Сайт о телевидении

Сайт о телевидении

» » Доработка логического анализатора из китая. Логический анализатор приставка к ПК

Доработка логического анализатора из китая. Логический анализатор приставка к ПК

Довольно часто в домашних электронных поделках возникает необходимость посмотреть тот или иной сигнал, причем достаточно его цифрового представления - что передает МК по I2C, правильно ли настроен ШИМ и т.п. Если на работе есть хороший осциллограф, то покупать его для дома - слишком дорогое удовольствие, особенно, когда необходимость возникает лишь от случая к случаю.
В последнее время появились недорогие (в пределах $50) логические анализаторы, однако меня от их покупки всегда останавливало одна мысль: штука то предельно простая, почему бы не сделать её своими руками из подручных материалов?
В данной статье я расскажу, как сделать простой логический анализатор с минимальными финансовыми затратами - все что нужно это отладочная плата Stm32F4Discovery .

Логический анализатор (далее ЛА) – устройство предназначенное, для записи, просмотра и анализа сигналов в цифровых схемах. Подобно осциллографу, ЛА подключается одним или несколькими щупами к анализируемой схеме, но в отличие от осциллографа фиксирует только два состояния сигнала «0» и «1». Важной функцией ЛА является способность автоматически расшифровывать записанные сигналы, например, разобрать обмен данными по шине I2C или SPI. Также ЛА отличаются бОльшим, по сравнению с осциллографами, количеством анализируемых линий: от 8 в простых анализаторах до сотен в промышленных образцах.
Описываемый здесь проект - LogicDiscovery - это SUMP -совместимый логический анализатор, выполненный в формате USB-приставки к ПК. Он обладает довольно скромными характеристиками: 20MHz, 16 каналов, 24кБ памяти. Однако, этого достаточно для весьма большого круга задач: анализ линий UART, I2C, SPI (в пределах нескольких мегагерц), параллельных шин, измерение временных характеристик сигналов и т.п.

Приступим

Итак, все, что нам понадобится это:
  • Отладочная плата Stm32F4Discovery . От 500 рублей в московской рознице, а может она уже лежит в ваших закромах? Подойдет и любая другая плата на STM32F4 или STM32F2, но тогда придется подправить исходники.
  • Несколько проводов, для подключения к анализируемой схеме.
  • Прошивка, готовая к употреблению лежит на Google.Code . Там же находятся исходники.
  • Кроме того нужен клиент для ПК, рекомендую OLS .
Клиент написан на Java, поэтому полученное решение не зависит от ОС. Теоретически вы можете использовать любой SUMP-совместимый клиент, однако ниже я буду описывать работу именно с этой программой.
Stm32F4Discovery питается от порта mini-USB, через который она и прошивается. Для использования функций ЛА плата подключается к ПК через порт micro-USB. Чтобы запитать плату от этого же порта соединяем перемычкой пины PA9 и 5V . PA9 подключен напрямую к Vbus порта micro-USB, а 5V это вход стабилизатора формирующего питание для платы. Для проверки работы соедините порты PA2 и PD0 . На PA2 формируется тестовый сигнал, а PD0 это первый вход ЛА.

Плата опознается ПК как COM-порт, для Linux драйвера стандартные и должны уже быть в ядре, для Win драйвера скачиваются с сайта ST. После того как плата опозналась можно запускать клиент и приступать к работе.
Но сначала ложка дёгтя.

Ограничения

В проекте используется открытый протокол SUMP . Данный протокол изначально разрабатывался для ЛА на базе ПЛИС, и поскольку в части записи входных сигналов и анализа потока данных микроконтроллеры по-прежнему им уступают, нам будут доступны не все функции реализованные в клиенте:
  • Максимальная частота записи – 20МГц, в оригинале до 200МГц
  • RLE-сжатие и фильтрация шумов не поддерживаются.
  • Нельзя выбрать произвольные группы каналов, только первую (8 каналов), либо первую + вторую (16 каналов).
  • Триггеры работают не по значению, а по фронту (впрочем, на мой взгляд, это уже достоинство).
  • Нет поддержки расширенных (Complex) триггеров.
Эти ограничения следует иметь ввиду при настройке клиента. Тот ничего не знает об этих ограничениях и позволит выбрать любые настройки. Полученный результат в этом случае будет некорректным.

Пользуемся

Запускаем клиент через файл run.bat или run.sh, в зависимости от используемой ОС. О функциях клиента можно почитать на его страничке, здесь я опишу процесс получения первых сэмплов и те настройки, которые попадают под ограничения.

В меню «Capture» , выбирая пункт «Begin capture» , открываем окно настроек записи. На первой странице в поле ««Analyzer port» выбираем порт, на котором сидит наш ЛА, больше ничего менять не нужно. Кнопкой ««Show device metadata» можно проверить наличие связи:

На второй странице указываем параметры захвата. Первые два пункта не трогаем,
«Sampling rate» не выше 20МГц (если указать больше – плата все равно использует 20МГц, но клиент будет думать, что используется указанное значение, в общем, ерунда получится).
«Channel groups» : 0 – используем одну группу каналов, это линии PD0-PD7, либо 0 и 1 – используем две группы каналов - линии PD0-PD15.
«Recording size» : для одной группы каналов – любое значение, для двух групп – не более 12kB (клиент предупредит, если в данном поле выбрано неверное значение).
Чекбоксы на данной странице не трогаем, они не поддерживаются:

Страница «Triggers» - самое интересное. Первый флажок ставим, чтобы просто включить триггеры.
«Before/After ratio» позволяет указать, в процентном соотношении, сколько данных сохранить до срабатывания буфера. После нажатия «Capture» ЛА сразу начинает запись данных, складывая их в циклический буфер, а по срабатыванию триггера отсчитывает указанный в поле After процент времени и отправляет данные на ПК.
«Type» - только «Simple», «Complex» - не поддерживается.
«Mode» - только «Parallel».
«Mask» - это те линии, на которых триггер будет ожидать перепад сигнала, поставте флаг в нулевой позиции для срабатывания по линии PD0
«Value» - фронт сигнала, по которому будет происходить срабатывание триггера. Флажок установлен – передний фронт. Флажок снят – задний:

Для проверки работы соедините порты PD0 и PA2 (на данном порту выводится тестовый сигнал UART) перемычкой.

Вот и все, нажимаем «Capture» и смотрим на полученный сигнал (Ctrl+F - обзорный масштаб):

Если ничего не происходит, значит, вы выставили срабатывание триггера на неправильные линии, или сигнала вовсе нет - проверьте настройки и подключение платы. Триггер можно запустить вручную, нажатием User button (синяя кнопка).

Техника безопасности

Помните: вы подключаетесь напрямую к портам микроконтроллера! Никакой защиты, кроме встроенных в МК диодов на плате нет. Поэтому сначала удостоверьтесь что, изучаемый сигнал имеет максимальное напряжение 3.3В, в крайнем случае 5В, но тогда желательно добавить между источником сигнала и ЛА защитный резистор.

При подключении к анализируемой схеме не забывайте сначала соединять земли, и только уже потом сигнальные линии. Особенно, когда анализируемая схема питается от своего источника питания, а не от того же ПК, к которому подключен ЛА.

В данной статье представлен простой логический анализатор работающий с оболочками USBee v1.1.57 и Logic v1.1.15. Собран на микросхеме распространенной микросхеме CY7C68013A фирмы Cypress. У меня имелась готовая плата с этой микросхемой заказанная с сайта Aliexpress. Вот такой у нее вид:

Хотел на ней сделать LPT порт, но потом надобность в нем пропала и так она валялась не востребованная. Понадобился мне простой логический анализатор. Решено было сделать на этой плате. На просторах интернета много схем на этой микросхеме. Требовалось добавить буфер для передачи данных, сделать защиту по входу и возможность выбора с какой оболочкой работать. Плата расширения одевается сверху основной платы. Скажу сразу, что схема, плата, прошивки и все необходимое для работы с данным логическим анализатором находится внизу статьи. В качестве буфера использовалась микросхема 74LVC4245 , можно применить 74LVC8T245A они полностью идентичны. Защитную функцию по входу выполняют диодные сборки BAV99. И так родилась такая схема:


Джампером J1 выбираем направление передачи данных. В замкнутом состоянии на прием данных, в разомкнутом на передачу. Есть такая оболочка как USBee AX Test Pod . Она содержит много тестовых утилит при помощи нее можно протестировать работу собранного устройства. Одна из возможностей это генерировать на выводах XP3 разные частоты. Правда самому задавать их нельзя. Выводится сразу 8 разных частот. Также можно устанавливать в 0 или 1 выходы и много других тестов. Джампером XP5 выбираем с какой оболочкой будем работать USBee v1.1.57 или Logic v1.1.15 . В U2 и U3 соответственно загружается прошивка для разных оболочек. Джампер XP4 это защита от записи. Нужен будет при старте оболочки от Logic. Джампером J2 задаем напряжение входных уровней. Если он замкнут то входной уровень сигнала должен быть 3.3 V. Так же предусмотрена возможность установить уровень сигнала такой каким напряжение питается диагностируемое устройство но не больше 5V. Для этого размыкаем J2 и напряжение питания диагностируемой платы подаем на 10 вывод XP3. Так же не забываем соединить между собой общий провод анализатора с диагностируемой платой. Для начала нам нужно доработать основную плату т.е удалить микросхему памяти 24C128.

У моей платы также не было соединения GND USB разъема и GND CY7C68013A пришлось соединить проводком.


Больше никаких изменений делать не нужно.

Теперь изготавливаем нашу платку размером 41мм х 58мм. В итоге получаем такой результат:



Соединяем две платы:



Для начала работы нам нужно прошить микросхемы памяти. Для этого устанавливаем утилиту от Cypress CySuiteUSB_3_4_7_B204 . Убираем с платы джампер XP5 и подключаем плату к ПК, в диспетчере устройств появится неизвестное устройство.


Устанавливаем драйвера из файла Driver_Cypress_win7 win8. Указываем диспетчеру, что искать драйвера в этой папке. Система сама установит необходимый драйвер. Появится новое устройство в контроллерах USB:


Запускаем установленную программку Control Center . Перед нами откроется окно, где в верху должно быть наше устройство.

Выбираем вкладку Option затем EZ-USB Interface:

Откроется следующее окно:


Ничего здесь не меняем. Нам нужна только кнопка S EEPROM. Джампером XP5 выбираем одну их микросхем памяти. Нажимаем S EEPROM и указываем где хранится наша прошивка. Выбираем прошивку в зависимости от типа памяти и нажимаем "Открыть". Цифры в конце названия прошивки указывают для какого типа памяти прошивка. Для 24C01 нужно выбирать USBeeAX_01, а для 24C02 USBeeAX_01.


Пойдет процесс заливки информации. При удачной прошивке должно быть сообщение как на скриншоте. Кол-во байт может отличаться в зависимости от выбранной прошивке.


Нажимаем кнопку сброс на плате и видим в диспетчере устройств новое неопознанное устройство. Устанавливаем драйвера. В автоматическом режиме драйвера не установятся. В ручном режиме указываем, что установить с диска и выбираем драйвер из папки Driver Cypress win7_win8. У меня на Windows 8.1 заработало с драйвером EZ-USB FX1 No EEPROM (3.4.5.000).

15 января 2013 в 13:59

LogicDiscovery - простой логический анализатор

  • DIY или Сделай сам

Довольно часто в домашних электронных поделках возникает необходимость посмотреть тот или иной сигнал, причем достаточно его цифрового представления - что передает МК по I2C, правильно ли настроен ШИМ и т.п. Если на работе есть хороший осциллограф, то покупать его для дома - слишком дорогое удовольствие, особенно, когда необходимость возникает лишь от случая к случаю.
В последнее время появились недорогие (в пределах $50) логические анализаторы, однако меня от их покупки всегда останавливало одна мысль: штука то предельно простая, почему бы не сделать её своими руками из подручных материалов?
В данной статье я расскажу, как сделать простой логический анализатор с минимальными финансовыми затратами - все что нужно это отладочная плата Stm32F4Discovery .

Логический анализатор (далее ЛА) – устройство предназначенное, для записи, просмотра и анализа сигналов в цифровых схемах. Подобно осциллографу, ЛА подключается одним или несколькими щупами к анализируемой схеме, но в отличие от осциллографа фиксирует только два состояния сигнала «0» и «1». Важной функцией ЛА является способность автоматически расшифровывать записанные сигналы, например, разобрать обмен данными по шине I2C или SPI. Также ЛА отличаются бОльшим, по сравнению с осциллографами, количеством анализируемых линий: от 8 в простых анализаторах до сотен в промышленных образцах.
Описываемый здесь проект - LogicDiscovery - это SUMP -совместимый логический анализатор, выполненный в формате USB-приставки к ПК. Он обладает довольно скромными характеристиками: 20MHz, 16 каналов, 24кБ памяти. Однако, этого достаточно для весьма большого круга задач: анализ линий UART, I2C, SPI (в пределах нескольких мегагерц), параллельных шин, измерение временных характеристик сигналов и т.п.

Приступим

Итак, все, что нам понадобится это:
  • Отладочная плата Stm32F4Discovery . От 500 рублей в московской рознице, а может она уже лежит в ваших закромах? Подойдет и любая другая плата на STM32F4 или STM32F2, но тогда придется подправить исходники.
  • Несколько проводов, для подключения к анализируемой схеме.
  • Прошивка, готовая к употреблению лежит на Google.Code . Там же находятся исходники.
  • Кроме того нужен клиент для ПК, рекомендую OLS .
Клиент написан на Java, поэтому полученное решение не зависит от ОС. Теоретически вы можете использовать любой SUMP-совместимый клиент, однако ниже я буду описывать работу именно с этой программой.
Stm32F4Discovery питается от порта mini-USB, через который она и прошивается. Для использования функций ЛА плата подключается к ПК через порт micro-USB. Чтобы запитать плату от этого же порта соединяем перемычкой пины PA9 и 5V . PA9 подключен напрямую к Vbus порта micro-USB, а 5V это вход стабилизатора формирующего питание для платы. Для проверки работы соедините порты PA2 и PD0 . На PA2 формируется тестовый сигнал, а PD0 это первый вход ЛА.

Плата опознается ПК как COM-порт, для Linux драйвера стандартные и должны уже быть в ядре, для Win драйвера скачиваются с сайта ST. После того как плата опозналась можно запускать клиент и приступать к работе.
Но сначала ложка дёгтя.

Ограничения

В проекте используется открытый протокол SUMP . Данный протокол изначально разрабатывался для ЛА на базе ПЛИС, и поскольку в части записи входных сигналов и анализа потока данных микроконтроллеры по-прежнему им уступают, нам будут доступны не все функции реализованные в клиенте:
  • Максимальная частота записи – 20МГц, в оригинале до 200МГц
  • RLE-сжатие и фильтрация шумов не поддерживаются.
  • Нельзя выбрать произвольные группы каналов, только первую (8 каналов), либо первую + вторую (16 каналов).
  • Триггеры работают не по значению, а по фронту (впрочем, на мой взгляд, это уже достоинство).
  • Нет поддержки расширенных (Complex) триггеров.
Эти ограничения следует иметь ввиду при настройке клиента. Тот ничего не знает об этих ограничениях и позволит выбрать любые настройки. Полученный результат в этом случае будет некорректным.

Пользуемся

Запускаем клиент через файл run.bat или run.sh, в зависимости от используемой ОС. О функциях клиента можно почитать на его страничке, здесь я опишу процесс получения первых сэмплов и те настройки, которые попадают под ограничения.

В меню «Capture» , выбирая пункт «Begin capture» , открываем окно настроек записи. На первой странице в поле ««Analyzer port» выбираем порт, на котором сидит наш ЛА, больше ничего менять не нужно. Кнопкой ««Show device metadata» можно проверить наличие связи:

На второй странице указываем параметры захвата. Первые два пункта не трогаем,
«Sampling rate» не выше 20МГц (если указать больше – плата все равно использует 20МГц, но клиент будет думать, что используется указанное значение, в общем, ерунда получится).
«Channel groups» : 0 – используем одну группу каналов, это линии PD0-PD7, либо 0 и 1 – используем две группы каналов - линии PD0-PD15.
«Recording size» : для одной группы каналов – любое значение, для двух групп – не более 12kB (клиент предупредит, если в данном поле выбрано неверное значение).
Чекбоксы на данной странице не трогаем, они не поддерживаются:

Страница «Triggers» - самое интересное. Первый флажок ставим, чтобы просто включить триггеры.
«Before/After ratio» позволяет указать, в процентном соотношении, сколько данных сохранить до срабатывания буфера. После нажатия «Capture» ЛА сразу начинает запись данных, складывая их в циклический буфер, а по срабатыванию триггера отсчитывает указанный в поле After процент времени и отправляет данные на ПК.
«Type» - только «Simple», «Complex» - не поддерживается.
«Mode» - только «Parallel».
«Mask» - это те линии, на которых триггер будет ожидать перепад сигнала, поставте флаг в нулевой позиции для срабатывания по линии PD0
«Value» - фронт сигнала, по которому будет происходить срабатывание триггера. Флажок установлен – передний фронт. Флажок снят – задний:

Для проверки работы соедините порты PD0 и PA2 (на данном порту выводится тестовый сигнал UART) перемычкой.

Вот и все, нажимаем «Capture» и смотрим на полученный сигнал (Ctrl+F - обзорный масштаб):

Если ничего не происходит, значит, вы выставили срабатывание триггера на неправильные линии, или сигнала вовсе нет - проверьте настройки и подключение платы. Триггер можно запустить вручную, нажатием User button (синяя кнопка).

Техника безопасности

Помните: вы подключаетесь напрямую к портам микроконтроллера! Никакой защиты, кроме встроенных в МК диодов на плате нет. Поэтому сначала удостоверьтесь что, изучаемый сигнал имеет максимальное напряжение 3.3В, в крайнем случае 5В, но тогда желательно добавить между источником сигнала и ЛА защитный резистор.

При подключении к анализируемой схеме не забывайте сначала соединять земли, и только уже потом сигнальные линии. Особенно, когда анализируемая схема питается от своего источника питания, а не от того же ПК, к которому подключен ЛА.

Что такое логический анализатор? Это такой прибор… для логического анализа))) Сразу приходит на ум фильм с Робертом Де Ниро

Зачем я его купил? Ну конечно же занимать логическим анализом))). А точнее анализом логических уровней разных микроконтроллеров и периферии к ним. То что принято называть реверс инжинирингом.

Недавно разбирался с двумя ультразвуковыми датчиками DYP-ME007Y, . И, когда в очередной раз захотелось посмотреть, какие сигналы бегают от датчика к микроконтроллеру и обратно, вспомнил о таком чудном приборе. И тут подвернулся ОН по цене менее $6.




На входе анализатора стоят токоограничивающие резисторы 100 Ом, подтягивающие к земле резисторы 100 КОм и конденсаторы 5 пФ. Все честно, как в описании.

Самое вкусное в данном анализаторе это то, что подходит .
Доступны версии для OSX, Linux и Windows на 32 и 64 бита.
Saleae Logic 1.2.3 под Windows 7 заработал с пол пинка, софт запустился, железо опозналось, не смотря на надпись версии «Beta».

Интересные плюшки в программе Saleae Logic

Триггер срабатывания записи логической последовательности на каждый канал

  • На изменения логического уровня в «0»
  • На изменение логического уровня в «1»

  • На положительный импульс заданной длительности
  • На отрицательный импульс заданной длительности
Подсчет статистических показаний по текущему измерению

Декодирования протоколов: Async Serial, I2C, SPI, Hide, 1-Wire, Atmel SWI, BISS C, CAN, DMX-512, HD44780, HDLC, HGMI CEC, I2S/ PCM, JTAC, LIN, MDIO, Manchester, Midi, Modbus, PS/2 Keyboard/Mouse, SMBus, SWD, Simple Parallel, UNI/O, USB LS и FS

Ведение журнала по декодируемому протоколу

Позанимаемся логическим анализом.

Для начала разбираюсь с ультразвуковыми датчиками, о которых писал в начале обзора.

Если один работает точно по даташиту: короткий импульс на «триггер» запускает ультразвуковой импульс и по длительности эхо измеряется расстояние. То второй и третий (с мигающим светодиодом) примерно раз в 100мс без каких либо внешних пинков сам мерит расстояние и посылает его на скорости 9600 в виде четырех байт (включая контрольную сумму). Программа Saleae Logic позволяет включить декодирование сигнала последовательной шины в последовательность байт. Датчики второго типа отлично работают с отключенным выводом «TRIG», хотя может и ждут какой нибудь команды на этом входе, но сие даже волшебный приборчик не покажет.

Далее захотелось посмотреть ШИМ сигнал Aтмеги 168? Включил все шесть каналов поддерживающих PWM на разный уровень и с удивлением обнаружил, что частота двух каналов ШИМ отличается от 4-х других. Задействованы разные таймеры?



Далее посмотрел работу шины I2C. И опять софт нормально справился с декодированием.Можно видеть пакеты записи в регистры при работе

Подключил ленту с - анализатор нормально проглотил 800КГц и успешно расшифровал протокол DFX-512

RF-приемник на 315МГц, подключенный напрямую к анализатору, получил сигнал с , и выдал манчестреский код. После подбора скорости манчестреский код превращается умной программкой в последовательность байт.

Интересно, а как с точностью измерения временных интервалов? Точного генератора импульсов у меня под рукой не оказалось, но Ардуиновская tone(1000) на 1000Гц


и tone(20000) на 20КГц дают довольно точный результат.

Небольшой итог

Логический анализатор очень нужная и полезная вещь для тех, кто занимается раскапыванием китайской периферии к микроконтроллерам (Назовем красиво - реверс инжинирингом)
Из достоинств данной железки хочу отметить:
  • Привлекательную цену
  • Совместимость с довольно удобным софтом Saleae Logic
  • Защита на входе в виде шинного формирователя LVC245A
  • Малые габариты
Явных недостатков у этой железки для себя не нашел. Жаль, что я не приобрел логический анализатор раньше -сколько времени бы я сэкономил во многих проектах.

Сейчас стоит задача анализа логических уровней на 12В, давно хотел разобраться с датчиками ABS своего авто. Думаю, что резисторный делитель и 5-ти вольтовый стабилитрон на каждом входе будет в самый раз.

Ардуино – уникальный микроконтроллер, позволяющий вам создать любое устройство, ограниченное лишь фантазией инженера. Сегодня мы поговорим об одном из таких проектов и разберём антенный анализатор на Ардуино, а также все нюансы, с которыми вам придётся столкнуться при его пайке и программировании.

На самом деле анализатор спектра на Ардуино – достаточно простой проект, но идеально подойдёт новичкам и тем, кто хочет добавить данное устройство к себе в инструментарий. Давайте разберём, что такое логический анализатор на Аrduino, и какие подводные камни вас ожидают при его проектировке и пайке.

Для начала необходимо спроектировать то, что мы будем паять. Логический анализатор является простым инструментом, вся его задача состоит в считывании и анализе двоичного кода (цифрового сигнала), передаваемого при помощи подачи электричества.

Иными словами, каждые 5 вольт подаваемые на устройство – это единичка, отсутствие таковых – это ноль. Такой двоичный код используется при кодировке данных и во многих устройствах, в том числе на основе Ардуино. Читаться начинает, как правило, с единицы. А чтобы проверить свой проект с двоичной кодировкой, вам и пригодится логический анализатор.

Проще всего испробовать устройство на шине I2C, что применяется в большинстве электронных устройств и по сей день. Чтобы разобраться, что нам нужно проектировать, давайте рассмотрим главные характеристики устройства:

  1. 4 канала для логического анализа поступающих сигналов.
  2. Вариативность частоты сигналов вплоть до 400 кГц, такой промежуток охватит большую часть современных приборов, кроме специализированных.
  3. Напряжение на входе должно составлять до +5 Вольт, как уже описывалось, это стандарт, принимаемый за единицу (наличие сигнала).
  4. LED дисплей для отображения информации. Особенно изощрённые программисты могут купить пару светодиодов и выстроить собственный дисплей нужной им диагонали, но для всех остальных – написание ПО под такое устройство будет слишком трудоёмким, и окажется лишним шагом. Поэтому здесь мы рассмотрим вариант устройства именно с ЖК дисплеем.
  5. 4 аккумулятора для питания, на 1.2 В при максимальном напряжении в 4.8 Вольт.
  6. Оперативная память. Желательно взять две разновидности – скоростную (3.6мс на сигнал) и низкоскоростную (36 с), такое решение позволит охватить весь диапазон сигналов.
  7. Панель управления или пара кнопок.
  8. Любая оболочка под крепление конструкции. Можно распечатать на 3-Д принтере, можно взять ненужный пластиковый коробок или обойтись вовсе без корпуса. Здесь мы не будем давать советов, устройство работает, что в оболочке, что без, выбор остаётся за вами.

Для питания вам необходимо подобрать именно аккумуляторы, так как 4 батарейки по 1.5 Вольта могут вывести Ардуино из строя и сжечь плату. Не говоря уже об опасности для ЖК дисплея. Поэтому не поскупитесь, и возьмите качественные комплектующие. Ведь качество конечного изделия равно параметру худшего его компонента.

Не забудьте добавить к конечной схеме переключатель S1, который будет использоваться для подачи питания и отключения прибора, чтобы аккумуляторы не разряжались попросту.

Потребуются и специальные подтягивающие резисторы, которые позволят исключить ложные данные, что могут появляться из-за электромагнитного поля пальцев сигнальных щупов. В результате помехи и искажения на цифровых входах будут минимальны.

Светодиод вы можете взять по своему желанию, он необходим для индикации наличия цифрового сигнала, и вполне заменяется ПО под ЖК дисплей. Такое решение удобно лишь в качестве показателя записи цифровых сигналов в память, но вы, в любом случае, будете активировать прибор вручную, так что подобная индикация, при необходимости, может быть убрана.

Рекомендуемая периферия для создания логического анализатора на базе микроконтроллера Arduino

Из всего вышеописанного вы уже успели составить примерный список периферии для покупки, но давайте уточним этот момент. В логическом анализаторе вам потребуется:

  1. Сам микроконтроллер Ардуино. Не имеет разницы, какой вы подберёте, это лишь повлияет на конечный размер устройства. ПО под любую версию выглядит одинаково. На фото выше был использована плата .
  2. ЖК дисплей. Если у вас имеется старый кнопочный телефон, можете снять с него, и устроить «безотходное» производство.
  3. Резисторы различной ёмкости.
  4. Датчик тока.
  5. 4 аккумулятора.
  6. Светодиод или парочка.
  7. Карта памяти, но это опционально.

Помимо этого, вам, естественно, потребуется паяльник, припой и прочие принадлежности. Лучше заранее найти место, где вы будете всё это собирать. А если работаете с паяльником впервые, изучите правила пожарной безопасности и особенности его эксплуатации, чтобы по 10 раз не перепаивать каждую деталь.

Программирование МК Arduino при реализации проекта «логический анализатор»

Благодаря популярности Ардуино существуют уже готовые библиотеки и функции для логических анализаторов на этом МК. Вам остаётся лишь подобрать подходящую и переписать программный код под своё устройство. Ведь платы, датчики и прочие вводные у всех различаются, и чтобы ваше устройство работало без проблем, придётся подогнать чужой код под свои запросы. Если же вы не хотите лишний раз заморачиваться и у вас есть опыт программирования на С++, можете воспользоваться любой полюбившейся средой.

Код для схемы на фото выше может быть таким:

/*********************************** 128 by 64 LCD Logic Analyzer 6 channel and 3Mb/s By Bob Davis Uses Universal 8bit Graphics Library, http://code.google.com/p/u8glib/ Copyright (c) 2012, [email protected] All rights reserved. ********************************************/ #include "U8glib.h" // 8Bit Com: D0..D7: 8,9,10,11,4,5,6,7 en=18, di=17,rw=16 //U8GLIB_ST7920_128X64_4X u8g(8, 9, 10, 11, 4, 5, 6, 7, 18, 17, 16); // **** NOTE **** I Moved the three control pins !!! U8GLIB_ST7920_128X64_4X u8g(8, 9, 10, 11, 4, 5, 6, 7, 1, 2, 3); int Sample; int Input=0; int OldInput=0; int xpos=0; void u8g_prepare(void) { u8g.setFont(u8g_font_6x10); u8g.setFontRefHeightExtendedText(); u8g.setDefaultForegroundColor(); u8g.setFontPosTop(); } void DrawMarkers(void) { u8g.drawFrame (0,0,128,64); u8g.drawPixel (20,1); u8g.drawPixel (40,1); u8g.drawPixel (60,1); u8g.drawPixel (80,1); u8g.drawPixel (100,1); u8g.drawPixel (20,62); u8g.drawPixel (40,62); u8g.drawPixel (60,62); u8g.drawPixel (80,62); u8g.drawPixel (100,62); } void draw(void) { u8g_prepare(); DrawMarkers(); // wait for a trigger of a positive going input Input=digitalRead(A0); while (Input != 1){ Input=digitalRead(A0); } // collect the analog data into an array // No loop is about 50% faster! Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; Sample=PINC; // display the collected analog data from array for(int xpos=0; xpos<128; xpos++) { u8g.drawLine (xpos, ((Sample&B00000001)*4)+4, xpos, ((Sample&B00000001)*4)+4); u8g.drawLine (xpos, ((Sample&B00000010)*2)+14, xpos, ((Sample&B00000010)*2)+14); u8g.drawLine (xpos, ((Sample&B00000100)*1)+24, xpos, ((Sample&B00000100)*1)+24); u8g.drawLine (xpos, ((Sample&B00001000)/2)+34, xpos, ((Sample&B00001000)/2)+34); u8g.drawLine (xpos, ((Sample&B00010000)/4)+44, xpos, ((Sample&B00010000)/4)+44); u8g.drawLine (xpos, ((Sample&B00100000)/8)+54, xpos, ((Sample&B00100000)/8)+54); } } void setup(void) { pinMode(A0, INPUT); pinMode(A1, INPUT); pinMode(A2, INPUT); pinMode(A3, INPUT); pinMode(A4, INPUT); pinMode(A5, INPUT); // assign default color value if (u8g.getMode() == U8G_MODE_R3G3B2) u8g.setColorIndex(255); // RGB=white else if (u8g.getMode() == U8G_MODE_GRAY2BIT) u8g.setColorIndex(3); // max intensity else if (u8g.getMode() == U8G_MODE_BW) u8g.setColorIndex(1); // pixel on, black } void loop(void) { // picture loop // u8g.firstPage(); do { draw(); } while(u8g.nextPage()); // rebuild the picture after some delay delay(100); }

Не забудьте скачать библиотеки для работы с Ардуино. А также учитывать, что вывод идёт на ЖК экран. По окончанию написания софта просто подгрузите его на плату с помощью специального переходника под usb.

Может случиться так, что из-за особенностей отображения информации на ЖК дисплее, вам не хватит постоянной памяти устройства. В таком случае имеет смысл докупить флешку и прикрепить её к системе. Благо делается это достаточно просто, а всё, что вам потребуется – специальный переходник под ваш форм-фактор физического накопителя.