Сайт о телевидении

Сайт о телевидении

» » Литиевые химические источники тока: некоторые особенности применения. Можно ли заряжать литиевые батарейки. Шуруповерт с литиевой батареей

Литиевые химические источники тока: некоторые особенности применения. Можно ли заряжать литиевые батарейки. Шуруповерт с литиевой батареей

Имеют высокие показатели емкости и могут служить гораздо дольше других АКБ, но у них тоже имеются свои специфические особенности, которые стоит учитывать как при эксплуатации, так и в процессе зарядки.

Основные показатели и отличия от щелочных АКБ

В общих чертах, главные характеристики Li-Ion элементов питания - это постоянство показателей напряжения, высокий уровень емкости и большой энергетический ресурс, обусловленный спецификой их химического состава. Все литиевые батарейки состоят из катода и анода, их друг от друга отделяют диафрагма и сепаратор. Диафрагма имеет специальную органическую пропитку (ниже представлено фото).

Кроме того, емкость Li Ion батареек не имеет зависимости от нагрузочного тока, и именно это обеспечивает их максимально долгий срок службы - гораздо дольше, чем у щелочных, имеющих те же самые характеристики емкости. Элементы питания отличаются длительными сроками хранения и эксплуатации (в лучшем случае, до 12 лет), устойчивостью к высокой и низкой температуре и возможностью их изготовления в разных формах.

Более дешевыми и не менее популярными среди потребителей являются «предшественники» Li Ion АКБ - обычные щелочные батарейки, получившие название (на основании маркировки импортных моделей). Они и по сей день применяются в игрушках для детей, некоторых моделях плееров, бытовых фонариках. Однако они хуже справляются с более высокими нагрузками, и в фотоаппарате или ноутбуке алкалиновые элементы уже будут неэффективными по причине того, что разражаться они будут очень быстро.

Именно литиевые батарейки способны работать при постоянных и высоких нагрузках: любимые человечеством предметы техники на современном этапе используются почти в непрерывном режиме.

Существует множество примеров того, как литий-ионные аккумуляторы хранились долгое время без интенсивного использования, и качество их работы для пользователей не становилось хуже. Например, старый мобильный телефон с Li Ion АКБ, пролежавший в ящике пару лет, вполне может еще поработать, если батарейку хорошо зарядить. Безусловно, со временем показатели емкости у этих элементов заметно уменьшаются. Но поскольку они имеют очень мощный энергетический ресурс, немудрено, что их характеристики уже давно обогнали популярные щелочные аналоги.

Виды литиевых АКБ

Кроме основного элемента (лития), в этих аккумуляторах могут присутствовать и другие химические вещества.

«Начинка» литий-ионного элемента может содержать:

  • диоксид марганца;
  • оксид меди;
  • серный диоксид;
  • йод;
  • дисульфид железа;
  • полифторуглеродные соединения;
  • тионилхлорид.

Для широкого использования эти электрохимические различия не играют решающей роли. Важно то, что любое из этих соединений способно обеспечить оптимальную работу электрохимического источника питания.

Также литий-ионные АКБ могут иметь разный внешний вид, в зависимости от исполнения и целей их применения. Например, аккумуляторы 18650 имеют привычную корпусную форму в виде металлических «банок». Они широко применяются в шуруповертах и ноутбуках. Есть элементы прямоугольной формы, которые могут быть совсем плоскими (они устанавливаются в современные виды смартфонов и айфонов), а есть и гель-полимерные аккумуляторы, выполненные в форме блестящих пакетов с повышенным уровнем герметизации (их можно увидеть в планшетах и айпадах).

Номинальное напряжение любой литий-ионной батарейки, независимо от ее химического состава, составляет 3,7 вольт.

Немного о литии

Сам литий представляет собой металл, имеющий очень высокую мягкость и пластичность. Именно это в конечном итоге позволило изготавливать тонкие и легкие элементы, столь удобные в эксплуатации и высокие по мощности.

Производить АКБ на основе лития начали еще в 70-х годах ХХ века. Известно, что первые опыты такого производства часто были сопряжены с опасностью - многие батарейки взрывались, часто по причине перегрева или иных казусов, связанных с неправильной эксплуатацией. Со временем специалисты научились изготавливать батарейки, имеющие улучшенные характеристики. Однако обращаться с такими аккумуляторами и по сей день следует очень осторожно.

В сети существует большое количество фото и видео, на которых любители острых ощущений запечатлевали моменты взрыва сотовых телефонов или планшетов. Повторять подобные опыты, конечно же, не рекомендуется.

«Безопасный литий» в облике надежных и емких аккумуляторов получили путем комбинирования лития с твердоорганическими электролитами. К тому же, идея полного отказа от электролита на водной основе позволила получить наиболее емкие и мощные модели. Например, две литиевые батарейки на 3V успешно заменяют четыре или пять алкалиновых, что делает значительно проще эксплуатацию многих приборов в быту. Конечно, высокая химическая активность лития по-прежнему остается потенциальной «гремучей смесью». Особенно в случае беспечного отношения к таким АКБ. Но, в целом, элементы вполне безопасны и по-прежнему очень надежны.

Роль защитной платы

Большую роль в предотвращении перегрева и воспламенения батарейки играет встроенная внутрь каждого элемента защитная плата. Она предотвращает короткие замыкания, переразряд и перезаряд, но главное - возможный перегрев. Безусловно, все литиевые элементы от надежных и проверенных производителей оснащены такой платой, на которой находятся клеммы элемента.

На фото: защитная плата литий-ионного аккумулятора.

Любая плата имеет шестиуровневый контроллер заряда-разряда, который всегда отключит АКБ от нагрузки в том случае, если она полностью разрядилась или, наоборот, если уровень ее заряда достигает показателя в 4,25 вольт.

Самые лучшие АКБ

Иногда спрашивают о том, какие Li Ion АКБ являются самыми современными. В последнее время широко рекламируются элементы Ultimate lithium от Energizer именно как лучшие литиевые батарейки последнего поколения. Они были разработаны для бытовых приборов с высоким уровнем потребления энергии (мощные фонари, фотокамеры, большие говорящие игрушки для детей). Рекламщики утверждают, что Ultimate lithium - это даже не аккумуляторы, а «элементы, которые никогда не нужно будет перезаряжать» - вследствие того, что их мощности хватает больше, чем на 12 лет.

  • способность выдерживать большие температурные перепады;
  • работают при самых низких температурах - -40-60°С;
  • самые легкие среди других литиевых аналогов;
  • высокая емкость - 3000 А;
  • утверждается, что срок их службы может достигать 15 лет.

На фото - литиевый аккумулятор Ultimate lithium.

Правильная зарядка

Самый верный способ, который максимально продлит и улучшит их работу, - это двухэтапная зарядка литиевых батареек. Только таким образом АКБ заряжается полноценно, и ее емкость используется в полной мере, без снижения потенциала в течение долгого периода времени.

Как заряжать литиевые аккумуляторы на первом этапе? Только постоянным током, который не должен превышать 0,2-0,5 С (где С - это емкость АКБ). В крайнем случае, можно немного ускорить процесс, увеличив ток максимум до 1,0 С. К примеру, если емкость АКБ составляет 3000 мАч, а начальный ток от 600 до 1500 миллиампер, ускоренный ток должен находиться в пределах 1,5-3 ампер. Конечно, в данном случае должно применяться ЗУ с опцией настройки напряжения. Выражаясь простым языком, на начальном этапе зарядки устройство служит в качестве классического стабилизатора тока.

Важно помнить о том, что все литиевые АКБ оснащены защитной платой. Следовательно, показатель U «на холостом ходу» не должен превышать уровня 7 вольт. Высокое напряжение может погубить плату.

На протяжении процесса зарядки нужно осуществлять постоянный контроль напряжения. При его подъеме до 4,2 вольт следует знать о том, что батарейки восполнили свою емкость примерно на 80 процентов. Теперь нужно перейти к другому этапу зарядки.

Второй (и последний) шаг зарядки должен проводиться с помощью постоянного U, но снижающимся показателем уровня тока. Зарядник поддерживает U в пределах 4,14-4,24 вольт и регулирует ток, который постепенно становится меньше. При снижении показателя тока до 0,05-0,01 С можно считать зарядку завершенной. Остается добавить, что недостающий процент своей емкости, до 100%, аккумуляторы «добирают» в процессе второго этапа.

Если хорошего качества, в нем непременно должно присутствовать отключение от источника питания после завершения процесса зарядки. Для литиевых элементов недопустим перезаряд, потому что они могут из-за него потерять больший процент своей емкости, восполнить которую будет уже невозможно. Следует вовремя снять аккумуляторы с зарядки и не забыть о них.

Техника безопасности

Как уже было сказано, нельзя допускать перегревания литий-ионных аккумуляторов , например, оставлять гаджеты с ними на солнце или в местах, где возможно воспламенение. Не следует самостоятельно вскрывать такой элемент питания и пытаться их восстанавливать - техника восстановления элементов к ним не должна применяться. Также следует покупать аккумуляторы только у проверенных производителей , чтобы не приобрести «паленые» батарейки, в которых может отсутствовать защитная плата.

Правильная эксплуатация и зарядка обеспечат то, что батарейки будут служить исправно и не потеряют своей емкости в течение долгого времени.

Химические источники тока (ХИТ) прочно вошли в нашу повседневную жизнь. Практически каждый из нас имел дело с гальваническими элементами, но не каждому эта встреча могла оставить приятные воспоминания. Случалось, что батарейки почему-то работали меньше, чем ожидалось, у них быстро снижалось напряжение, или нагрузка просто отказывалась нормально функционировать с некоторыми типами элементов. В этом случае, как правило, мы считали виноватым производителя элементов и редко допускали, что могла быть и доля нашей собственной вины. Может быть, в данном случае элемент повел себя так, как и должен был? Ведь различные нагрузки нуждаются и в различных источниках тока. Например, фотоаппарат со вспышкой требует кратковременного, но достаточно большого тока, а цифровому аудиоплееру, наоборот, требуется длительный ток небольшой величины.

Если в бытовом применении потребитель редко обращает внимание на отличия используемых химических источников тока — для него они просто батарейки и аккумуляторы, то для применения в промышленном оборудовании необходимо обладать полной информацией о существующих источниках и их различиях между собой. Это требуется для того, чтобы избежать возможных ошибок, связанных с неправильным применением источников тока в том или ином приложении.

Химический источник тока — это устройство, непосредственно преобразующее энергию химической реакции, протекающей между анодом и катодом, в электрическую энергию. Все химические источники по способности к повторному использованию подразделятся на две большие группы: первичные источники тока и вторичные источники тока. Первичные источники тока (элементы) обеспечивают только разряд и не могут заряжаться — они используются однократно. Вторичные источники тока (аккумуляторы) могут заряжаться и использоваться многократно в циклическом режиме «заряд-разряд».

В мире производится несколько основных типов химических источников тока (солевые, щелочные, литиевые и др.) и достаточно большое количество их разновидностей, различающихся типом электрохимической системы, электрической емкостью, допустимыми токами разряда и саморазряда, а также — другими параметрами. Некоторые параметры основных типов первичных источников тока приведены в таблице 1 (ориентировочная электрическая емкость указана при непрерывном разряде тока 10 мА).

Таблица 1. Параметры первичных ХИТ

Типы ХИТ Рабочее
напряжение, В
Электрическая
емкость, мАч
Диапазон
рабочей температуры, °С
Саморазряд,
% в год
Солевые (тип корпуса АА) 1,5 1000…1100 -20…60 >10
Щелочные (тип корпуса АА) 1,5 2400…2500 -30…60 5…8
Литий-тионилхлоридные (тип корпуса АА) 3,3…3,6 2000…2100 -55…85 (150) <1
Литий-диоксидмарганцевые (тип корпуса АА) 3 1500…1600 -20 (-40)…70 (85) 2…2,5
Литий-диоксидсерные (тип корпуса АА) 2,6…2,9 800…900 -55…70 1…2

До недавнего времени солевые источники тока, имеющие самую низкую стоимость, являлись наиболее распространенными, но, в силу многих присущих им недостатков, в настоящее время неуклонно вытесняются щелочными (Alkaline) и литиевыми.

Определенное сочетание основных параметров определяет то или иное назначение источников тока. Для некоторых задач, где основным фактором выступает первоначальная низкая стоимость электропитания, можно использовать недорогие щелочные, или даже солевые источники тока. Однако для применений, где требуются источники повышенной энергии, обладающие низким током саморазряда и/или длительным сроком службы, следует выбирать другой тип. Наиболее перспективным типом, с учетом указанных параметров, в настоящее время являются литиевые источники.

Литиевые источники тока производятся в различных форм-факторах («таблетка», цилиндрические, призматические (рисунок 1)) в виде элементов и аккумуляторов, которые, в свою очередь, различаются типом электрохимической системы и некоторыми основными параметрами:

Первичные источники тока
(элементы)

  • литий-тионилхлоридные (Li/SOCl 2);
  • литий-диоксидмарганцевые (Li/MnO 2);
  • литий-диоксидсерные (Li/SO 2);

Вторичные источники тока
(аккумуляторы)

  • литий-полимерные (Li/Polimer)
  • литий-железофосфатные (Li/FePO 4);
  • литий-ионные (Li/Ion).

Рис. 1.

Общим для всех этих источников является то, что анод у них выполнен из металлического лития. По своим химическим свойствам металлический литий является одним из самых активных элементов и, к тому же, он обладает наивысшим отрицательным потенциалом по отношению ко всем металлам. Используя этот материал в качестве анода, удалось достичь того, что литиевые элементы имеют наибольшее номинальное напряжение при минимальных габаритах и характеризуются самым высоким значением удельной плотности энергии по сравнению с источниками других типов. Общим является также и то, что, обладая самой большой удельной плотностью энергии, элементы этого типа в основном предназначены для работы с нагрузками, требующими небольшого или среднего разрядного тока. Возможно, что по этой причине, а также — из-за стоимости, они пока не смогли полностью вытеснить с рынка щелочные элементы, допускающие повышенные токи разряда. Но развитие литиевых элементов продолжается и производители этого вида продукции, например, такие известные компании, как EEMB, EVE Energy, выпускают элементы с большими разрядными токами от сотен миллиампер до нескольких ампер.

В группе литиевых элементов наиболее отлажено производство литий-диоксидмарганцевых (Li/MnO 2) и литий-диоксидсерных (Li/SO 2) элементов, поэтому они являются самыми массовыми и доступными по стоимости. Среди этой продукции имеются изделия, допускающие повышенные токи разряда. Это элементы, выполненные по так называемой спиральной технологии. При этой технологии анод изготавливается в виде спирали, чем достигается максимальная площадь поверхности взаимодействия между анодом и катодом и изделие способно на повышенную отдачу тока. Литий-диоксидмарганцевые элементы характеризуются малым током саморазряда, высокой надежностью и сроком хранения более 10 лет. Так называемые элементы «таблеточного» типа в основном изготавливаются именно этих двух электрохимических систем.

Некоторые наиболее востребованные литий-диоксидмарганцевые элементы приведены в таблице 2.

Таблица 2. Литий-диоксидмарганцевые элементы

Наименование Тип
корпуса
Рабочее напряжение, В Ном. емкость, мАч Ток
разряда, мА
Ток разряда
макс., мА
Размеры, мм Темпе-ратурный диапазон, °С Произ-водитель
пост. имп. диаметр высота
Цилиндрические с повышенным током разряда
CR14250SC 1/2АА 3,0 650 20 800 1500 14,0 25,0 -40…60 EEMB
CR14250 3,0 650 10 500 1500 14,5 25,0 -40…85 EVE
CR14505SC АА 3,0 1500 20 2000 2500 14,5 50,5 -40…60 EEMB
CR1405 3,0 1600 10 1500 3000 14,5 50,5 -40…85 EVE
CR17505SL А 3,0 2500 10 1500 3500 17,0 50,5 -40…85 EEMB
CR17505 3,0 2400 10 1500 3000 17,0 50,5 -40…85 EVE
CR26500SL С 3,0 5000 10 2000 3000 26,0 50,0 -40…85 EEMB
CR26500 3,0 5000 10 2000 3000 26,0 50,0 -40…85 EVE
CR34615SL D 3,0 10000 10 2000 3000 34,0 61,5 -40…85 EEMB
CR34615 3,0 10000 10 2000 3000 34,0 61,5 -40…85 EVE
Таблеточного типа
CR1620 3,0 70 0,2 2 10 16 2,0 -20…70 EEMB
CR1620 3,0 70 0,1 3 8 16 2,0 -20…70 EVE
CR2025 3,0 150 0,4 3 15 20 2,5 -20…70 EEMB
CR2025 3,0 160 0,2 3 15 20 2,5 -20…70 EVE
CR2032 3,0 210 0,4 3 15 20 3,2 -20…70 EEMB
CR2032 3,0 225 0,2 3 15 20 3,2 -20…70 EVE
Цилиндрические повышенной емкости
CR14505BL AA 3,0 1800 0,5 10 100 14,5 50,5 -40…85 EEMB
CR17335BL 2/3A 3,0 1800 1,0 10 100 17,0 33,5 -40…85 EEMB

Здесь и далее по тексту номенклатура, указанная в таблицах, приведена в ограниченном объеме. Для более полной информации по всей выпускаемой продукции необходимо обращаться непосредственно на сайт производителя или в КОМПЭЛ.

Элементы с электрохимической системой «литий-диоксид серы» обладают достаточно высокой удельной мощностью и работоспособны в диапазоне температур 55…70°С; разрядное напряжение составляет 2,6…2,9 В (в зависимости от плотности тока). Напряжение имеет очень хорошую стабильность при разряде по сравнению с литий-диоксид марганцевым элементом до тех пор, пока элемент не разрядится полностью. Затем напряжение резко уменьшается (рисунок 2).

Рис. 2.

К недостаткам этого вида элементов можно отнести повышенное внутреннее давление и опасность сильного нагрева при коротком замыкании. Для предотвращения нежелательных последствий, которые могут возникнуть в этом случае, в корпусе элемента устанавливается специальный предохранитель, сбрасывающий при нагреве лишнее давление.

Несколько типов литиевых элементов системы «литий-диоксид серы» рассмотрены в таблице 3.

Таблица 3. Литий-диоксидсерные элементы

Наименование Тип
корпуса
Рабочее напряжение, В Номинальная емкость, мАч Ток
разряда, мА
Ток разряда
макс., мА
Размеры, мм Температурный диапазон, °С Производитель
пост. имп. диаметр высота
LSS14505 АА 2,9 1100 3 100 200 14,5 50,5 -54…71 EEMB
LSS26500 C 2,9 3500 30 1000 2000 26,5 50 -54…71 EEMB
LSS34615 D 2,9 8000 50 2000 5000 34 61,5 -54…71 EEMB

Все литиевые элементы по отношению к другим типам элементов обладают рядом очень важных преимуществ (таблица 1). Основное из них — упоминавшаяся ранее высокая удельная плотность энергии. Удельная плотность энергии — это отношение энергии элемента к его массе или объему, выраженное в Ватт-часах на единицу массы или объема (Вт.ч/кг или Вт.ч/дм 3). Источники тока с большей удельной плотностью энергии при равных габаритных размерах с источниками других типов позволяют обеспечить питанием нагрузку в течение более продолжительного времени. Как видно из таблицы 1 и рисунка 2, самым высоким значением удельной плотности энергии обладают литий-тионилхлоридные элементы (Li/SOCl 2). Кроме того, элементы этого типа имеют широкий рабочий температурный диапазон -55…85°С, что допускает их эксплуатацию в жестких условиях, и обладают очень хорошей стабильностью напряжения при разряде (рисунок 2). Отдельно нужно выделить наличие элементов с расширенным рабочим температурным диапазоном в области верхнего значения -20…125/150°С, а также — элементов, допускающих повышенные токи разряда (таблица 4).

Таблица 4. Литий-тионилхлоридные элементы

Наименование Тип
корпуса
Рабочее напряжение, В Номинальная емкость, мАч Ток
разряда, мА
Ток разряда
макс., мА
Размеры, мм Температурный диапазон, °С Производитель
пост. имп. диаметр высота
Повышенной емкости цилиндрические
ER10450 AAA 3,6 700 1 5 30 10,2 46,2 -55…85 EEMB
ER14250 1/2АА 3,6 1200 0,5 40 80 14,5 25,2 -55…85 EEMB
ER14250 3,6 1200 0,5 15 50 14,5 25,4 -55°…85 EVE
ER14505 АA 3,6 2400 2 100 200 14,5 50,5 -55…85 EEMB
ER14505 3,6 2700 1 40 150 14,5 50,5 -55…85 EVE
ER26500 С 3,6 9000 2 230 400 26,0 50,0 -55…85 EEMB
ER26500 3,6 8500 4 150 300 26,0 50,0 -55…85 EVE
ER341245 DD 3,6 36000 2 450 1000 34,0 124,5 -55…85 EEMB
ER341245 3,6 35000 10 420 500 33,1 124,5 -55…85 EVE
С повышенным током разряда цилиндрические
ER14505M AA 3,6 1800 10 500 1000 14,5 50,5 -55…85 EEMB
ER14505M 3,6 2000 4 400 1000 14,7 50,7 -40…85 EVE
ER26500M C 3,6 6500 10 1000 2000 26,2 50 -55…85 EEMB
ER26500M 3,6 6000 10 1000 2000 26,2 50 -40…85 EVE
ER34615M D 3,6 14000 10 2000 3000 34 60,5 -55…85 EEMB
ER34615M 3,6 13000 15 2000 4000 33,1 61,5 -40…85 EVE
С расширенным температурным диапазоном цилиндрические
ER14505S AA 3,6 1600 100 100 14,5 50,5 -20…125 EEMB
ER14505S 3,6 1600 нд нд 14,7 50,5 -40…150 EVE
ER26500S C 3,6 4800 35 100 26,2 50 -20…150 EEMB
ER26500S 3,6 6000 нд нд 26,9 50 -40…150 EVE
ER34615S D 3,6 10500 35 200 34 60,5 -20…150 EEMB
ER34615S 3.6 13000 нд нд 33,9 61,5 -40…150 EVE

Следующим важным преимуществом группы литиевых элементов является сверхмалый ток саморазряда (потеря 1…2,5% емкости в год). Благодаря столь малой потере емкости рассматриваемые типы элементов могут храниться в обычных условиях больше 10 лет, при этом емкость снизится всего на 10%. Самым малым током саморазряда, как видно из таблицы 1, обладают литий-тионилхлоридные элементы.

Долгий срок хранения и низкий ток саморазряда литий-тионилхлоридных элементов — это, конечно, неоспоримый плюс. Такое свойство обеспечивается тонкой изолирующей пленкой хлорида лития, которая возникает на поверхности литиевого электрода. Пленка образуется из-за химической реакции, возникающей еще во время сборки элемента. Образовавшаяся пленка прекращает химическую реакцию и резко уменьшает ток саморазряда, в результате этого имеем элемент с длительным сроком хранения практически без ухудшения параметров. Но есть и отрицательная сторона этого процесса. Если к элементу подключить нагрузку, потребляющую достаточно большой ток, то на батарее (нагрузке) в начальный момент времени окажется пониженное напряжение около 2,3…2,7 В, хотя на холостом ходу напряжение будет нормальным 3,3…3,6 В. Это происходит из-за того, что образовавшаяся изолирующая пленка не может разрушиться мгновенно и препятствует протеканию тока (обладает достаточно высоким сопротивлением). В процессе хранения элемента толщина изолирующей пленки увеличивается. Этот процесс называется пассивацией литиевого элемента. Пассивации подвержены литиевые элементы всех производителей без исключения.

Степень пассивации элемента зависит от времени и условий его хранения, а также — от режима эксплуатации. Чем больше период хранения и выше температура, тем толще пленка. Значительные негативные проявления эффекта пассивации начинаются после 5…6 месяцев хранения в нормальных условиях, либо после длительного использования элемента в микротоковом режиме (единицы микроампер и менее).

В реальной жизни часто встречаются устройства, работающие большую часть времени в ждущем режиме (например, какие-либо датчики). Приборы длительное время потребляют ток в несколько микроампер или десятков микроампер, а по свершению некоторого события должны включиться в режим среднего или большого энергопотребления. В этом случае, если в приборе установлена батарея после длительного хранения, или режим микропотребления длился очень долго, то переход в режим повышенного энергопотребления может и не произойти. Элемент выдаст пониженное напряжение.

Пониженное напряжение в меньшей степени влияет на устройства с малым потреблением тока. В момент подключения такой нагрузки напряжение на элементе снизится незначительно, и устройство будет работать, однако процесс пассивации продолжится, и в какой-то момент времени устройство может отключиться, или его работа станет неустойчивой. Для таких устройств не следует использовать энергоемкие литиевые источники тока.

При подключении нагрузки, потребляющей несколько миллиампер (средняя нагрузка), произойдет понижение напряжения и затем, через некоторое время, оно восстановится до нормального значения. Это объясняется тем, что при потреблении указанного тока имеющаяся пленка с течением времени разрушится, а постоянно протекающий или протекающий с достаточно короткими промежутками времени ток будет препятствовать ее образованию.

Пониженное напряжение на элементе, потребляющем большой ток (десятки миллиампер), в момент подключения нагрузки может нарушить его работу, или же он просто не включится. Замена элемента на новый (только что купленный и не бывший в эксплуатации) ситуацию не исправит, а проверка нагрузки покажет, что с ее схемой все в порядке. Получается следующая ситуация: установили новый элемент питания — и прибор перестал работать!

Подобный случай встречался в практике автора данной статьи. При работе на одном из предприятий пришлось подготавливать некоторое изделие к серийному выпуску. Изделие состояло из нескольких отдельных устройств. Одно из устройств имело особенность — его рабочий режим был импульсным, с достаточно большим током потребления (пульт дистанционного управления). В качестве источника питания в изделие разработчиком были заложены литиевые элементы. В то время подобные элементы были не особенно распространены, а их «особенности» не были широко известны, и отдел закупок приобрел партию похожих по основным параметрам элементов (по напряжению и емкости). Эти элементы были поставлены в устройство и оказалось, что у всех устройств, уже проверенных и настроенных, резко сократилась дальность связи. Посчитали, что элементы долго хранились и потеряли часть емкости (они на самом деле достаточно долго хранились). Была закуплена еще одна партия элементов (более «свежих») — кардинально ситуация не улучшилась. Когда стали разбираться — выяснилось, что данные элементы обладают эффектом пассивации. В дальнейшем проблему смогли устранить некоторой доработкой схемы (подключили несколько электролитических конденсаторов параллельно элементу питания). Первые включения устройства стали происходить за счет части энергии, накопленной в конденсаторах, и одновременно с этим импульсы тока депассивировали элемент.

Литий-тионилхлоридные элементы перед использованием необходимо депассивировать, т. е. разрушить изолирующую пленку хлорида лития импульсом тока. На рисунке 3 показан график, поясняющий депассивацию литий-тионилхлоридных первичных источников тока.

Рис. 3.

На графике имеется четыре области:

  • I- область показывает напряжение на элементе в отсутствие нагрузки (холостой ход; 3,6В);
  • II- область иллюстрирует, что при подключении нагрузки в момент времени t0 возникает импульс тока, который приводит к резкому уменьшению напряжения на элементе до уровня 2,4В;
  • III- область: происходит разрушение основной части площади изолирующей пленки и напряжение на элементе возрастает до 3В. При достижении напряжения 3,0В с подключенной нагрузкой считается, что депассивация выполнена;
  • IV- область: происходит дальнейшее разрушение оставшейся части площади пленки и напряжение постепенно повышается до номинального значения.

Для активации ни в коем случае нельзя делать короткое замыкание выводов элемента питания. Подобный метод приведет к выходу элемента из строя. Существуют рекомендованные производителем максимально допустимые значения тока и времени депассивации. В таблице 5 указаны режимы депассивации для некоторых элементов компании EEMB.

Таблица 5. Параметры для депассивации литий-тионилхлоридных элементов EEMB

Максимальное значение тока депассивации для литий-тионилхлоридных элементов можно определить по правилу:

макс. импульсный ток > макс. ток депассивации < 2 х макс. рабочий ток

При длительном хранении литий-тионилхлоридных элементов можно предупредить образование пленки хлорида лития с помощью регулярной кратковременной нагрузки элемента током не менее 1,25% от номинальной емкости в течение трех секунд один раз в сутки.

Следует отметить, что процессу пассивации подвержены практически все литиевые источники тока, но у литий-тионилхлоридных он выражен наиболее остро, а эти источники, ввиду их непревзойденной удельной плотности энергии, очень востребованы на рынке.

Батареи и аккумуляторы, например, компании EEMB, выпускаются с различными выводами для разных вариантов монтажа на печатную плату. Каждая версия выводов имеет свои буквенные обозначениядополнительные символы в конце наименования. Некоторые, наиболее популярные из них, приведены на рисунках 4 и 5. На рисунке 4 показаны варианты выводов элементов питания «таблеточного» типа, а на рисунке 5 — цилиндрического типа. Если в наименовании отсутствует кодировка выводов — это означает, что элементы питания предназначены для установки в обычные держатели батарей (стандартный элемент).

Рис. 4.

Рис. 5.

Говоря о достоинствах литиевых источниках тока, следует сказать и об их недостатках. К недостаткам литиевых элементов следует отнести пока еще относительно высокую стоимость по сравнению с другими типами элементов, обусловленную высокой ценой лития и особыми требованиями к производству (необходимость инертной атмосферы, очистка неводных растворителей), а также пассивацию. Следует также учитывать, что некоторые литиевые элементы при вскрытии взрывоопасны. Однако, это не должно препятствовать использованию данного вида источников тока. Необходимо только помнить об особенностях их применения.

Получение технической информации, заказ образцов, поставка — e-mail:

GS05E-USB — источник питания от MEAN WELL для USB-устройств

В настоящее время трудно представить нашу повседневную жизнь без носимых устройств с USB-портом: мобильные телефоны, электронные книги, планшетники и др. Подобные устройства питаются от химического источника тока, как правило, аккумулятора и, соответственно, требуют периодической подзарядки. Если рядом всегда имеется какое-либо устройство, подключаемое к сети 220 В/50 Гц с USB портом (ноутбук, стационарный компьютер или другое устройство), то проблемы с зарядкой носимого устройства не возникает. Но зачем специально подключать к сети достаточно мощное устройство, прилично расходующее электроэнергию для собственного питания, если можно обойтись специальным экономичным источником питания?

С другой стороны, часто бывает ситуация когда носимое устройство разрядилось в самый неподходящий момент, а другое USB устройство, подключаемое к сети, от которого можно бы было подзарядить «севший» аккумулятор, отсутствует. Для исключения подобных нежелательных ситуаций компания MEAN WELL разработала специальный источник питания GS05E-USB для устройств с USB-портом или устройств питающихся от USB-порта. Данный источник на выходе обеспечивает ток 1 А при напряжении 5 В; соответствует классу II по защите от поражения электрическим током (двойная изоляция) и характеризуется крайне малым энергопотреблением без нагрузки (менее 0,3 Вт).

Устройство имеет компактный размер и небольшую массу, что позволяет его носить с собой и всегда иметь возможность (при наличии 220 В/50 Гц) подключить разряженное USB-устройство, чтобы им воспользоваться.

Основные параметры:

  • Диапазон входного напряжения 90…264В
  • Выходное напряжение 5В
  • Выходной ток 1А
  • Выход USB
  • Размер 42x30x20мм
О компании EVE Energy

Фирма «Тайм-1 » реализует различные литиевые элементы питания от ведущих производителей аккумуляторных батарей – французской компании SAFT , израильской компании TADIRAN и китайского производителя

Литиевые элементы питания SAFT, TADIRAN, MINAMOTO широко используются в различных отраслях деятельности: космической и авиационной индустриях, медицине, военной и морской промышленности, гражданском электроснабжении и др. Благодаря своей надежности и отменному качеству литиевые элементы питания по достоинству оценены производителями и установщиками систем безопасности и комплексного освещения. Кроме реализации элементов питания для всевозможных электрических устройств наша компания имеет производственные мощности, которые позволяют под индивидуальные требования заказчика, на основе имеющихся компонентов, изготовить оригинальные элементы питания любой конфигурации.

Получить профессиональную консультацию наших менеджеров или заказать необходимые элементы питания Вы можете по телефону или ICQ (раздел «Контакты»).


Saft


Tadiran

Из истории создания литиевых элементов питания

Источники тока с более высокими энергетическими характеристиками и расширенным диапазоном эксплуатационных возможностей были созданы при отказе от водных электролитов. Наибольшие успехи были достигнуты при разработке литиевых элементов с органическим и твердым электролитом.

Первые работы по использованию лития в качестве анодного материала в источниках тока появились в начале XIX века, но реальное развитие они получили в 1960-х годах. Исследовались источники тока с твердофазными (MnO2 , CuО, I2, CFx, FeS2 и многие другие) и жидкофазными катодными материалами (SO2 и SOCl2).

Литиевые элементы в настоящее время в ряде областей техники успешно конкурируют с более дешевыми элементами с водным электролитом. Их используют в часах, фотокамерах, калькуляторах, для защиты памяти интегральных схем, в измерительных приборах и медицинском оборудовании, там, где требуется высокая сохранность и стабильность рабочего напряжения в течение многих лет эксплуатации.

Разработаны и мощные источники тока , способные к отдаче импульсов большой энергии даже после 10-12 лет хранения.

К герметизации литиевых элементов предъявляются повышенные требования, так как должна быть исключена возможность не только вытекания электролита, но и попадания внутрь воздуха и паров воды, из-за чего возникает опасность пожара или взрыва элемента. Высокая реактивность лития, влияние влажности воздуха на состояние электродов и электролита определяют и повышенные сложности при изготовлении элементов, необходимость проведения технологических операций в герметичных блоках с атмосферой аргона и «сухих » помещениях.

Литиевые элементы, цилиндрические и дисковые, выпускаются в габаритах элементов традиционных электрохимических систем. Поэтому нужно быть внимательным, чтобы не допускать ошибок случайных замен элементов с рабочим напряжением 1,5 В на литиевые, напряжение которых значительно больше. Многие компании часто стремятся уменьшить эту опасность и поставляют элементы с приваренными нестандартными выводами в виде плоских лепестков, аксиальных иглообразных штырьков для впаивания элементов в схему и т. д.

Источники тока на основе системы литий/тионилхлорид (Li/SOСl2)

Элементы системы Li/SOСl2 с жидкофазным катодом обладают наилучшими удельными характеристиками среди литиевых первичных источников тока (до 600 Втч/кг и 1100 Втч/дм3). НРЦ элементов - 3,67 В, рабочее напряжение 3,3-3,5 В в зависимости от тока разряда.

Элементы работоспособны в диапазоне температур от -60 до + 85 °С, некоторые до +130 °С. Конструкция элементов Li/SOСl2 аналогична конструкции элементов Li/SO2, но тионилхлорид значительно агрессивнее других электролитов, поэтому обеспечение их пожаро- и взрывобезопасности потребовало больших усилий и от разработчиков, и от технологов.

Анализ механизмов, которые могут приводить к взрывам элементов Li/SOСl2, показывает, что безопасность эксплуатации этих источников тока определяется и соотношением емкостей электродов, и концентрацией электролита, и используемыми сепараторами, и многими другими факторами. Наиболее потенциально опасными являются переразряды при больших плотностях тока. Взрывы могут быть вызваны образующимися при этом дендритами лития и мелкодисперсным литием, который выделяется на катоде и может в присутствии угля вступить в химическое взаимодействие с электролитом с выделением большого количества тепла. Лимитируемые анодом элементы достаточно устойчивы при переразряде: будучи переполюсованными, они могут очень долго сохранять стабильное напряжение (на уровне -1 В) без каких-либо последствий. Элементы катодно-лимитированные выдерживают переполюсование много хуже. Разгерметизация происходит значительно раньше: при переразряде до нескольких С и тем быстрее, чем больше плотность тока.

При низкой температуре (порядка -50 °С) элементы отдают емкость в несколько раз меньше номинальной. Если затем элементы переносятся в теплое помещение, разряд продолжается, и может иметь место значительный их разогрев за счет разложения промежуточных продуктов реакции вплоть до взрыва.

Для увеличения безопасности эксплуатации элементы могут быть снабжены аварийными клапанами для сброса газа, плавкими предохранителями, тепловыми выключателями.

При проектировании батарей из элементов рекомендуется использовать внешнюю диодную защиту каждого из них, но следует помнить, что она должна функционировать только при разряде. В процессе длительного хранения обратные токи неотключенных диодов могут привести к полному исчерпанию емкости элементов.

Срок хранения элементов системы Li/SOСl2 - до 10 лет при саморазряде 1,5-2 % в год при 20 °С. При длительном хранении этих элементов может наблюдаться провал напряжения, которое затем медленно (в течение нескольких минут) восстанавливается до рабочего. Глубина и продолжительность начального спада напряжения увеличиваются при пониженных температурах.

Главным источником питания на сегодняшний день остаются литиевые батарейки. Чтобы они прослужили долго, стоит учитывать их особенности и применять в соответствующей аппаратуры. Для выбора правильного размера и емкости стоит учитывать особенности устройства.

Содрежание

Что из себя представляет литиевые батарейки

В корпусе находится несколько соединённых элементов. Два контакта выводятся наружу, чтобы подсоединиться к потребляющему устройству. Элемент постоянного тока обеспечивает работу многих устройств.

На корпусе элемента питания указывается название бренда, обозначение к какому виду принадлежит - «ALKALINE», «LITHIUM». На ней же прописывается технические составляющие: вольтаж, емкость.

Согласно правилам Международной Электрической Комиссии литиевые батарейки маркируются латинскими буквами CR. Затем указывается емкость.

Чем отличаются литиевые батарейки от солевых или щелочных

  • Солевые относятся к самым слабым. Они подходят устройствам, не требующих большого заряда, долговременных нагрузок. Например, используются для пульта управления, таймера, калькулятора. Срок хранения солевых приборов составляет 1-3 года.
  • Куда больший срок годности у щелочных - 3-5 лет. Их можно отнести к среднему запасу прочности. В народе их прозвали «алкалиновыми», их часто используют для детских игрушек, фонариков, плееров.
  • Дольше всех работают и выдерживают нагрузки литиевые батарейки. Их используют для более мощных устройств – фотоаппаратов, приборов для измерения давления.

Все вышеперечисленные источники питания отличаются сроком службы, емкостью, поэтому подходят разным устройствам.


Солевая R6, Щелочная LR6, Литиевая FR6

Разновидности и типоразмеры литиевых батарей

Литиевые батарейки имеют несколько маркировок: CR, FR, Li-FeS2 и отличаются по форме – могут быть цилиндрическими или в форме параллелепипеда, дисков. Выпускаются элементы питания разного типоразмера, согласно существующей классификации США:

  • CR. Таблетки или монетки;
  • CR2 и . Цилиндрические бочонки;
  • CR-V9 (Lithium PP3). – Крона;
  • FR03 (AAA). В народе называются ;
  • FR6 (AA). .

Состоит литиевая батарейка из разных компонентов. Определить этот показатель можно просто на корпусе, где указан также ее размер, емкость, класс, напряжение.

Преимущества и недостатки литиевых батареек

Элементы питания такого типа отличаются большой емкостью на единицу массы. В ее составе сразу же несколько компонентов - катод, анод. Разделены материалы диафрагмой, пропитанной органическим электролитом.

К преимуществам можно отнести:

  • Легкость изделия.
  • Долгий срок хранения.
  • Поскольку в составе отсутствует вода, то и батарея устойчива к температурным перепадам.
  • Постоянное напряжение.
  • При разных показателях разрядного тока обеспечиваются стабильные характеристики.
  • Высокая энергоемкость и энергоплотность.
  • Емкость не зависит от тока нагрузки, подходит для мощных устройств.
  • Простота в уходе и применении.

Единственный недостаток такого элемента питания заключается в высокой стоимости. Но лучше один раз заплатить, чем постоянно менять их. Важно следовать рекомендациям по эксплуатации источников питания.

Можно ли заряжать литиевые батарейки

Аккумуляторы от обычных батареек отличаются указателем емкости, которая измеряется в миллиамперах в час. Напряжение обычной батарейки составляет 1,6 вольт, а аккумуляторной 1,2 v.


CR123

Обычные литиевые батарейки нельзя заряжать. В лучшем случае все закончиться обычным шипящим звуком, в другой ситуации возможен взрыв батареи, сопровождающийся всеми вытекающими последствиями. Изделие предназначено для однократного использования, не пытайтесь восстановить.