57.6Kb/s, 8 бит данных, 1стоп бит, без контроля четности.

При приеме пакета контроллер рассчитывает контрольную сумму принятых байт и передает данные в терминалку (пакет и CRC). В случае совпадения контрольных сумм расчитанной контроллером и принятой в пакете выводится сигнал на ножку PORTB.0 (14) контроллера (LED1 на схеме). Можно подключить в данную точку пищалку со встроенным генератором или светодиод через сопротивление. При считывании корректного ключа контроллер запрещает внешние прерывания и делает задержку 1с перед следующим считыванием. Предусмотрен также режим работы данного считывателя в качестве основы RFID замка. Для этого необходимо в EEPROM контроллера считывателя записать полностью байты дампа транспондера - 10 байт. Данные пишутся в EEPROM считывателя точно также, как в EEPROM транспондера. В данном случае при считывании очередного транспондера и совпадении его с записанным в EEPROM считывателя выводится сигнал на ножку PORTB.1 (15) контроллера (LED2 на схеме). В данную точку можно подключить светодиод через сопротивление или выходной ключ (транзистор) на реле исполнительного устройства. Теперь мы получили RFID замок под конкретный ключ и обычный считыватель в одном флаконе.


Рис.4 Схема считывателя RFID меток. (увелчить схему)

Итак, подведем промежуточные итоги. Изготовлен собственный ридер и транспондер под данный считыватель. Мы защитили свое оборудование от посторонних устройств работающих с популярными протоколами RFID. Следующим шагом будет изготовление пассивной метки для нашего считывателя как делают известные производители промышленных транспондеров и портирование кода оборудования на более дешевые модели контроллеров. В архиве к статье прилагаю прошивки для транспондера и считывателя.

Скачать прошивку:
У вас нет доступа к скачиванию файлов с нашего сервера

В какой-то момент мне снова стало скучно, и я, как мне показалось, придумал хорошую причину для покупки считывателя карточек. Концепция была такова: карточку приклеиваем на дно ноутбука, а считыватель ставим в то место, где компьютер обычно заряжается.

Результат: когда кладем ноутбук на «зарядку», то автоматически включается розетка с его зарядным устройством. А в остальное время розетка, понятно, выключена. Не сказать, что особо полезно, но - развлечение.

Но, как обычно, что-то пошло не так. То есть, вместо ударного труда на ниве розеток я в первую очередь зачем-то научился узнавать, сколько поездок осталось на моем билете местного метрополитена.

Для понимания: этот считыватель - не законченное устройство, а периферия для контроллера или компьютера. По этой причине для использования потребуется некоторое количество усилий. Готовых рецептов «из коробки» как бы нет, зато все остальное зависит от фантазии и способностей.

Что обычно делают? Чаще всего - замки с открытием по карточке, учет рабочего времени, СКД для домашних животных (допуск к корму, например).

Для экспериментов я выбирал недорогой и более-менее универсальный считыватель. RFID в названии этой штуки означает технологию радиоидентификации, то есть ничего конкретно не означает. Зато из спецификаций следует, что железка совместима с распространенными RFID карточками с протоколом MIFARE.

Скорее всего, вы неоднократно встречались с такими карточками. Чаще всего - в виде офисного пропуска. Другой яркий пример - бесконтактные билеты для прохода в метро.

Базовый принцип действия довольно прост для понимания. В карточке и в считывателе есть антенны, при этом сигнал считывающего устройства (суть электромагнитное поле) одновременно служит источником питания для карточки. Т.е. и в части энергетики, и в части передачи данных это очень похоже на ставшие сверхпопулярными беспроводные зарядки.

Сами же карточки, в зависимости от модификации, могут нести в себе от нескольких десятков байт до нескольких килобайт данных (в том числе - уникальный серийный номер). Также, в зависимости от модификации, карточка может быть укомплектована криптографической защитой информации.

Гребенок в комплекте было две, но одну (угловую) я, простите уже запаял. Поэтому вида платы без гребенок нет

Этот комплект включает в себя считыватель, гребенку для простого макетирования и даже монтажа на «материнскую» плату и два идентификатора: карточку MIFARE 1K и аналогичный по возможностям брелок. То есть, вполне достаточно для экспериментов.

.

.

.

Плата считывателя, как видите, выглядит очень аккуратно. И, что удобно, после установки угловой гребенки, размеры устройства не увеличиваются, поскольку гребенка фактически совпадает по высоте с самым высоким элементом на плате.

С батарейкой ААА

Т.е. можно не мучить себя компромиссом между удобством и универсальностью (гребенкой) и экономией места в расчете на встраивание (прямой пайкой проводов).

Среди прочего на плате также есть красный светодиод, который, увы, совершенно неинформативен. Суть в том, что он горит даже при оторванном питании - очевидно, достаточно уровней на SPI-интерфейсе. Да и на карточки он никак не реагирует.

Одним словом - горит, когда считыватель хоть как-то подключен к Arduino, что не гарантирует его работоспособности.

Что касается дальности срабатывания, то субъективно порог находится на расстоянии 2 см от поверхности платы. В пределах 2 - 2.5 см - область неуверенного срабатывания.

Характеристики (от продавца):

Напряжение: 3.3В

Потребляемый ток в активном состоянии:13-26 мА

Потребляемый ток в состоянии ожидания: 10-13 мА

Ток в режиме сна: менее 80 мкА

Пиковое потребление: менее 30 мА

Рабочая частота: 13.56 МГц

Поддержвиаемые типы карт: MIFARE S50, MIFARE S70, MIFARE UltraLight, MIFARE Pro, MIFARE DESfire

Интерфейс: SPI

Размеры: 40х60 мм

Из приведенного выше видно, что отличился я дважды. Во-первых, не посмотрел на напряжение питания. А 3.3В, между прочим, означает, что проще всего использовать эту плату с Arduino Uno, Mega и прочими (или аналогичными платами), оснащенными регуляторами напряжения и выходом 3.3В. Благо максимальный потребляемый ток не выходит за пределы возможностей платформы.

В противном случае необходимо либо использовать единое питание 3.3В, либо дополнительный регулятор/стабилизатор/преобразователь напряжения.

Во-вторых, интерфейс SPI в требует 5 (!) проводов для подключения. Т.е. в сумме к считывателю подходит шлейф из 7 проводников, а это довольно расточительно. Для экономии имело смысл ориентироваться на I2C, но где я и где этот смысл?!

Подключение
Я бы хотел разделить подключение на софт и хард, но все так тесно переплелось - и вылилось в не очень интересную проблему.

Одним словом, все знают для RC522. Но почему-то никто не задается вопросом, почему в ридми, приложенном к библиотеке и в табличке в одном из ее примеров совершенно разная «распиновка» подключения считывателя.

Полагаю, это как раз одна из причин вечных проблем с этой библиотекой. Вторая причина в том, что подключение для Arduino Uno и Mega производится к разным пинам. Это связано с особенностью платформ.

Наконец, третья причина - два пина (SS и RST) допускают произвольное подключение и конфигурируются в коде. При этом по умолчанию в коде примера забита конфигурация для Arduino Uno, а если у вас Mega и вы подключали по агитке из ридми или таблички в начале примера, то, разумеется, промахнетесь.

Но фишка в том, что третья причина довольно очевидна, и ее я более-менее обошел, сразу задав свои пины, потому что у меня под руками была плата Arduino Mega. Поэтому же, кстати, меня обошла и вторая беда.

А вот первая - подключение пинов SPI помучила меня вдоволь. Я же и предположить не мог, что человек, сделавший успешную библиотеку, мог так накосячить в банальном подключении трех проводочков.

Иными словами, подключение ни по первому, ни по второму варианту, указанному в описании библиотеки, не помогло. Сначала я подумал, что у меня «мертвая плата». Поэтому, несмотря на позднее время, взял себя в руки и распаял гребенку на вторую (я запасливый и купил сразу три). Результат оказался аналогичным, несмотря на то, что я неоднократно проверял подключение по имеющимся на руках «распиновкам».

Даже не спрашивайте, почему я не пошел на Arduino.cc, чтобы посмотреть, как разведен SPI на Mega. По-моему, это случилось какое-то помутнение.

Зато я погуглил и , который в двух словах (а не как я) описал покупку и ее подключение с библиотекой, как я понимаю, от китайских товарищей. Руки уже опускались, и спать в таком состоянии я не мог, поэтому позволил себе еще эксперимент со свеженайденной распиновкой и библиотекой.

И обе платы заработали.

Чтобы очистить совесть - загрузил пример с «проблемной» библиотекой, и он оказался рабочим тоже.

Вот такими карточками я мучил считыватель. Слева направо: карточка из комплекта, карточка с буквой N, билет метро MIFARE UltraLight, карточка РЖД

А это - как примерно выглядит дамп содержимого и вообще распознавание карточек с библиотекой RFID и ее же примером DumpInfo

Резюме по мучениям: распиновка от упомянутого товарища совпадает с и, что удивительно, совпадает с распиновкой в ридми библиотеки RFID. Учитывая последнее, могу предположить, что либо я ночью все же перепутал пины и с этого начались все мои несчастья, либо родная китайская библиотека как-то хитро инициализирует считыватель, после чего он начинает работать.

В завершение правильная распиновка для китайской библиотеки и Mega, к которой я подключался:

Mega RC522
3.3V VCC
GND GND
RESET RST

50 MISO
51 MOSI
52 SCK
53 NSS

И для Uno (ее не проверял):

Uno RC522
3.3V VCC
GND GND
5 RST

12 MISO
11 MOSI
13 SCK
10 NSS

Вместе с большой сестрой

.

.

В результате простых испытаний, которые я все-таки выполнил, также выяснилось, что считыватель нормально записывает (вот такая игра слов) карты MIFARE 1K из тех, что были с ним в комплекте.

Вторая особенность в том, что эта штука адекватно реагирует, если к нему одновременно поднести несколько карт. Я подносил две карты, опять же, из тех, что были в комплекте. При этом пример DumpInfo из библиотеки RFID по порядку выводит содержимое обеих карт. Т.е. сначала - содержимое одной карты, а следом за ней - второй.

И шашечки, и ехать
Итак, подключили, полюбовались на дамп содержимого памяти карточек MIFARE 1K. Что дальше? А дальше мне было немного лень возиться с розеткой, и я вспомнил, что карточки метро, вроде бы, работают по тому же протоколу.

Сходил, взял свою, приложил, полюбовался на ее содержимое. Как и обещали: MIFARE UltraLight, 64 байта памяти и не очень понятно, где там поездки, где срок действия, ну и вообще не очень понятно.

Гугление на тему использования Arduino с этими карточками не дало ничего особо полезного. Чаще всего карточки метро, как выяснилось, используют в качестве ультрадешевых (т.е. бесплатных) NFC-меток во всяких самодельных системах вроде замков, исполнения сценариев и прочего, где достаточно знать серийный номер карты для идентификации. А вот готовых библиотек и решений для вывода информации о поездках я почему-то не нашел: то ли так спать хотел, то ли их действительно нет (см. синдром «Неуловимого Джо»).

Зато я нашел замечательный и очень романтичный текст авторства Александра «Dark Simpson» Симонова под заголовком " ", опубликованный, судя по всему, в каком-то из номеров Хакера. Несмотря на любопытную природу текста, в нем есть масса полезной информации о структуре хранения данных, в том числе на интересующих меня билетах.

Значащая часть билета - номер - проверяемая визуально

Так что на следующий день я постарался переборость свое отвращение к HEX и полез разбираться. Вот такой дамп билета я получил с помощью библиотеки RFID:

Card UID: 04 6F 25 62 04 33 82
PICC type: MIFARE Ultralight or Ultralight C

Page 0 1 2 3
0 04 6F 25 C6
1 62 04 33 82
2 D7 48 F0 00
3 00 07 FF FC
4 45 DA 21 06
5 D0 E5 3D 00
6 1F E8 00 00
7 1F E8 00 00
8 1F 8F 5A 00
9 40 19 2E D2
10 19 91 59 7C
11 1F AB 91 C8
12 1F 8F 5A 00
13 40 19 2E D2
14 19 91 59 7C
15 1F AB 91 C8

Здесь Card UID - уникальный идентификатор карты (суть серийный номер), а остальное - 16 страниц памяти, каждая из которых содержит по 4 байта. Вместе - 64 байта.

Из чтения текста про билеты метро отметил наиболее полезные моменты:

1) Номер билета (который отпечатан на нем) зашит в 32 битах, начиная с 21 бита на странице 4: 10 6D 0E 53;

2) Дата выдачи билета в днях, прошедших с 01.01.1992 г. - первые два байта странице 8: 1F 8F;

3) Срок действия в днях - третий байт на странице 8: 5А.

4) Наконец, количество оставшихся поездок - второй байт на странице 9: 19.

С этим уже можно было работать.

Немного поковырялся в примере DumpInfo из библиотеки RFID, в ее же коде, чтобы понять, какие функции за что отвечают и чем могут быть полезны, в форумах Arduino, чтобы посмотреть реализацию вычисления даты (вообще, можно на любом языке смотреть, но мне было проще искать ближе к целевой платформе).

В итоге на свет появился монстр. То есть, скетч скроен из лоскутов, местами результат подогнан под ответ, но в целом все более-менее соответствует реальности. Поэтому нечего стрелять в пианиста, который играет, как умеет. Там, между прочим, даже базовая обработка ошибок есть: скетч предупредит о неподдерживаемой карте или о невозможности чтения.

#include #include #define SS_PIN 53 #define RST_PIN 9 MFRC522 mfrc522(SS_PIN, RST_PIN); // объект MFRC522 unsigned long uidDec, uidDecTemp; // для отображения номера карточки в десятичном формате byte bCounter, readBit; unsigned long ticketNumber; void setup() { Serial.begin(9600); SPI.begin(); // инициализация SPI mfrc522.PCD_Init(); // инициализация MFRC522 Serial.println("Waiting for card..."); } void loop() { // Поиск новой карточки if (! mfrc522.PICC_IsNewCardPresent()) { return; } // Выбор карточки if (! mfrc522.PICC_ReadCardSerial()) { return; } uidDec = 0; // Выдача серийного номера карточки Serial.print("Card UID: "); for (byte i = 0; i < mfrc522.uid.size; i++) { // Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " "); // Serial.print(mfrc522.uid.uidByte[i], HEX); uidDecTemp=mfrc522.uid.uidByte[i]; uidDec=uidDec*256+uidDecTemp; } Serial.println(uidDec); Serial.println(); // Выдача типа карты byte piccType = mfrc522.PICC_GetType(mfrc522.uid.sak); // запрос типа Serial.print("Card type: "); Serial.println(mfrc522.PICC_GetTypeName(piccType)); // трансляция типа в читаемый вид if (piccType != MFRC522::PICC_TYPE_MIFARE_UL) { // если не билетная карта Serial.print("Not a valid card: "); // так и говорим Serial.println(piccType); // Halt PICC mfrc522.PICC_HaltA(); // остановка чипа return; } // сюда мы приедем, если чип правильный byte status; byte byteCount; byte buffer; // длина массива (16 байт + 2 байта контрольная сумма) byte pages={4, 8}; // страницы с данными byte pageByte; // счетчик байтов страницы byteCount = sizeof(buffer); byte bCount=0; for (byte i=0; i<2; i++) { // начинаем читать страницы status = mfrc522.MIFARE_Read(pages[i], buffer, &byteCount); if (status != MFRC522::STATUS_OK) { Serial.print("Read error: "); Serial.println(mfrc522.GetStatusCodeName(status));} else { if (pages[i] == 4) { bCounter = 0; // 32-битный счетчик для номера // биты 0-3 for (bCount=0; bCount<4; bCount++) { readBit = bitRead(buffer, (bCount+4)); setBitsForGood(readBit); } // биты 4 - 27 for (pageByte=5; pageByte > 2; pageByte--) { for (bCount=0; bCount<8; bCount++) { readBit = bitRead(buffer, bCount); setBitsForGood(readBit); } } // биты 28-31 for (bCount=0; bCount<4; bCount++) { readBit = bitRead(buffer, bCount); setBitsForGood(readBit); } Serial.print("Ticket number: "); Serial.println(ticketNumber, DEC); } if (pages[i] == 8) { // читаем дату выдачи Serial.print("Issued: "); unsigned int issueDate = buffer * 256 + buffer; // количество дней с 01.01.1992 в десятичном формате, 256 - сдвиг на 8 бит printIssueDate(issueDate); Serial.print("Good for (days): "); // срок действия Serial.print(buffer, DEC); Serial.println(); Serial.print("Trip reminder: "); // количество оставшихся поездок Serial.print(buffer, DEC); Serial.println(); } } } // Halt PICC mfrc522.PICC_HaltA(); } void printIssueDate(unsigned int incoming) { boolean isLeap = true; // признак високосного года int days={0,31,59,90,120,151,181,212,243,273,304,334}; // последний по порядку день месяца для обычного года byte dayOfMonth, monthCounter; unsigned int yearCount; incoming = incoming+1; // подогнал под ответ, но возможно это как раз необходимая коррекция, потому что начало отсчета - 01.01.1992, а не 00.01.1992 for (yearCount = 1992; incoming >366; yearCount++) { // считаем год и количество дней, прошедших с выдачи билета if ((yearCount % 4 == 0 && yearCount % 100 != 0) || yearCount % 400 == 0) { incoming = incoming - 366; isLeap = true; } else { incoming = incoming - 365; isLeap = false; } } for (monthCounter = 0; incoming > days; monthCounter++) { // узнаем номер месяца } // считаем день месяца if (isLeap == true) { // если високосный год if (days>31) { // если не первый месяц, то добавляем к последнему дню месяца единицы dayOfMonth = incoming - (days+ 1); } else { dayOfMonth = incoming - (days); // если первый - ничего не добавляем, потому что сдвиг начинается с февраля } } else { dayOfMonth = incoming - (days); // если не високосный год } Serial.print(dayOfMonth); Serial.print("."); Serial.print(monthCounter); Serial.print("."); Serial.print(yearCount); Serial.println(); } void setBitsForGood(byte daBeat) { if (daBeat == 1) { bitSet(ticketNumber, bCounter); bCounter=bCounter+1; } else { bitClear(ticketNumber, bCounter); bCounter=bCounter+1; } }

Что мне дает этот скетч? Ну, во-первых, небольшую тренировку головы - приходилось, знаете, думать, когда разбирался со считывателем и кодом. Во-вторых, я всегда могу узнать, сколько осталось поездок, и когда закончится карточка. С учетом того, что у меня в смартфоне NFC нет, получается довольно удобно.

Результат работы монстра

Разумеется, в данном случае даже речь не идет о том, чтобы сделать «копию» билета. Это исключительно информационная функция, дублирующая терминал в вестибюле метро.

В общем, после такого успеха можно было браться и за вторую предполагаемую задачу, которая, по идее, должна была бы быть первой в силу простой реализации.

Итак, розетка, которая включается, когда нужна. Здесь карта (любая поддерживаемая считывателем и подходящая для размещения в целевом устройстве) используется исключительно как пропуск, то есть интересует только ее серийный номер.

Логика простая: если считыватель видит карту с определенным номером, то включает розетку. Если не видит - выключает.

РОЗЕТОЧНЫЙ МОНСТР

#include #include #define SS_PIN 53 #define RST_PIN 9 MFRC522 mfrc522(SS_PIN, RST_PIN); // Create MFRC522 instance. unsigned long uidDec, uidDecTemp; #include RCSwitch mySwitch = RCSwitch(); boolean switchOn = false; boolean cardRead = false; void setup() { Serial.begin(9600); // Initialize serial communications with the PC SPI.begin(); // Init SPI bus mfrc522.PCD_Init(); // Init MFRC522 card mySwitch.enableTransmit(8); Serial.println("Waiting for card..."); } void loop() { byte status; byte byteCount; byte buffer; // длина массива (16 байт + 2 байта контрольная сумма) byteCount = sizeof(buffer); uidDec = 0; status = mfrc522.PICC_RequestA(buffer, &byteCount); if (mfrc522.PICC_ReadCardSerial()) { for (byte i = 0; i < mfrc522.uid.size; i++) { uidDecTemp=mfrc522.uid.uidByte[i]; uidDec=uidDec*256+uidDecTemp; } if ((uidDec==2218415941) && (switchOn == false)) { mySwitch.sendTriState("00110000F000"); switchOn = true; // Serial.println("Switched On"); } mfrc522.PICC_ReadCardSerial(); } else { if (switchOn == true) { mySwitch.sendTriState("001100000000"); // Serial.println("Switched Off"); switchOn = false; } } }

Аналогичным образом, используя карту как триггер, можно выполнять и различные сценарии домашней автоматизации. Например, положить карточку в электронную книгу, а на прикроватной тумбе разместить считыватель.

Когда кладем книгу на тумбу, дом считает, что мы решили отправиться в царство Морфея, и выключает освещение. А если берем книгу с тумбы, то предполагается, что хотим почитать, и тогда, наоборот, включается фоновый свет, чтобы и электронные чернила было видно, и чтобы глаза не ломать.

Вот так работает розеточный монстр

Подводя итог: недорого, просто, довольно удобно и стимулирует фантазию.

Ps. Я уверен, что вы можете лучше, и что я ничего не понимаю в Arduino и программировании.

Ссылочки всякие
Обзор понравился +67 +173