Сайт о телевидении

Сайт о телевидении

» » Оптимальное значение целевой функции называется. Целевая функция

Оптимальное значение целевой функции называется. Целевая функция

) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций , линейном программировании , теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи . Помимо целевой функции в задаче оптимизации для переменных могут быть заданы ограничения в виде системы равенств или неравенств. В общем случае аргументы целевой функции могут задаваться на произвольных множествах.

Примеры

Гладкие функции и системы уравнений

\left\{ \begin{matrix} F_1(x_1, x_2, \ldots, x_M) = 0 \\ F_2(x_1, x_2, \ldots, x_M) = 0 \\ \ldots \\ F_N(x_1, x_2, \ldots, x_M) = 0 \end{matrix} \right.

может быть сформулирована как задача минимизации целевой функции

S = \sum_{j=1}^N F_j^2(x_1, x_2, \ldots, x_M) \qquad (1)

Если функции гладкие, то задачу минимизации можно решать градиентными методами .

Для всякой гладкой целевой функции можно приравнять к 0 частные производные по всем переменным. Оптимум целевой функции будет одним из решений такой системы уравнений. В случае функции (1) это будет система уравнений метода наименьших квадратов (МНК). Всякое решение исходной системы является решением системы МНК. Если исходная система несовместна, то всегда имеющая решение система МНК позволяет получить приближённое решение исходной системы. Число уравнений системы МНК совпадает с числом неизвестных, что иногда облегчает и решение совместных исходных систем.

Линейное программирование

Другим известным примером целевой функции является линейная функция, которая возникает в задачах линейного программирования. В отличие от квадратичной целевой функции оптимизация линейной функции возможна только при наличии ограничений в виде системы линейных равенств или неравенств.

Комбинаторная оптимизация

Типичным примером комбинаторной целевой функции является целевая функция задачи коммивояжёра . Эта функция равна длине гамильтонова цикла на графе . Она задана на множестве перестановок n-1 вершины графа и определяется матрицей длин рёбер графа. Точное решение подобных задач часто сводится к перебору вариантов.

Напишите отзыв о статье "Целевая функция"

Примечания

См. также

Литература

  • Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля. - 1977. - Вып. 5. - С.26-30

Отрывок, характеризующий Целевая функция

Бедный муж мой переносит труды и голод в жидовских корчмах; но новости, которые я имею, еще более воодушевляют меня.
Вы слышали, верно, о героическом подвиге Раевского, обнявшего двух сыновей и сказавшего: «Погибну с ними, но не поколеблемся!И действительно, хотя неприятель был вдвое сильнее нас, мы не колебнулись. Мы проводим время, как можем; но на войне, как на войне. Княжна Алина и Sophie сидят со мною целые дни, и мы, несчастные вдовы живых мужей, за корпией делаем прекрасные разговоры; только вас, мой друг, недостает… и т. д.
Преимущественно не понимала княжна Марья всего значения этой войны потому, что старый князь никогда не говорил про нее, не признавал ее и смеялся за обедом над Десалем, говорившим об этой войне. Тон князя был так спокоен и уверен, что княжна Марья, не рассуждая, верила ему.
Весь июль месяц старый князь был чрезвычайно деятелен и даже оживлен. Он заложил еще новый сад и новый корпус, строение для дворовых. Одно, что беспокоило княжну Марью, было то, что он мало спал и, изменив свою привычку спать в кабинете, каждый день менял место своих ночлегов. То он приказывал разбить свою походную кровать в галерее, то он оставался на диване или в вольтеровском кресле в гостиной и дремал не раздеваясь, между тем как не m lle Bourienne, a мальчик Петруша читал ему; то он ночевал в столовой.
Первого августа было получено второе письмо от кня зя Андрея. В первом письме, полученном вскоре после его отъезда, князь Андрей просил с покорностью прощения у своего отца за то, что он позволил себе сказать ему, и просил его возвратить ему свою милость. На это письмо старый князь отвечал ласковым письмом и после этого письма отдалил от себя француженку. Второе письмо князя Андрея, писанное из под Витебска, после того как французы заняли его, состояло из краткого описания всей кампании с планом, нарисованным в письме, и из соображений о дальнейшем ходе кампании. В письме этом князь Андрей представлял отцу неудобства его положения вблизи от театра войны, на самой линии движения войск, и советовал ехать в Москву.
За обедом в этот день на слова Десаля, говорившего о том, что, как слышно, французы уже вступили в Витебск, старый князь вспомнил о письме князя Андрея.
– Получил от князя Андрея нынче, – сказал он княжне Марье, – не читала?
– Нет, mon pere, [батюшка] – испуганно отвечала княжна. Она не могла читать письма, про получение которого она даже и не слышала.
– Он пишет про войну про эту, – сказал князь с той сделавшейся ему привычной, презрительной улыбкой, с которой он говорил всегда про настоящую войну.
– Должно быть, очень интересно, – сказал Десаль. – Князь в состоянии знать…
– Ах, очень интересно! – сказала m llе Bourienne.
– Подите принесите мне, – обратился старый князь к m llе Bourienne. – Вы знаете, на маленьком столе под пресс папье.
M lle Bourienne радостно вскочила.
– Ах нет, – нахмурившись, крикнул он. – Поди ты, Михаил Иваныч.
Михаил Иваныч встал и пошел в кабинет. Но только что он вышел, старый князь, беспокойно оглядывавшийся, бросил салфетку и пошел сам.
– Ничего то не умеют, все перепутают.
Пока он ходил, княжна Марья, Десаль, m lle Bourienne и даже Николушка молча переглядывались. Старый князь вернулся поспешным шагом, сопутствуемый Михаилом Иванычем, с письмом и планом, которые он, не давая никому читать во время обеда, положил подле себя.

В условиях рыночной системы управления производственной и сбытовой деятельностью предприятий и фирм в основе принятия хозяйственных решений лежит рыночная информация, а обоснованность решений проверяется рынком в ходе реализации товаров и услуг. При таком подходе начальным пунктом всего цикла предпринимательской деятельности становится изучение потребительского спроса. Рассмотрим некоторые вопросы моделирования спроса и потребления.

Рассмотрим потребителя, который в результате своего существования потребляет некоторые блага. Уровень удовлетворения потребностей потребителя обозначим через U .Предположим, что имеется n видов благ Б 1 , Б 2 ,…, Б n . В качестве благ могут выступать:

· продовольственные товары;

· товары первой необходимости;

· товары второй необходимости;

· предметы роскоши;

· платные услуги и т. д.

Пусть количество потребления каждого блага равно х 1 , х 2 ,…, х n . Целевой функцией потребления называется зависимость между степенью (уровнем) удовлетворения потребностей U и количеством потребляемых благ: х 1 , х 2 , …, х n . Эта функция имеет вид .

В пространстве потребительских благ каждому уравнению соответствует определенная поверхность равноценных, или безразличных, наборов благ, которая называется поверхностью безразличия . Гиперповерхность такой кривой, называемой многомерной поверхностью безразличия, можно представить в виде , где С - константа. Для наглядности рассмотрим пространство двух благ, например, в виде двух агрегированных групп товаров: продукты питания Б 1 и непродовольственные товары, включая платные услуги Б 2 . Тогда уровни целевой функции потребления можно изобразить на плоскости в виде кривых безразличия, соответствующих различным значениям константы С .Для этого выражают количество потребления одного блага х 1 через другое х 2 . Рассмотрим пример.

Пример 6.3 . Целевая функция потребления имеет вид . Найти кривые безразличия.

Решение . Кривые безразличия имеют вид или , или (при этом следует отметить, что должно выполняться ).



Каждый потребитель стремится максимизировать уровень удовлетворения потребностей, то есть . Однако максимизации степени удовлетворения потребностей будут мешать возможности потребителя. Обозначим цену на единицу каждого блага через р 1 , р 2 ,…, р n , а доход потребителя через D .Тогда должно выполняться бюджетное ограничение , имеющее смысл закона, согласно которому затраты потребителя не должны превышать сумму дохода:

В результате для нахождения оптимального набора благ необходимо решать задачу оптимального программирования:

(6.3)

Рассмотрим двухфакторную функцию потребления , где х 1 - объем потребления продуктов питания и х 2 - потребление непродовольственных товаров и платных услуг. Кроме того, предположим, что весь доход потребитель направляет на удовлетворение своих потребностей. В этом случае бюджетное ограничение будет содержать только два слагаемых, и неравенство превратится в равенство. Задача оптимального программирования при этом примет вид:

(6.4)

Геометрически оптимальное решение имеет смысл точки касания кривой безразличия линии, соответствующей бюджетному ограничению.

х 2
Из бюджетного ограничения системы (6.4) можно выразить переменную . Подставив это выражение в целевую функцию, получаем функцию одной переменной , максимум которой можно найти из уравнения, приравняв производную к нулю: .

Пример 6.4 . Целевая функция потребления имеет вид . Цена на благо Б 1 равна 20, цена на благо Б 2 равна 50. Доход потребителя составляет 1800 единиц. Найти кривые безразличия, оптимальный набор благ потребителя, функцию спроса на первое благо по цене, функцию спроса на первое благо по доходу.

Решение. Кривые безразличия имеют вид:

Получаем множество гипербол, расположенных в первой координатной четверти на разном расстоянии от начала координат в зависимости от значения константы С .

Находим оптимальный набор благ. Задача оптимального программирования имеет вид:

Для ее решения выражаем из бюджетного ограничения одну переменную через другую: . Подставляем в целевую функцию

Находим производную и приравниваем ее к нулю

Получаем .

Таким образом, оптимальный набор благ составляют 30,5 и 23,8 единиц. Находим теперь функцию спроса на первое благо по цене на него. Для этого в бюджетном ограничении вместо фиксированного значения вводим цену первого блага , получая уравнение: . Выражаем

или , откуда находим функцию спроса на первое благо по цене: .

Находим теперь функцию спроса на первое благо по доходу. Для этого выражаем из бюджетного ограничения одну переменную через другую: . Подставляем в целевую функцию:

Находим производную и приравниваем ее к нулю:

Отсюда находим функцию спроса на первое благо по доходу

7. Модель
межотраслевого баланса

Балансовые модели предназначены для анализа и планирования производства и распределения продукции на различных уровнях - от отдельного предприятия до народного хозяйства в целом. Если вспомнить историю народного хозяйства как Советского Союза и России, так и других развитых стран, то можно наблюдать, что в экономике многих государств в разное время случались экономические кризисы разных крайностей от кризисов перепроизводства (США, середина ХХ века), до дефицита (Россия, конец ХХ века). Все эти экономические кризисы связаны с нарушением баланса между производством и потреблением. Из этих фактов видно, что баланс между произведенной продукцией и потреблением является важным критерием как для макроэкономики, так и для микроэкономики.

Экономико-математические модели баланса пытались выстроить многие экономисты и математики с самого начала возникновения проблемы, однако, наиболее полную балансовую модель удалось построить в 1936 г. американским экономистом В. Леонтьевым (который после революции эмигрировал в США и за свою модель получил Нобелевскую премию в области экономики). Эта модель позволяла рассчитать баланс между несколькими взаимодействующими отраслями, хотя ее можно легко обобщить и для организаций микроэкономики, например, для вычисления баланса между несколькими взаимодействующими предприятиями или между подразделениями одного предприятия (например, цехами одного завода).

Цель балансового анализа - ответить на вопрос, возникающий в макроэкономике и связанный с эффективностью ведения многоотраслевого хозяйства: каким должен быть объем производства каждой из п отраслей, чтобы удовлетворить все потребности в продукции этой отрасли? При этом каждая отрасль выступает, с одной стороны, как производитель некоторой продукции; а с другой - как потребитель продукции и своей, и произведенной другими отраслями.

Предположим, что рассматривается п отраслей промышленности, каждая из которых производит свою продукцию. Пусть общий объем произведенной продукции i -й отрасли равен . Полная стоимость продукции, произведенной i -й отраслью, будем называть валовым продуктом этой отрасли. Теперь рассмотрим, на что тратится продукция, производимая отраслью. Часть продукции идет на внутрипроизводственное потребление данной отраслью и потребление другими отраслями, связанными с этой отраслью. Количество продукции i -й отрасли, предназначенной для конечного потребления (вне сферы материального производства) личного и общественного j -й отраслью, обозначим . Оставшаяся часть предназначена для реализации во внешнюю сферу. Эта часть называется конечным продуктом. Пусть i -я отрасль производит конечного продукта.

Рассмотрим процесс производства за некоторый период времени (например, год). Так как валовой объем продукции любой i -й отрасли равен суммарному объему продукции, потребляемой n отраслями, и конечного продукта, то уравнение баланса между производством и потреблением будет иметь вид

, (i = 1, 2, …, n ). (7.1)

Уравнения (7.1) называются соотношениями баланса.

. (7.2)

Все ранее рассмотренные показатели можно записать в основную балансовую таблицу:

Отрасль Потребление отраслей, Конечный продукт, Валовойпродукт,
n
n
Чистый продукт

В результате основная балансовая таблица содержит четыре матрицы: матрицу межотраслевых производственных связей

; матрицу валовой продукции ; матрицу конечной продукции и матрицу чистой продукции .

Одной из задач балансового анализа является определение валового продукта , если известно распределение конечного . Для этого введем коэффициенты прямых затрат

Они получаются в результате деления всех элементов каждого столбца матрицы на соответствующий элемент матрицы межотраслевых производственных связей Х .Коэффициенты прямых затрат имеют смысл количества потребления продукции j -й отрасли, необходимой для производства единицы продукции i -й отраслью. Из выражения (7.3) можно получить: . Подставив последнее выражение в соотношение баланса (7.1), получим

. (7.4)

Если обозначить матрицу коэффициентов прямых затрат как , то соотношение баланса (7.4) в матричном виде можно записать в виде

Из последнего выражения можно найти значение конечного продукта при известном значении валового

где - единичная матрица того же размера, что и А .

Пример 7.1 . Баланс четырех отраслей за предыдущий период имеет матрицу межотраслевых производственных связей вида и матрицу валовой продукции вида . Необходимо определить конечный продукт Y и чистый продукт C каждой отрасли.

Конечный продукт Y получается в результате вычитания из каждого элемента матрицы валовой продукции суммы элементов соответствующих строк матрицы . Например, первое значение равно 100 – (10 + 20 + 15 + 10) = 45. Чистый продукт С получается в результате вычитания из каждого элемента матрицы валовой продукции Х суммы элементов соответствующих столбцов матрицы . Например, первое значение равно 100 – (10 + 5 + 25 + 20) = 40. В результате получим основную балансовую таблицу:

Отрасль Потребление отраслей, Конечный продукт, Валовойпродукт,
Чистый продукт, S = 210 S = 400

Поставим теперь другую задачу: рассчитаем конечный продукт каждой отрасли на будущий период, если валовой продукт окажется равным . Для решения этой задачи найдем коэффициенты прямых затрат:i -й отрасли.

Пример 7.2 . В некотором регионе имеются две основные отрасли народного хозяйства: машиностроение (м/с) и сельское хозяйство (с/х). Баланс этих отраслей за отчетный период определяется матрицами , . Вычислим остальные показатели и заполним основную балансовую таблицу

Предположим, что на будущий период планируется конечная продукция в объемах . Нужно определить, какой валовой продукт при этом нужно планировать. Найдем коэффициенты прямых затрат:

Можно выделить следующие причины, по которым экономические системы являются стохастическими:

1) система сложная, многокритериальная, описывается многоуровневой иерархической структурой;

2) система подвержена влиянию большого числа неуправляемых внешних факторов (погодные условия, внешняя политика, социальные факторы и т. д.);

3) преднамеренное искажение информации, сокрытие информации и целенаправленная экономическая диверсия.

Исходя из этого для моделирования многих экономических систем используют математические методы, основанные на применении законов теории вероятностей, которые получили название стохастических методов .

При применении стохастических методов оптимизация целевой функции ведется по среднему значению, то есть при заданных параметрах необходимо найти такое решение, когда значение целевой функции в среднем будет максимальным.

Стохастические системы в экономике описываются марковским аппаратом, в основе которого лежат марковские случайные процессы . Они применяются в случаях, когда нельзя заформализовать модель (описать аналитическим выражением) и в случае, когда система представляет собой многопараметрическую вероятностную экономическую систему.

Cтраница 2


Из таблицы видно, что для сравнительно близких оптимальных значений целевой функции (f (z) (при отклонениях порядка 1 %) количество изделий, подлежащих выпуску по этим оптимальным планам, по отдельным наименованиям колеблется в пределах нескольких сотен. Таким образом, эта задача является неустойчивой.  

В результате решения задачи линейного программирования находят оптимальное значение целевой функции (желательное сочетание изделий - максимальный доход), а также соответствующие этому оптимальному решению значения переменных: основных х - типы изделий; дополнительных zt - резервы по ограниченным ресурсам; двойственных Уг - мера дефицитности ресурсов; дополнительных двойственных У - - какую продукцию целесообразно включить в оптимальный план.  

Если множество решений является непустым, то оптимальное значение целевой функции может быть либо конечным, либо неограниченно большим. В случае когда оптимальное значение целевой функции конечно, оно соответствует экстремальной точке.  

Поскольку пространство решений может быть неограниченным, оптимальное значение целевой функции может также оказаться бесконечно большим.  

Все ограничения удовлетворяются, если и только если оптимальное значение целевой функции выпуклой задачи равно нулю. В противном случае минимальное значение явля-ется неограниченным, и должен быть найден крайний луч, с помощью которого строится нарушенное ограничение.  

На любой итерации t известна нижняя оценка х оптимального значения целевой функции. Значение х можно выбрать точно так же. Кроме того, имеется основной список задач, в котором каждой задаче соответствует определенное частичное решение.  

Теперь можно найти то решение, которое соответствует оптимальному значению целевой функции.  

В начале любой итерации t известна верхняя оценка х оптимального значения целевой функции. Значение х определяется общепринятым способом. Кроме того, задан основной список задач, содержащий некоторое подмножество Xij 1, определяющее частичный цикл, и подмножество значений с - -, принятых в результате пересмотра равными оо. Для вычисления нижней оценки оптимального значения целевой функции, соответствующей циклу, который является дополнением частичного цикла, можно применить тот же метод, что и в алгоритме задания маршрутов. С другой стороны, можно определять оптимальное решение задачи о назначениях, включив в эту задачу коэффициенты с -, принадлежащие строкам и столбцам, не связанным с подмножеством xti 1, которые входят в частичный цикл.  

В таких случаях существует бесконечно много планов, отвечающих оптимальному значению целевой функции. В многомерном случае говорят, что гиперплоскость постоянной прибыли параллельна гиперплоскости - границе одного из ресурсов.  

Теорема 4.1. Последовательность Q (Xh) сходится к оптимальному значению целевой функции детерминированной задачи, эквивалентной двухэтапной стохастической задаче линейного программирования. Последовательность лг / J содержит сходящуюся подпоследовательность. Каждая сходящаяся подпоследовательность из Xh сходится к оптимальному предварительному плану х двухэташюй стохастической задачи.  


Следует отметить, что очень часто в связи с ограничениями оптимальное значение целевой функции достигается не там, где ее поверхность имеет нулевой градиент. Нередко лучшее решение соответствует одной из границ области проектирования.  

В начале любой итерации t известна верхняя оценка х а оптимального значения целевой функции.  

В заключительной части настоящего раздела обсуждается вопрос о приближенных методах оценки оптимальных значений целевой функции при различных предположениях относительно структуры стохастической модели. В следующем разделе рассматривается другая формулировка двухшаговой стохастической задачи линейного программирования, допускающая переход к стандартной модели линейного программирования с сохранением размерности.  

Действительно, согласно (VI5), значение двойственной функции всегда меньше оптимального значения целевой функции. Отсюда расчет двойственной функции при любых значениях множителей Лагранжа дает нижнюю оценку данного варианта ветвления.  

Линейное программирование.

Краткие теоретические сведения

Постановка задач

Решение прямой задачи линейного программирования отвечает на следующий вопрос:

при каких интенсивностяхn процессов получения прибыли (оказании различных услуг, производственных процессов), в которых используютсяm видов ресурсов (факторов производства) с известными предельными интенсивностями использования этих ресурсов выручка от реализации (прибыль) будет максимальна в случае, когда интенсивность расхода каждого ресурса и интенсивность получения прибыли (выручки) в каждом из процессов линейно зависят от интенсивности этого процесса.

Решение двойственной к ней задачи отвечает на следующий вопрос:

при каких наименьших ценах на единицу ресурса экономическому агенту будет невыгодно дальнейшее расширение процесса получения прибыли за счёт приобретения новых объёмов дефицитных в сложившихся условиях экономической деятельности ресурсов.

Прямая задача линейного программирования может быть связана со следующей ситуацией. Имеются n способов получения прибыли (оказание n видов услуг) с объёмами x i (число штук i -й оказанных услуг) . При этом используются m видов ресурсов, запас j -го изкоторых равен b j . При этом расход каждого ресурса j и величина прибыли в каждом из процессов i линейно зависят от количества оказанных услуг i -го вида с коэффициентами a ji и c i , соответственно. Матрица А =(a ji ) m ´ n по смыслу аналогична такой же из первой части и также называется матрицей технологических, или структурных коэффициентов. Тогда оптимальный по критерию максимума получения прибыли план может быть получен из решения следующей прямой задачи линейного программирования:

Этой задаче можно поставить в соответствие расширенную матрицу следующего вида:

(4.1)

Двойственная к задаче (4) задача имеет следующий вид (z j – искомые предельные цены):

При такой формулировке двойственной задачи из условия минимизации цен вытекают (5.1) и (5.3), а из условия невыгодности продолжения деятельности прямо возникает условие превышения или равенства издержек над выручкой от реализации.

Основные понятия модели

Решение (план, программа)- набор, вектор конкретных значений всех переменных параметров управления модели – тех величин которые могут быть изменены по воле управляющего объектом моделирования. Решения бывают допустимые (реализуемые на практике), недопустимые (не реализуемые в силу существующих в модели ограничений) и оптимальные (лучшие из допустимых).

Целевая функция L(x) – математическое выражение, связывающее факторы (параметры) модели. Экономический смысл целевой функции отражает критерий оптимальности – показатель, имеющий экономическое содержание и служащий формализацией конкретной цели управления, например: максимизация прибыли (строка 1 в (4)), максимизация качества продукции или минимизация издержек (5.1).


Система ограничений модели – пределы, ограничивающие область допустимых (приемлемых, осуществимых) решений , фиксирующие основные внутренние и внешние свойства объекта, связанные с целью оптимизации. Уравнения связи (типа f j (x) )– математическая формализация системы ограничений (строки 2 и 3 в (4), (5.2 , 5.3)). Система ограничений отражает экономический смысл уравнений связи.

Система, состоящая из целевой функции и уравнений связи, -задача экономико- математического моделирования (ЭММ). В случае, когда целевая функция и уравнения связи линейны, а переменные управления меняются непрерывно, задача ЭММ называетсязадачей линейного программирования (ЛП) . Основное свойство множества допустимых планов (МДП) задачи ЛП - оно является выпуклым многогранником. Выпуклым называется множество, которому принадлежат все отрезки, соединяющие любые две точки этого множества. Если задача ЛП имеет решение, то оно находится в вершине МДП. Планы, находящиеся в вершинах МДП, называются базовыми. Задачи линейного программирования делятся на задачи с ограничениями в форме неравенств (общая задача ЛП) и в форме равенств (каноническая задача ЛП). При математической формализации экономических задач с помощью линейной модели получаются общие задачи ЛП – например, (4), (5). Любой общей задаче путём введения дополнительных переменных может быть сопоставлена каноническая задача. Так, задаче (4) путём введения в каждое неравенство типа “расход ресурса £ запас ресурса” (строка 2 в (4)) дополнительной переменной x n+j (неизрасходованный остаток j -го ресурса) сопоставляется следующая каноническая:

При этом размерность задачи (6) – число переменных плана - по сравнению с (4) увеличилась с n до n+m .

При решении задачи (4) важное значение имеют коэффициенты ресурсоотдачи, среди которых здесь будут использованы дифференциальные и приростные. Дифференциальный коэффициент ресурсоотдачи k ji показывает стоимость оказанных при использовании единицы j -го ресурса i –ых услуг. Те виды услуг, для которых все k ji оказываются наименьшими по всем видам услуг, являются наименее выгодными. Они не должны присутствовать в оптимальном плане. Это позволяет, путём принудительного обнуления объёмов оказания таких услуг снизить размерность задачи и, таким образом, упростить её решение. Вычисляются они следующим образом - k ji =c i /a ji .

приростной коэффициент ресурсоотдачи К j – это коэффициент пропорциональности между приращением значения целевой функции оптимального плана и вызвавшим это приращение изменением запасов j -го ресурса. Можно считать, что К j показывают, на сколько увеличится значение целевой функции исходной задачи в оптимальном плане при увеличении величины запаса j -го ресурса на единицу. С математической точки зрения является полной производной от оптимального значения целевой функции по величине запаса j -го ресурса: К j =dL opt /db j .

Определение . Любое решение системы ограничений называется допустимым решением ЗЛП.
Определение . Допустимое решение, в котором целевая функция достигает максимального или минимального значения, называется оптимальным решением.

В силу этих определений задача ЛП может быть сформулирована следующим образом: среди всех точек выпуклой области, являющейся решением системы ограничений, выбрать такую, координаты которой минимизируют (максимизируют) линейную функцию F = с 1 x + с 2 y .
Заметим, что переменные x , y в ЗЛП принимают, как правило, неотрицательные значения (x ≥ 0, y ≥ 0), поэтому область расположена в I четверти координатной плоскости.

Рассмотрим линейную функцию F = с 1 x + с 2 y и зафиксируем какое-нибудь ее значение F . Пусть, к примеру, F = 0, т.е. с 1 x + с 2 y = 0. Графиком этого уравнения будет прямая, проходящая через начало координат (0;0) (рис.).
Рисунок
При изменении этого фиксированного значения F = d , прямая с 1 x + с 2 y = d будет смещаться параллельно и «зачертит» всю плоскость. Пусть D – многоугольник – область решения системы ограничений. При изменении d прямая с 1 x + с 2 y = d , при некотором значении d = d 1 достигнет многоугольника D , назовем эту точку А «точкой входа», и затем, пройдя многоугольник, при некотором значении d = d 2 будем иметь с ним последнюю общую точку В , назовем В «точкой выхода».
Очевидно, что своего наименьшего и наибольшего значения целевая функция F =с 1 x + с 2 y достигнет в точках «входа» А и «выхода» В .
Учитывая, что оптимальное значение на множестве допустимых решений целевая функция принимает в вершинах области D , можно предложить следующий план решения ЗЛП:

  1. построить область решений системы ограничений;
  2. построить прямую, соответствующую целевой функции, и параллельным переносом этой прямой найти точку «входа» или «выхода» (в зависимости от требования минимизировать или максимизировать целевую функцию);
  3. определить координаты этой точки, вычислить в них значение целевой функции.
Заметим, что вектор (с 1 , с 2), перпендикулярный прямой, показывает направление роста целевой функции.

При графическом решении ЗЛП возможны два случая, которые требуют особого обсуждения.

Случай 1
Рисунок 6
При перемещении прямой с 1 x + с 2 y = d «вход» или «выход» (как на рисунке) произойдет по стороне многоугольника. Это случится, если в многоугольнике есть стороны, параллельные прямой с 1 х + с 2 у = d .
В этом случае точек «выхода» (« входа») бесчисленное множество, а именно – любая точка отрезка АВ . Это означает, что целевая функция принимает максимальное(минимальное) значение не в одной точке, а во всех точках, лежащих на соответствующей стороне многоугольника D .

Случай 2
Рассмотрим случай, когда область допустимых значений неограниченна.
В случае неограниченной области целевая функция может быть задана таким образом, что соответствующая ей прямая не имеет точки «выхода» (или «входа»). Тогда максимальное значение функции (минимальное) не достигается никогда – говорят, что функция не ограничена.
Рисунок
Необходимо найти максимальное значение целевой функции F = 4x + 6y → max , при системе ограничений
Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами.
x + y = 18


x

12

9

y

6

9

0,5x + y = 12


x

12

18

y

6

3

x = 12 – параллельна оси OY ;
y = 9 – параллельна оси OX ;
x = 0 – ось OY ;
y = 0 – ось OX ;
x ≥ 0 – полуплоскость правее оси OY ;
y ≥ 0 – полуплоскость выше оси OX ;
y ≤ 9 – полуплоскость ниже y = 9;
x ≤ 12 – полуплоскость левее x = 12;
0,5x + y ≤ 12 – полуплоскость ниже прямой 0,5x + y = 12;
x + y ≤ 18 – полуплоскость ниже прямой x + y = 18.
Рисунок
Пересечением всех этих полуплоскостей является очевидно, пятиугольник ОАВСД , с вершинами в точках О (0; 0), А (0; 9), В (6; 9), С (12; 6), Д (12; 0). Этот пятиугольник и образует область допустимых решений задачи.

Рассмотрим целевую функцию задачи F = 4x + 6y → max.


x

3

0

y

–2

0

Построим прямую, отвечающую значению функции F = 0: 4x + 6y = 0. Будем двигать эту прямую параллельным образом. Из всего семейства прямых 4x + 6y = const последней вершиной, через которую пройдет прямая при выходе за границу многоугольника, будет вершина С (12; 6). Именно в ней F = 4x + 6y достигнет своего максимального значения.
Значит, при x = 12, y = 6 функция F достигает своего максимального значения F = 4 ∙ 12 + 6 ∙ 6 = 84, равного 84. Точка с координатами (12; 6) удовлетворяет всем неравенствам системы ограничений, и в ней значение целевой функции оптимально F * = 84 (оптимальное значение будем обозначать «*»).
Задача решена. Итак, необходимо выпустить 12 изделий I вида и 6 изделий II вида, при этом прибыль составит 84 тыс. руб.

Графический метод применяется для решения задач, которые имели в системе ограничений только две переменные. Этот метод может применяться и для систем неравенств, имеющих три переменных. Геометрически ситуация будет иная, роль прямых будут играть плоскости в трехмерном пространстве, а решением неравенства от трех переменных будет являться полупространство, находящееся по одну сторону от плоскости. Роль областей будут играть многогранники, являющиеся пересечением полупространств.