Сайт о телевидении

Сайт о телевидении

» » Модель коммутационного узла цифровой системы коммутации. Коммутационный модуль в распределительном узле в области телекоммуникации и сборочные узлы, а также способы их применения

Модель коммутационного узла цифровой системы коммутации. Коммутационный модуль в распределительном узле в области телекоммуникации и сборочные узлы, а также способы их применения

Классификация. Узлы коммутации в зависимости от их положения в сети передачи данных могут выполнять довольно различные функции. В первую очередь следует отличать узлы коммутации, к которым подключены только соединительные линии, ведущие к другим узлам (т. е. транзитные узлы), от узлов, к которым, кроме того, подведены абонентские линии от оконечных установок. В последнем случае функции управления могут быть более многообразными, так как способы сигнализации, применяемые в абонентских и соединительных линиях, вообще говоря, не совпадают. Различие в функциях управления связано также с особыми услугами, предоставляемыми абонентам (см. разд. 3.2). Наконец, не следует забывать и о различных характеристиках нагрузки. Функции управления особенно обширны в таких транзитных узлах коммутации, к которым подключены соединительные линии от разных сетей передачи данных.

Однако практически более важную роль играет другое различие - различие между концентраторами и прочими коммутационными устройствами. Концентраторы предназначены для объединения нагрузки от нескольких периферийных оконечных установок таким образом, чтобы она передавалась в вышестоящий узел коммутации или (в частных сетях передачи данных) на центральную оконечную установку, например оборудование обработки данных (т. е. центральную ЭВМ), по меньшему числу соединительных линий (рис. 2.1).

Рис. 2.1. Оборудование коммутации данных, установленное в коммутируемых узлах сети: а) концентратор и коммутационный узел; б) концентратор: ОУПД -- оконечная установка передачи данных; АЛ - абонентская линия; К - концентратор; СЛ - соединительная линия; КУ - коммутационный узел; ЦУ - центральная установка, например ЭВМ

Концентраторы позволяют также передавать нагрузку в обратном направлении оконечным установкам. Соединительные тракты между оконечными установками, подключенными к одному концентратору, в общем случае проходят через вышестоящий узел коммутации. (Такие концентраторы называют линейными, в отличие от аналогичных устройств, которые служат для соединения большого числа линий с небольшим числом управляющих устройств, например регистров для приема знаков набора

номера, и известны под названием регистровых концентраторов.)

В первую очередь принцип построения коммутационного оборудования определяется используемым методом коммутации (см. том 1, разд. 6.1.2), который зависит от того, должно ли быть установлено или нет сквозное (прямое) соединение между оконечными установками. В первом случае нет необходимости в промежуточном запоминании данных в узлах коммутации (коммутация каналов). Если, однако, по мере возможности занимается только один тот или иной участок соединительного тракта, то требуется промежуточное хранение данных в памяти (коммутация сообщений). При этом в память могут заноситься целые сообщения (коммутация с запоминанием сообщений) или только их части (пакетная коммутация).

Для осуществления как коммутации каналов, так и коммутации сообщений при передаче данных разработано большое число разнообразных устройств. Тот или иной метод коммутации может быть реализован различными способами: возможна, например, коммутация каналов с пространственным и временным их разделением, а также временная коммутация значащих моментов или групп битов (байтов). Для промежуточного хранения данных можно использовать перфоленту или магнитный носитель. Большое значение имеет также вид управления: децентрализованное или централизованное, жесткое (с постоянными функциональными связями) или программное.

Структура и методы обслуживания. Многообразие возможностей реализации коммутационных функций приводит к тому, что не существует общей, пригодной во всех случаях структуры коммутационного оборудования, иначе говоря, единой обобщенной схемы из некоторых основных элементов, которые независимо от их конкретной реализации можно было бы выделить в любом коммутационном оборудовании. По-видимому, при одинаковых методах коммутации и местоположении узла в сети должны осуществляться одинаковые функции, однако указать однозначное и всегда справедливое правило, по которому им ставились бы в соответствие определенные элементы, едва ли возможно. Поэтому последующее изложение в значительной степени основано на примерах конкретных технически реализованных устройств.

Как уже отмечалось, устройства одинакового или сходного назначения могут называться по-разному. В дальнейшем употребляются главным образом такие названия, которые использованы в соответствующей литературе по описываемым коммутационным системам, насколько это допустимо при естественном стремлении к единству изложения.

Способами обслуживания называют способы, в соответствии с которыми обрабатываются требования, касающиеся занятия определенных устройств. При этом управляющие устройства следует

отличать от устройств, предназначенных непосредственно для коммутации или промежуточного запоминания данных. Система об» служивания с ожиданием характерна для централизованных управляющих устройств: занятие этих устройств связано с необходимостью ожидания их освобождения в порядке некоторой очереди - вообще говоря, с ограниченным числом мест ожидания и с упорядочением по приоритетам. Примером могут служить очереди, которые обрабатываются в узле коммутации вычислительным устройством по заданной программе, хранящейся в памяти. В противоположность этому возможность ожидания освобождения децентрализованных управляющих устройств, например зон памяти для промежуточного хранения данных, необходимых в процессе установления соединения, нередко не предусматривается; в таком случае говорят о системе с потерями. Часто нет возможности ожидания и при занятии устройств, непосредственно используемых для коммутации данных и запятых в течение всего времени, на которое установлено соединение. Таковы, например, промежуточные линии системы пространственной коммутации каналов. Иначе обстоит дело в случае процессов, происходящих при коммутации с временным разделением каналов: здесь уже можно говорить о системе с ожиданием.

Критерии оценки. Прежде чем рассматривать конкретные виды коммутационных систем, назовем некоторые критерии их оценки. В первую очередь должна быть охарактеризована область применения, т. е. указаны ее признаки в различных функциональных аспектах (например, первый аспект может касаться скорости передачи, второй - процедуры передачи данных). Важным показателем является также гибкость системы. Тенденции развития сетей передачи данных на ближайшие годы таковы, что для коммутационного оборудования все большее значение приобретает не только увеличение числа подключаемых линий и объема обслуживаемой им нагрузки, но и возможности перехода к сетям с другими признаками или к введению новых видов услуг для абонентов.

Производительность коммутационного оборудования грубо можно охарактеризовать допустимым числом подключаемых линий, максимально возможной нагрузкой, а также показателями, касающимися передаваемых данных - прежде всего скоростью передачи. Оборудование, предназначенное для коммутации каналов, характеризуется производительностью коммутаторов, а оборудование для коммутации сообщений возможной производительностью при приеме и передаче сообщений и, если известна длина сообщений, - емкостью запоминающего устройства. Наряду с этим необходимо иметь сведения о производительности управляющих устройств, т. е. о количестве соединений, которые могут быть установлены и разъединены за определенное время, или о количестве сообщений или пакетов, которые могут быть обработаны в

единицу времени. Однако сравнивать эти показатели можно лишь в том случае, если дополнительно принимаются во внимание вид устанавливаемого соединения или передаваемого сообщения, распределение интервалов между вызовами, длительности соединений и другие подобные параметры.

Наконец, большое значение, в особенности при централизованном управлении, имеет надежность коммутационной системы как единого целого. Надежность характеризуется средним временем между двумя полными отказами системы или другими аналогичными показателями . Чтобы обеспечить высокую надежность, прибегают к дублированию или даже многократному резервированию коммутационного оборудования (обычно его центральных частей). В связи с этим представляет интерес, на какое число подключенных линий влияет отказ одной сдублированной части коммутационного оборудования; это число называют объемом отказа. В больших коммутационных системах нередко считается допустимым отказ в объеме до десяти линий.

Федеральное агентство по образованию Российской Федерации

Орловский Государственный технический университет

Орловский технологический институт

Орловский политехнический колледж

По дисциплине: «Типовые элементы САУ»

Тема: «Коммутационные элементы»

Специальность: 220301

Реферат защищен с оценкой:

Руководитель: Гаранжа Т.С.

КОММУТАЦИОННЫЕ ЭЛЕМЕНТЫ

Назначение. Основные понятия

Коммутационные элементы предназначены для включения, отключения и переключения электрических цепей. Под коммутацией обычно понимают выполнение этих трех операций. Различают коммутационные элементы ручного и автоматического управления. Коммутационные элементы ручного управления срабатывают при непосредственном механическом воздействии на их органы управления. Автоматические коммутационные элементы срабатывают под воздействием электромагнитных сил на их приводные органы. Основной частью таких элементов обычно является электромагнит, входным сигналом для них служит электрический ток или напряжение. Автоматические коммутационные элементы используются в системах автоматики и при дистанционном управлении различными механизмами и устройствами. Они рассматриваются в последующих главах данного раздела.

В этой главе рассмотрены коммутационные элементы с механическим приводом. Используются они, как правило, для местного управления и для подачи сигналов о достижении каких-либо промежуточных и конечных положений. По своему назначению коммутационные элементы подразделяют на два вида: для коммутации силовых цепей (обмоток электродвигателей, мощных электромагнитов, трансформаторов, нагревателей и других потребителей) и для коммутации цепей управления (обмоток релейно-контактной аппаратуры, устройств контроля, регулирования и сигнализации). Такое разделение обусловлено различными значениями токов и напряжений в коммутируемых цепях, что, в свою очередь, влияет на конструктивное исполнение и габаритные размеры. Изучение коммутационных элементов для силовых цепей не входит в нашу задачу. Отметим только, что наибольшее распространение для этих целей получили рубильники и переключатели рубящего типа, обеспечивающие быстрое размыкание и имеющие специальные устройства для гашения электрической дуги.

Все коммутационные элементы, используемые в цепях управления, обязательно имеют следующие узлы: неподвижные контакты, подвижные контакты и орган управления. Кроме того, они могут иметь элементы фиксации, монтажа и настройки, дугогашения и т. п. Необходимые коммутационные элементы выбирают по допустимым значениям тока и напряжения. Но наиболее важной для практики характеристикой коммутационных элементов является их надежность, т. е. сохранение работоспособности при большом числе срабатываний.

Коммутационные элементы различают по числу коммутируемых цепей (одноцепные и многоцепные) и по числу фиксированных положений, причем имеются коммутационные элементы с самовозвратом в исходное положение, т. е. без фиксации переключенного положения, что может быть необходимо для ряда схем управления.

К коммутационным элементам с механическим приводом относятся кнопки управления, микропереключатели, тумблеры, клавишные, поворотные, рычажные и кулачковые переключатели, а также концевые и путевые выключатели.

Кнопки управления и тумблеры

Кнопки управления - это аппараты, подвижные контакты которых перемещаются и срабатывают при нажатии на толкатель кнопки. Комплект кнопок, смонтированных на общей панели, представляет собой кнопочную станцию. Используемые в схемах автоматики кнопки управления различают по числу и типу контактов (от 1 до 4 замыкающих и размыкающих), форме толкателя (цилиндрический, прямоугольный и грибовидный), способу защиты от воздействия окружающей среды (открытые, закрытые, герметичные, взрывобезопасные и т. д.).

Независимо от конструкции и габаритных размеров кнопок (рис.1, а, б) все они имеют неподвижные контакты 1 и подвижные контакты 6, перемещаемые с помощью толкателя 3. Внешняя цепь подсоединяется к кнопке с помощью винтовых зажимов 7. Корпус 2 кнопки фиксируется на панели управления гайками 4 и 5.

Рис. 1. Конструкции кнопок управления

Электрические параметры наиболее распространенных кнопок приведены в табл.1. Кнопки управления общепромышленного применения серий КУ и КЕ имеют различные исполнения и формы толкателей.

Таблица 1. Электрические параметры кнопок управления различных типов

Для коммутации цепей электроники выпускаются специальные кнопки (например, типа ВК14-1). Малогабаритные кнопки управлениявыполняют на основе микровыключателя типа МП, который используют в качестве исполнительного контактного элемента в тумблерах типа MT1 и МТП. Долговечность и надежность кнопок управления оценивают коммутационной износостойкостью, которую выражают в гарантированном числе циклов включений-отключений под нагрузкой. Этот параметр различен для разных кнопок и условий эксплуатации. Например, для кнопок типа ВК14-21 с медными контактами он составляет 0,25 * 10 6 циклов, с биметаллическими контактами - 2,5 * 10 б, с серебряными контактами - 4 * 10"" циклов. Механическая износостойкость всегда превышает коммутационную. В последнее время все большее распространение получили кнопки управления с прямоугольной формой толкателя - их называют клавишами.

На основе кнопок управления изготовляют кнопочные станции, содержащие до 12 кнопок различного исполнения, собранных на общей панели или в одном корпусе. Такие коммутационные устрой ства называют кнопочными или клавишными переключателями (рис.2).


Рис.2. Кнопочный переключатели

Переключатель представляет собой наборную панель из кнопок 1 (или клавиш), смонтированных на общем каркасе 2 и снабженных механизмом фиксации, который может быть независимым для каждой кнопки (клавиши) или взаимно сблокированным. Кнопки могут также иметь самовозврат в исходное положение или чередование включенного и отключенного фиксированных положений. Каждая кнопка или клавиша осуществляет коммутацию одной или нескольких цепей. Некоторые типы переключателей снабжают специальной кнопкой возврата (сброса) включенных кнопок в исходное положение. В этом случае возможно включенное положение нескольких кнопок одновременно. Особенностью этих переключателей является двухпозиционное положение (включено, отключено) каждой кнопки или клавиши. Необходимый режим или программа управления задается путем набора включенных и отключенных положений соответствующих кнопок (клавиш). При этом положение кнопок или клавиш (поднятое или утопленное) играет роль указателя. Для этой цели используют также световые сигнализаторы 3 (лампы или светодиоды), вмонтированные в корпус блока переключателя (рис.2). Закрытое исполнение и использование высококачественных материалов (биметаллов, сплавов серебра и т. п.) для контактов обеспечивают малые переходные сопротивления, что весьма важно при установке этих переключателей в низковольтных и слаботочных цепях автоматики и электроники.

Для более мощных цепей автоматики применяют тумблеры, ис­пользуемые в качестве выключателей, а также двух- и трехпозиционных переключателей. На рис.3 показано устройство двухпозиционного тумблера. Мостиковый контакт, выполненный в виде токопроводящего ролика /, замыкает одну из двух пар неподвижных контактов 2. Переключение контактов тумблера осуществляется воздействием на рычаг 3, а ускорение срабатывания (мгновенное действие) обеспечивается пружиной 4. Номинальный ток тумблера I и 2 А при напряжении 220 В, масса их не превышает 30 г.

Рис.3. Двухпозиционный тумблер

Для коммутации нескольких цепей при нескольких фиксированных положениях для выбора различных режимов работы используются пакетные переключатели. Такой переключатель (рис.4, а) состоит из ряда слоев - пакетов 3 (показан отдельно на рис.4, б), внутри которых находятся подвижный 5 и неподвижный 4 контакты. Подвижный контакт 5 закреплен на оси 2, вращающейся с помощью рукоятки 1 и имеющей ряд фиксированных положений, и которых замыкаются неподвижные контакты одного из пакетов. Выводы 6 неподвижных контактов закреплены в корпусе переключателя. Недостаток таких пакетных переключателей - низкая надежность скользящих контактов.

Пакетные переключатели кулачкового типа, в которых электрическая цепь замыкается неподвижными контактами, более надежны. Подвижными у них являются диэлектрические кулачки, которые и замыкают контакты в зависимости от профиля кулачка и положения оси. Конструкции пакетных переключателей, предназначенных для цепей управления, позволяют получить десятки и сотни вариантом разнообразных схем соединений при числе коммутируемых цепей до 24 (12 пакетов) и количестве фиксированных положений до X (через 45, 60 или 90°).

Коммутационные узлы сетей связи классифицируются по ряду признаков:

по виду передаваемой информации (телефонные, телеграфные, вещания, передачи данных и др.);

по способу обслуживания соединений (ручные, автоматические);

по месту, занимаемому в сети электросвязи (районные, центральные, узловые, оконечные, транзитные

станции, узлы входящего и исходящего сообщения);

по типу сети связи (городские, сельские, учрежденческие, междугородные);

по типу коммутационного и управляющего оборудования (декадно-шаговые, координатные,

квазиэлектронные, электронные);

по емкости, т.е. по числу входящих и исходящих линий или каналов (малой, средней, большой емкости);

по типу коммутации (оперативная, кроссовая);

по способу разделения каналов (пространственный, пространственно-временной);

по способу коммутации (коммутация каналов, коммутация сообщений, коммутация пакетов).

3. Принципы пространственного и временного разделения каналов.

Пространственное разделение каналов характеризуется тем, что элементы коммутационной системы,

образующие соединительный тракт между абонентами, отделены в пространстве, не имеют общих точек и

в каждый момент времени могут быть использованы для установления лишь одного данного соединения. В

АТС с пространственным разделением каналов в качестве приборов коммутационной системы

применяются электромеханические искатели, а также электронные и электромеханические соединители.

информация передается в форме непрерывных сигналов.

При временном разделении каналов сигнал разговорного спектра передается его дискретными значениями,

по которым на приемном конце восстанавливается первоначальная форма сигнала. Чтобы обеспечить

передачу непрерывного разговорного (аналогового) сигнала в виде дискретных импульсов и при этом не

допустить значительных искажений, необходимо обеспечить определенную частоту следования этих

импульсов. Согласно теореме Котельннкова для удовлетворительного качества передачи частота

следования импульсов должна не менее чем в 2 раза превышать максимальную частоту передаваемого

сигнала. Для передачи сигналов разговорного спектра, если считать наивысшей разговорной частотой f =

3400 Гц, то частота следования импульсов должна быть не менее f =6800 Гц. Обычно используют частоту

следования импульсов 8 кГц. Период следования импульсов при этом составит

T =1/ f =106/8.103=125 мкс.

4. Принципы построения коммутационной системы и системы управления.

5. Понятие о телефонной нагрузке. Особенности и единицы измерение.

Интенсивность телефонной нагрузки измеряется в эрлангах (Эрл). Один Эрл соответствует 60 минутам

занятия в час. То есть, когда говорится, что нагрузка составляет 2 Эрл, это означает, что суммарное время

занятия некоторого устройства (или группы устройств) в час составляет 120 минут. Конечно, одна линия не

может быть занята более 60 минут в час. Поэтому для обслуживания нагрузки величиной более 1 Эрл

требуется группа из 2-х и более линий связи.

Поток телефонных вызовов является случайным процессом со случайным характером появления вызовов и

длительности соединения. Для одной абонентской линии (АЛ) УПАТС (учрежденческо-производственных

АТС) нормальной считается нагрузка 0.2 Эрл. То есть, в течение часа наибольшей нагрузки (ЧНН) в

среднем одна АЛ занята 12 минут. Для местной связи в условиях Санкт-Петербурга считается, что имеют

место 4 трехминутных разговора (два входящих и два исходящих).

Глава 7. Принципы построения систем коммутации.

§ Структура и классификация коммутационных узлов

Под коммутацией понимается замыкание, размыкание и пе­реключение электрических цепей. Коммутация осуществляется на коммутационных узлах. На сетях электросвязи посредством коммутации абонентские устройства соединяются между собой для передачи (приема) информации. Коммутация осуществляется на коммутационных узлах (КУ), являющихся составными частями сети электросвязи.

Абонентские устройства сети соединяются с КУ абонентскими линиями. КУ, находящиеся на территории одного населен­ного пункта, соединяются соединительными линиями. Если КУ находятся в разных городах, то линии связи, соединяющие их, на­зываются междугородными или внутризоновыми.

Коммутационный узел, в который включаются абонентские линии, называется коммутационной станцией или просто стан­цией. В некоторых случаях абонентские линии включаются в подстанции. Лицо, пользующееся абонентским устройством для пе­редачи и приема информации, называется абонентом. Для пе­редачи информации от одного абонентского устройства сети к другому требуется установить со­единение между этими устройст­вами через соответствующие узлы и линии связи. Для осуществ­ления соединения на коммутационных узлах устанавливается коммутационная аппаратура.

Совокупность линейных и станционных средств, предназна­ченных для соединения оконечных абонентских устройств, назы­вается соединительным трактом. Число коммутационных узлов между соединяемыми абонентскими устройствами зависит от ст­руктуры сети и направления соединения.

Для осуществления требуемого соединения коммутационный узел и абонентское устройство обмениваются управляющими сигналами.

На коммутационном узле соединение может устанавливаться на время, необходимое для передачи одного сообщения (напри­мер, одного телефонного разговора), или на длительное время, превышающее время передачи одного сообщения. Коммутация первого вида называется оперативной, а второго - кроссовой (долговременной).

Коммутационный узел (КУ) представляет собой комплекс оборудования, предназначенного для приема, обработки и распре­деления поступающей информации. Наиболее типичным примером КУ является коммутационная станция, в которую включа­ются абонентские и соединительные линии. Упрощенная струк­турная схема коммутационного узла представлена на рис.

Рис. Структура коммутационного узла

Для выполнения своих функций КУ должен иметь в своем составе следующие основные блоки :

Коммутационное поле (КП) - представляет собой сово­купность коммутационных приборов, с помощью которых обеспечивается соединение включенных в станцию абонент­ских и соединительных линий.


Управляющее устройство (УУ) - предназначено для управления процессом установления соединений. В его со­став входит аппаратура для приема, формирования и переда­чи управляющей информации. На основании информации о номере вызываемого абонента или направлении связи, при­нятой от источника вызова, УУ включает соответствующие элементы коммутационного поля, в результате чего осуще­ствляется соединение между соответствующими входом и выходом.

Блоки соединительных линий (БСЛ), через комплекты со­единительных линий (КСЛ) которых подключаются линии свя­зи от (к) других КУ посредством аналоговых или цифровых соединительных линий (СЛ). При использовании однонаправлен­ных СЛ разделяют входящие и исходящие КСЛ.

Блоки абонентских линий (БАЛ), через абонентские ком­плекты (АК) которых к станции подключаются абонентские линии.

В состав оборудования КУ также входят дополнительные блоки :

Кросс - устройство ввода и вывода линий.

Шнуровые комплекты (ШК), которые в АТС координат­ного типа служат для питания телефонных аппаратов, а также приема и посылки служебных сигналов в процессе установле­ния соединения.

Источники электропитания .

Приборы контроля за работой оборудования .

Приборы учета параметров нагрузки .

На коммутационных узлах могут устанавливаться соедине­ния следующих видов:

внутристанционное - соединение осуществляется между абонентами данной телефонной станции;

исходящее - соединение устанавливается по инициативе абонента данной станции с абонентом другой станции через со­единительную линию;

входящее - соединение устанавливается с абонентом дан­ной станции по вызову, поступившему по соединительной ли­нии от другой станции;

транзитное - на данной станции коммутируются две сое­динительные линии с целью соединения абонентов других станций.

Коммутационные узлы сетей связи классифицируются по ряду признаков:

по виду передаваемой информации (телефонные, теле­графные, вещания, передачи данных и др.);

по способу обслуживания соединений (ручные, автомати­ческие);

по месту, занимаемому в сети электросвязи (районные, центральные, узловые, оконечные, транзитные станции, узлы входящего и исходящего сообщения);

по типу сети связи (городские, сельские, учрежденческие, междугородные);

по типу коммутационного и управляющего оборудования (декадно-шаговые, координатные, квазиэлектронные, элект­ронные);

по емкости ,т. е. по числу входящих и исходящих линий или каналов (малой, средней, большой емкости);

по типу коммутации (оперативная, кроссовая);

по способу разделения каналов (пространственный, простран­ственно-временной);

по способу коммутации (коммутация каналов, коммута­ция сообщений, коммутация пакетов).

Для осуществления коммутации (соединения) линий (или каналов )и управления процессами установления соединения на АТС применяются коммутационные приборы.

Коммутационным прибором (КПр) называется уст­ройство, обеспечивающее скачкообразное изменение про­водимости электрических цепей на определенный проме­жуток времени. Различают коммутационные приборы кон­тактные и бесконтактные .

В контактных приборах проводимость меняется путем замыкания и размыкания контактов, включенных в электрическую цепь. В бескон­тактных приборах изменение проводимости достигается изменением какого-либо параметра (сопротивления, индук­тивности или емкости) одного из элементов электрической цепи. Изменение проводимости электрических цепей в коммутационном приборе осуществляется коммутацион­ным элементом (КЭ) .

К коммутационному прибору могут подключаться линии с различной проводностью (двух-, трехпроводные и т.д.), по­этому их коммутация осуществляется несколькими КЭ, кото­рые объединены в коммутационную группу . При этом комму­тационные элементы переключаются одновременно под влия­нием управляющего сигнала.

По способам управления КПр можно разделить на прибо­ры ручной и автоматической коммутации. Приборы ручной коммутации управляются механическим воздействием челове­ка (ключи, кнопочные переключатели, телефонные гнезда и штепселя). Приборы автоматической коммутации управляют­ся электрическими сигналами.

В коммутационном приборе в зависимости от числа входных и выходных линий может быть установлено раз­личное число коммутационных групп. Совокупность ком­мутационных групп, обеспечивающая коммутацию входов и выходов, называется коммутационным полем прибора.

Местоположение коммутационной группы в коммутацион­ном поле прибора (или в коммутационном блоке, постро­енном из нескольких приборов) называется точкой комму­тации .

Для коммутации электрических цепей используются при­боры, которые обеспечивают два устойчивых состояния своих коммутационных элементов (или групп). При этом электриче­ская цепь, проходящая через КЭ, в одном состоянии разом­кнута (т.е. закрытое состояние), а в другом замкнута (откры­тое состояние).

Коммутационные приборы различаются между собой структурными и электрическими параметрами.

К структурным параметрам относятся: число входов n, число выходов m, доступность входов D по отношению к выходам, число одновременно коммутируемых электриче­ских цепей (проводность), свойство памяти. Производными от этих параметров являются общее число точек коммутации T ,число коммутационных групп и число коммутационных элементов, а также максимальное число одновременных со­единений.

К электрическим параметрам коммутационных прибо­ров относятся: сопротивление коммутационного элемента в закрытом (разомкнутом) состоянии и открытом (замкнутом) состоянии отношение которых называется комму­тационным коэффициентом ; время переключе­ния КЭ из одного состояния в другое; вносимое затухание в разговорный тракт; уровень шумов; напряжение питания; величина тока, необходимого для переключения КЭ; потреб­ляемая мощность.

Некоторые коммутационные приборы обладают свой­ством памяти ,т.е. способностью сохранять рабочее со­стояние после прекращения подачи управляющего воздей­ствия. Это позволяет сократить расход электроэнергии для поддержания рабочего состояния прибора. Для возвращения прибора в исходное состояние требуется новое управ­ляющее воздействие.

Используемые в настоящее время коммутационные прибо­ры по структурным параметрам можно разделить на четыре типа:

1. Коммутационные приборы типа реле (1 x 1) имеют один вход и один выход.

2. Коммутационные приборы типа искатель (1 x m )име­ют один вход n = 1 и m выходов.

3. Коммутационные приборы типа многократный соеди­нитель n (1 x m ) имеют n входов и nm выходов.

4. Коммутационные приборы типа соединитель (n x m )имеют n входов и m выходов.

Посредством коммутационных приборов строятся ком­мутационные блоки, ступени искания и коммутационное поле автоматических телефонных (телеграфных и др.) станций и узлов, управляющие устройства, линейные и служебные ком­плекты.