Сайт о телевидении

Сайт о телевидении

» » Способ моделирования канала связи

Способ моделирования канала связи

Для того чтобы дать математическое описание канала, необходимо и достаточно указать множество сигналов, которые могут быть поданы на его вход, и для любого допустимого входного сигнала задать случайный процесс (сигнал) на выходе канала. Задание процесса понимается в том смысле, как это было определено

в § 2.1, и сводится к заданию в той или иной форме распределения вероятностей.

Точное математическое описание любого реального канала обычно оказывается весьма сложным. Вместо этого пользуются упрощенными математическими моделями, которые позволяют выявить все важнейшие закономерности реального канала, если при построении модели учтены наиболее существенные особенности канала и отброшены второстепенные детали, мало влияющие на ход связи.

Рассмотрим наиболее простые и широко используемые математические модели каналов, начав с непрерывных каналов, поскольку они во многом предопределяют и характер дискретных каналов.

Идеальный канал без помех представляет собой линейную цепь с постоянной передаточной функцией, обычно сосредоточенной в ограниченной полосе частот. Допустимы любые входные сигналы, спектр которых лежит в определенной полосе частот и имеющие ограниченную среднюю мощность (либо пиковую мощность Рпик). Эти ограничения характерны для всех непрерывных каналов, и в дальнейшем они оговариваться не будут. Заметим, что если мощность сигнала не ограничивать, но считать конечной, то множество допустимых сигналов образует векторное пространство, конечномерное (при определенных ограничениях на длительность и ширину спектра) либо бесконечномерное (при более слабых ограничениях). В идеальном канале выходной сигнал при заданном входном оказывается детерминированным. Эта модель иногда используется для описания кабельных каналов. Однако, строго говоря, она непригодна для реальных каналов, в которых неизбежно присутствуют, хотя бы и очень слабые, аддитивные помехи.

Канал с аддитивным гауссовским шумом, в котором сигнал на выходе

где входной сигнал; постоянные; гауссовский аддитивный шум с нулевым математическим ожиданием и заданной корреляционной функцией. Чаще всего рассматривается белый шум либо квазибелый (с равномерной спектральной плотностью в полосе спектра сигнала

Обычно запаздывание не учитывают, что соответствует изменению начала отсчета времени на выходе канала.

Некоторое усложнение этой модели получается, если коэффициент передачи и запаздывание считать известными функциями времени:

Такая модель удовлетворительно описывает многие проводные каналы, радиоканалы при связи в пределах прямой видимости, а

также радиоканалы с медленными общими замираниями, при которых можно надежно предсказать значения

Канал с неопределенной фазой сигнала отличается от предыдущего тем, что в нем запаздывание является случайной величиной. Для узкополосных сигналов, с учетом (2.69) и (3.2), выражение (3.29) при постоянном и случайных можно представить в виде

где преобразование Гильберта от случайная начальная фаза. Распределение вероятностей предполагается заданным, чаще всего его задают равномерным на интервале от 0 до Эта модель удовлетворительно описывает те же каналы, что и предыдущая, если фаза сигнала в них флуктуирует. Такая флуктуация вызывается небольшими изменениями протяженности канала, свойств среды, в которой проходит сигнал, а также фазовой нестабильностью опорных генераторов.

Однолучевой гауссовский канал с общими замираниями (флуктуациями амплитуд и фаз сигнала) также описывается формулой (3.30), но множитель К, как и фаза считаются случайными процессами. Иными словами, случайными будут квадратурные компоненты

При изменении квадратурных компонент во времени принимаемое колебание

Как отмечалось на с. 94, одномерное распределение коэффициента передачи может быть рэлеевским (3.25) или обобщенным рэлеевским (3.26). Такие каналы называют соответственно каналами с рэлеевскими или с обобщенными рэлеевскими замираниями. В более общем случае имеет четырехпараметрическое распределение . Такую модель называют обобщенной гауссовской. Модель однолучевого канала с замираниями достаточно хорошо описывает многие каналы радиосвязи в различных диапазонах волн, а также некоторые другие каналы.

Линейный канал со случайной передаточной функцией и гауссовским шумом представляет собой дальнейшее обобщение. В талом канале выходное колебание выражается через входной сигнал и случайную импульсную реакцию канала

Эта модель достаточно универсальна как для проводной, так и для радиосвязи и описывает каналы с рассеянием во времени по частоте. Часто рассеянию во времени канала можно приписать дискретный характер (модель многолучевого канала) и вместо (3.33) пользоваться представлением

где число лучей в канале; квадратурные компоненты передаточной функции канала для луча, которые в пределах спектра узкополосного сигнала практически не зависят от со.

Канал с рассеянием времени и по частоте задан полностью, если помимо корреляционной функций шума задана статистика случайной импульсной реакции канала (или передаточной функции или статистика квадратурных компонент по всем лучам. В зависимости от значений входящих сюда параметров в таком канале могут наблюдаться селективные замирания и эхо-сигналы.

Каналы со сложной аддитивной помехой (флуктуационной, сосредоточенной, импульсной) описываются любой из предыдущих моделей с добавлением дополнительных компонент аддитивной помехи. Их полное описание требует задания вероятностных характеристик всех компонент аддитивного шума, а также параметров канала. Эти модели наиболее полно отображают реальные каналы связи, однако редко используются в анализе ввиду их сложности.

Переходя к моделям дискретного канала, полезно напомнить, что в нем всегда содержится непрерывный канал, а также модем. Последний можно рассматривать как устройство, преобразующее непрерывный канал в дискретный. Поэтому, в принципе, можно вывести математическую модель дискретного канала из моделей непрерывного канала и модема. Такой подход часто является плодотворным, однако он приводит к довольно сложным моделям.

Рассмотрим простые модели дискретного канала, при построении которых свойства непрерывного канала и модема не учитывались. Следует, однако, помнить, что при проектировании системы связи имеется возможность варьировать в довольно широких пределах модель дискретного канала при заданной модели непрерывного канала путем изменения модема.

Модель дискретного канала содержит задание множества возможных сигналов на его входе и распределение условных вероятностей выходного сигнала при заданном входном. Здесь входным и выходным сигналами являются последовательности кодовых символов. Поэтому для определения возможных входных сигналов достаточно указать число различных символов (основание кода), а также длительность передачи каждого символа. Будем считать, что значение одинаково для всех символов, что выполняется в большинстве современных каналов. Величина определяет количество символов, передаваемых в единицу времени. Как указывалось в § 1.5, она называется технической скоростью и измеряется в бодах. Каждый символ, поступивший на вход канала, вызывает появление одного символа на выходе, так что техническая скорость на входе и выходе канала одинакова.

В общем случае для любого должна быть указана вероятность того, что при подаче на вход канала любой заданной последовательности кодовых символов на выходе появится некоторая реализация случайной последовательности Кодовые символы обозначим числами от 0 до что позволит производить над ними арифметические операции. При этом все -последова-тельности (векторы), количество которых равно образуют -мерное конечное векторное пространство, если «сложение» понимать как поразрядное суммирование по модулю и аналогично определить умножение на скаляр (целое число). Для частного случая такое пространство было рассмотрено в § 2.6.

Введем еще одно полезное определение. Будем называть вектором ошибки поразрядную разность (разумеется, по модулю между принятым и переданным векторами. Это значит, что прохождение дискретного сигнала через канал можно рассматривать как сложение входного вектора с вектором ошибки. Вектор ошибки играет в дискретном канале примерно ту же роль, что и помеха в непрерывном канале. Таким образом, для любой модели дискретного канала можно записать, пользуясь сложением в векторном пространстве (поразрядным, по модулю

где случайные последовательности из символов на входе и выходе канала; случайный вектор ошибки, который в общем случае зависит от Различные модели отличаются распределением вероятностей вектора Смысл вектора ошибки особенно прост в случае двоичных каналов , когда его компоненты принимают значения 0 и 1. Всякая единица в векторе ошибок означает, что в соответствующем месте передаваемой последовательности символ принят ошибочно, а всякий нуль означает безошибочный прием символа. Количество ненулевых символов в векторе ошибок называется его весом. Образио говоря модем, осуществляющий переход от непрерывного канала к дискретному, преобразует помехи и искажения непрерывного канала в поток ошибок.

Перечислим наиболее важные и достаточно простые модели дискретных каналов.

Симметричный канал без памяти определяется как дискретный канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью и правильно с вероятностью причем в случае ошибки вместо переданного символа может быть с равной вероятностью принят любой другой символ. Таким образом, вероятность того, что принят символ если был передан равна

Термин «без памяти» означает, что вероятность ошибочного приема символа не зависит от предыстории, т. е. от того, какие символы передавались до него и как они были приняты. В дальнейшем, для сокращения, вместо «вероятность ошибочного приема символа» будем говорить «вероятность ошибки».

Очевидно, что вероятность любого -мерного вектора ошибки в таком канале

где I - количество ненулевых символов в векторе ошибки (вес вектора ошибки). Вероятность того, что произошло I каких угодно ошибок, расположенных как угодно на протяжении последовательности длины определяется формулой Бернулли

где биномиальный коэффициент, равный числу различных сочетаний I ошибок в блоке длиной

Эту модель называют также биномиальным каналом. Она удовлетворительно описывает канал, возникающий при определенном выборе модема, если в непрерывном канале отсутствуют замирания, а аддитивный шум белый (или, по крайней мере, квазибелый). Вероятности переходов в двоичном симметричном канале схематически показаны в виде графа на рис. 3.3.

Рис. 3.3. Переходные вероятности в двоичном симметричном канале

Рис. 3.4. Переходные вероятности в двоичном симметричном канале со стиранием

Рис. 3.5. Переходные вероятности в двоичном несимметричном канале

Симметричный канал без памяти со стиранием отличается от предыдущего тем, что алфавит на выходе канала содержит дополнительный символ, обозначаемый знаком Этот символ появляется тогда, когда 1-я решающая схема (демодулятор) не может надежно опознать переданный символ. Вероятность такого отказа от решения или стирания символа в данной модели постоянна и не зависит от передаваемого

символа. За счет введения стирания удается значительно снизить вероятность ошибки, иногда ее даже считают равной нулю. На рис. 3.4 схематически показаны вероятности переходов в такой модели.

Несимметричный канал без памяти характеризуется, как и предыдущие модели, тем, что ошибки возникают в нем независимо друг от друга, однако вероятности ошибок зависят от того, какой символ передается. Так, в двоичном несимметричном канале вероятность приема символа «1» при передаче символа «0» не равна вероятности приема «0» при передаче «1» (рис. 3.5). В этой модели вероятность вектора ошибки зависит от того, какая последовательность символов передается.

Марковский канал представляет собой простейшую модель дискретного канала с памятью. В ней вероятность ошибки образует простую цепь Маркова, т. е. зависит от того, правильно или ошибочно принят предыдущий символ, но не зависит от того, какой символ передается.

Такой канал, например, возникает, если в непрерывном канале с гауссовским шумом (с определенной или неопределенной фазой) используется относительная фазовая модуляция (см. ниже, § 4.5).

Канал с аддитивным дискретным шумом является обобщением моделей симметричных каналов. В такой модели вероятность вектора ошибки не зависит от передаваемой последовательности. Вероятность каждого вектора ошибки считается заданной и, вообще говоря, не определяется его весом. Во многих каналах из двух векторов с одинаковым весом более вероятным оказывается такой, в котором единицы расположены близко друг к другу, т. е. имеется тенденция к группированию ошибок.

Частным случаем такого канала является канал с переменным параметром (КПП). В этой модели вероятность ошибки для каждого символа является функцией некоторого параметра представляющего случайную последовательность, дискретную или непрерывную, с известными распределениями вероятностей, в частности с известной корреляционной функцией. Параметр может быть скалярным или векторным. Можно сказать, что определяет состояние канала. Такая модель имеет много разновидностей. Одной из них является модель Гильберта, в которой принимает лишь два значения - а вероятность ошибки при равна нулю, а при равна 0,5. Заданы вероятности переходов из состояния и наоборот. В таком канале все ошибки происходят при и поэтому очень тесно группируются. Существуют и более сложные модели КПП, например модель Попова - Турина. Они изучаются в специальных курсах. Память в КПП определяется интервалом корреляции параметра

Канал с неаддитивным шумом и с памятью. Канал с межсимвольной интерференцией. Вероятность ошибки в нем зависит от передаваемых символов, как и в модели несимметричного канала без памяти, но не от того (или не только от того) символа, для которого определяется вероятность ошибки, а от символов, которые передавались до него.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Дискретный канал и его параметры

Дискретный канал - канал связи, используемый для передачи дискретных сообщений.

Состав и параметры электрических цепей на входе и выходе ДК определены соответствующими стандартами. Характеристики могут быть экономичными, технологичными и техническими. Основными являются технические характеристики. Они могут быть внешними и внутренними.

Внешние - информационные, технико-экономические, технико-эксплуатационные.

На скорость передачи существует несколько определений.

Техническая скорость характеризует быстродействие аппаратуры входящих в состав передающей части.

где m i - основание кода в i-ом канале.

Информационная скорость передачи - связана с пропускной способностью канала. Она появляется с появлением и быстрым развитием новых технологий. Информационная скорость зависит от технической скорости, от статистических свойств источника, от типа КС, принимаемых сигналов и помех, действующих в канале. Предельным значением является пропускная способность КС:

где?F - полоса КС;

По скорости передачи дискретных каналов и соответствующих УПС принято подразделять на:

Низкоскоростные (до 300 бит/сек);

Среднескоростные (600 - 19600 бит/сек);

Высокоскоростные (более 24000 бит/сек).

Эффективная скорость передачи - количество знаков в единицу времени, предоставленных получателю с учетом непроизводительных затрат времени (время фазирования СС, время отводимое на избыточные символы).

Относительная скорость передачи:

Достоверность передачи информации - используется в связи, что в каждом канале имеются посторонние излучатели, которые искажают сигнал и затрудняют процесс определения вида передаваемого единичного элемента. По способу преобразования сообщений в сигнал помехи бывают аддитивные и мультипликативные. По форме: гармонические, импульсные и флуктуационные.

Помехи приводят к ошибкам в приеме единичных элементов, они случайны. В этих условиях вероятность характеризуется безошибочностью передачи. Оценкой верности передачи может служить отношение числа ошибочных символов к общему

Часто вероятность передатчика оказывается меньше требуемой, следовательно, принимают меры по увеличению вероятности ошибок, устранение принимаемых ошибок, включение в канал некоторых дополнительных устройств, которые уменьшают свойства каналов, следовательно, уменьшают ошибки. Улучшение верности связано с дополнительными материальными затратами.

Надежность - дискретный канал, как и любая ДС не может работать безотказно.

Отказом называют событие, заканчивающееся в полной или частичной утробе системы работоспособности. Применительно к системе передачи данных отказ - событие, вызывающее задержку принимаемого сообщения на время t зад >t доп. При этом t доп в разных системах различна. Свойство системы связи, обеспечивающее нормальное выполнение всех заданных функций называются надежностью. Надежность характеризуется средним временем наработки на отказ T о, средним временем восстановления T в, и коэффициентом готовности:

Вероятность безотказной работы показывает, с какой вероятностью система может работать без единого отказа.

2 . Модель частичного описания дискретного канала

Зависимость вероятности появления искаженной комбинации от ее длины n и вероятность появления комбинации длиной n с t ошибками.

Зависимость вероятности появления искаженной комбинации от ее длины n характеризуется как отношение числа искаженной комбинации к общему числу переданных кодовых комбинаций.

Эта вероятность является неубывающей величиной функции n. Когда n=1, то Р=Р ОШ, когда, Р=1.

В модели Пуртова вероятность вычисляется:

где б - показатель группирования ошибок.

Если б = 0, то пакетирование ошибок отсутствует и появление ошибок следует считать независимым.

Если 0.5 < б < 0.7, то это пакетирование ошибок наблюдается на кабельных линиях связи, т.к. кратковременные прерывания приводят к появлению групп с большой плотностью ошибок.

Если 0.3 < б < 0.5, то это пакетирование ошибок наблюдается в радиорелейных линиях связи, где наряду с интервалами большой плотности ошибок наблюдаются интервалы с редкими ошибками.

Если 0.3 < б < 0.4, то наблюдается в радиотелеграфных каналах.

Распределение ошибок в комбинациях различной длины оценивает и вероятность комбинаций длиной n c t наперед заданными ошибками.

Сравнение результатов вычисленных значений вероятностей по формулам (2) и (3) показывает, что группирование ошибок приводит к увеличению числа кодовых комбинаций, пораженных ошибками большей кратности. Также можно заключить, что при группировании ошибок уменьшается число искаженных кодовых комбинаций, заданной длины n. Это понятно также из чисто физических соображений. При одном и том же числе ошибок пакетирование приводит к сосредоточению их на отдельных комбинациях (кратность ошибок возрастает), а число искаженных кодовых комбинаций уменьшается.

3. Классификация дискретных каналов

Классификацию дискретных каналов можно проводить по различным признакам или характеристикам.

По передаваемому переносчику и сигналу каналу бывают (непрерывный сигнал - непрерывный переносчик):

Непрерывно-дискретный;

Дискретно-непрерывный;

Дискретно-дискретный.

Различают понятие дискретная информация и дискретная передача.

С математической точки зрения канал можно определить алфавитом единичных элементов на входе и выходе канала. Зависимость этой вероятности зависит от характера ошибок в дискретном канале. Если при передаче i-ого единичного элемента i=j - ошибок не произошло, если при приеме элемент принял новый элемент, отличающийся от j, то произошла ошибка.

Каналы, в которых P(a j /a i) не зависит от времени при любых i и j называются стационарные, в противном случае - нестационарные.

Каналы, в которых вероятность перехода не зависит от значения ранее принятого элемента, то это канал без памяти.

Если i не равно j, P(a j /a i)=const, то канал симметричен, в противном случае - несимметричен.

Большинство каналов являются симметричными и обладают памятью. Каналы космической связи симметричны, но не обладают памятью.

4 . Модели каналов

При анализе систем КС используют 3 основных модели для аналоговых и дискретных систем и 4 модели только для дискретных систем.

Основные математические модели КС:

Канал с аддитивным шумом;

Линейный фильтрованный канал;

Линейный фильтрованный канал и переменными параметрами.

Математические модели для дискретных КС:

ДКС без памяти;

ДКС с памятью;

Двоичный симметричный КС;

КС с двоичных источников.

В данной модели передаваемый сигнал S(t) подвергается влиянию добавочного шума n(t), который может возникнуть от посторонних электрических помех, электронных компонентов, усилителей или из-за явления интерференции. Данная модель применила к любому КС, но при наличие процесса затухания в суммарную реакцию необходимо добавить коэффициент затухания.

r(t)=бS(t)+n(t) (9)

Линейный фильтрованный канал применим для физических каналов содержащих линейные фильтры для ограничения полосы частот и устранения явления интерференции. с(t) является импульсной характеристикой линейного фильтра.

Линейный фильтрованный канал с переменными параметрами характерен специфическим физическим каналам, таким как акустический КС, ионосферные радиоканалы, которые возникают при меняющемся во времени передаваемом сигнале и описываются переменными параметрами.

Дискретные модели КС без памяти характеризуется входным алфавитом или двоичной последовательностью символов, а также набором входной вероятности передаваемого сигнала.

В ДКС с памятью в пакете передаваемых данных имеются помехи или канал подвергается воздействию замирания, то условная вероятность выражается как суммарная совместная вероятность всех элементов последовательности.

Двоичный симметричный КС является частным случаем дискретного канала без памяти, когда входными и выходными алфавитами могут быть только 0 и 1. Следовательно, вероятность имеют симметричный вид.

ДКС двоичных источников генерирует произвольную последовательность символов, при этом конечный дискретный источник определяется не только этой последовательностью и вероятность возникновения их, а также введением таких функций как самоинформация и математическое ожидание.

5 . Модуляция

дискретный модуляция сигнал

Сигналы формируются путем изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением. Этот процесс (изменения параметров носителя) принято называть модуляцией.

Общий принцип модуляции состоит в изменении одного или нескольких параметров несущего колебания (переносчика) f(t,б,в, …) в соответствии с передаваемым сообщением. Так если в качестве переносчика выбрано гармоническое колебание f(t)=Ucos(щ 0 t+ц), то можно образовать три вида модуляции: амплитудную (АМ), частотную (ЧМ) и фазовую (ФМ).

Формы сигналов при двоичном коде для различных видов дискретной модуляции

Амплитудная модуляция состоит в пропорциональном первичному сигналу x(t) изменении амплитуды переносчика U AM =U 0 +ax(t). В простейшем случае гармонического сигнала x(t)=XcosЩt амплитуда равна:

В результате имеем АМ колебание:

Графики колебаний x(t), u и u AM

Спектр АМ колебания

На рисунке 1.5 изображены графики колебаний x(t), u и u AM . Максимальное отклонение амплитуды U AM от U 0 представляет амплитуду огибающей U Щ =aX. Отношение амплитуды огибающей к амплитуде несущего (немодулированного) колебания:

m - называется коэффициентом модуляции. Обычно m<1. Коэффициент модуляции, выраженный в процентах, т.е. (m=100%) называют глубиной модуляции. Коэффициент модуляции пропорционален амплитуде модулирующего сигнала.

Используя выражения (12), выражение (11) записывают в виде:

Для определения спектра АМ колебания раскроем скобки в выражении(1.13):

Согласно (14) АМ колебание является суммой трех высокочастотных гармонических колебаний близких частот (поскольку Щ<<щ 0 или F<

Колебания несущей частоты f 0 с амплитудой U 0 ;

Колебания верхней боковой частоты f 0 +F;

Колебания нижней боковой частоты f 0 -F.

Спектр АМ колебания (14) приведен на рисунке 1.6. Ширина спектра равна удвоенной частоте модуляции: ?f AM =2F. Амплитуда несущего колебания при модуляции не изменяется; амплитуды колебании боковых частот (верхней и нижней) пропорциональны глубины модуляции, т.е. амплитуде X модулирующего сигнала. При m=1 амплитуды колебаний боковых частот достигают половины несущей (0,5U 0).

Несущее колебание никакой информации не содержит, и в процессе модуляции оно не меняется. Поэтому можно ограничиться передачей только боковых полос, что и реализуется в системах связи на двух боковых полосах (ДБП) без несущей. Больше того, поскольку каждая боковая полоса содержит полную информацию о первичном сигнале, можно обойтись передачей только одной боковой полосы (ОБП). Модуляция, в результате которой получаются колебания одной боковой полосы, называется однополосной (ОМ).

Очевидными достоинствами систем связи ДБП и ОБП являются возможности использования мощности передатчика на передачу только боковых полос (двух или одной) сигнала, что позволяет повысить дальность и надежность связи. При однополосной модуляции, кроме того, вдвое уменьшается ширина спектра модулированного колебания, что позволяет соответственно увеличить число сигналов, передаваемых по линии связи в заданной полосе частот.

Фазовая модуляция заключается в пропорциональном первичному сигналу x(t) изменении фазы ц переносчика u=U 0 cos(щ 0 t+ц).

Амплитуда колебания при фазовой модуляции не изменяется, поэтому аналитическое выражение ФМ колебания

Если модуляция осуществляется гармоническим сигналом x(t)=XsinЩt, то мгновенная фаза

Первые два слагаемых (1.17) определяют фазу немодулированного колебания, третье - изменение фазы колебания в результате модуляции.

Фазомодулированное колебание наглядно характеризуется векторной диаграммой рисунок 1.7, построенной на плоскости, вращающейся по часовой стрелке угловой частотой щ 0 . Немодулированному колебанию соответствует подвижный вектор U 0 . Фазовая модуляция заключается в периодическом изменении с частотой Щ повороте вектора U относительно U 0 на угол?ц(t)=aXsinЩt. Крайние положения вектора U обозначены U" и U"". Максимальное отклонение фазы модулированного колебания от фазы немодулированного колебания:

где M - индекс модуляции. Индекс модуляции М пропорционален амплитуде Х модулирующего сигнала.

Векторная диаграмма фазомодулированного колебания

Используя (18), перепишем ФМ колебание (16) как

u=U 0 cos(щ 0 t+ц 0 +MsinЩt) (19)

Мгновенная частота ФМ колебания

щ=U(щ 0 +MЩcosЩt) (20)

Таким образом, ФМ колебание в разные моменты времени имеет различные мгновенные частоты, отличающиеся от частоты несущего колебания щ 0 на величину?щ= MЩcosЩt, что позволяет рассматривать ФМ колебание как модулированное по частоте.

Частотная модуляция заключается в пропорциональном изменении первичному сигнала x(t) мгновенной частоты переносчика:

щ=щ 0 +ax(t) (21)

где a - коэффициент пропорциональности.

Мгновенная фаза ЧМ колебания

Аналитическое выражение ЧМ колебания с учетом постоянства амплитуды можно записать в виде:

Девиация частоты - максимальное ее отклонение от несущей частоты щ 0, вызванное модуляцией:

Аналитическое выражение этого ЧМ колебания:

Слагаемое (?щ Д /Щ)sinЩt характеризует изменение фазы, получающееся при ЧМ. Это позволяет рассматривать ЧМ колебание, как ФМ колебание с индексом модуляции

и записать его аналогично:

Из сказанного следует, что ФМ и ЧМ колебания имеют много общего. Так колебание вида (1.27) может быть результатом как ФМ, так и ЧМ гармоническим первичным сигналом. Кроме того, ФМ и ЧМ характеризуются одними и теми же параметрами (индексом модуляции М и девиацией частоты?f Д), связанными между собой одинаковыми соотношениями: (1.21) и (1.24).

Наряду с отмеченным сходством частотной и фазовой модуляции между ними имеется и существенное отличие, связанное с различным характером зависимости величин М и?f Д от частоты F первичного сигнала:

При ФМ индекс модуляции не зависит от частоты F, а девиация частоты пропорциональна F;

При ЧМ девиация частоты не зависит от частоты F, а индекс модуляции обратно пропорционален F.

6 . Структурная схема с РОС

Передача с РОС аналогична телефонному разговору в условиях плохой слышимости, когда один из собеседников, плохо расслышав какое-либо слово или фразу, просит другого повторить их еще раз, а при хорошей слышимости или подтверждает факт получения информации, или во всяком случае, не просит повторения.

Полученная по каналу ОС информация анализируется передатчиком, и по результатам анализа передатчик принимает решение о передаче следующей кодовой комбинации или о повторении ранее переданных. После этого передатчик передает служебные сигналы о принятом решении, а затем соответствующие кодовые комбинации. В соответствии с полученными от передатчика служебными сигналами приемник или выдает накопленную кодовую комбинацию получателю информации, или стирает ее и запоминает вновь переданную.

Виды системы с РОС: системы с ожиданием служебных сигналов, системы с непрерывной передачей и блокировкой, системы с адресным переносом. В настоящее время известны многочисленные алгоритмы работы систем с ОС. Наиболее распространенными являются системы: с РОС с ожиданием сигнала ОС; с безадресным повторением и блокировкой приемника с адресным повторением.

Системы с ожиданием после передачи комбинации либо ожидают сигнал с обратной связи, либо передают ту же кодовую комбинацию, но передачу следующей кодовой комбинации начинают только после получения подтверждения по ранее переданной комбинации.

Системы с блокировкой осуществляют передачу непрерывной последовательности кодовых комбинаций при отсутствии сигналов ОС по предшествующим S комбинациям. После обнаружения ошибок в (S+1)-й комбинации выход системы блокируется на время приема S комбинаций, в запоминающем устройстве приемника системы ПДС стираются S ранее принятых комбинаций, и посылается сигнал переспроса. Передатчик повторяет передачу S последних переданных кодовых комбинаций.

Системы с адресным повторением отличает то, что кодовые комбинации с ошибками отмечаются условными номерами, в соответствии с которыми передатчик производит повторную передачу только этих комбинаций.

Алгоритм защиты от наложения и потери информации. Системы с ОС могут отбрасывать либо использовать информацию, содержащуюся в забракованных кодовых комбинациях, с целью принятия более правильного решения. Системы первого типа получили название систем без памяти, а второго - системы с памятью.

На рисунке 1.8 представлена структурная схемы системы с РОС-ож. Функционирует системы с РОС-ож следующим образом. Поступающая от источника информации (ИИ), m - элементная комбинация первичного кода через логическую ИЛИ записывается в накопитель передатчика (НК 1). Одновременно с этим в кодирующем устройстве (КУ) формируются контрольные символы, представляющие собой контрольную последовательность блока (КПБ).

Структурная схема системы с РОС

Полученная n - элементная комбинация подается на вход прямого канала (ПК). С выхода ПК комбинация поступает на входы решающего устройства (РУ) и декодирующего устройства (ДКУ). ДКУ на основании m информационных символов, принимаемых из прямого канала, формирует свою контрольную последовательность блока. Решающее устройство сравнивает две КПБ (принимаемую из ПК и выработанную ДКУ) и принимает одно из двух решение: либо информационная часть комбинации (m-элементный первичный код) выдается получателю информации ПИ, либо стирается. Одновременно в ДКУ производится выделение информационной части и запись полученной m - элементной комбинации в накопитель приемника (НК 2).

Структурная схема алгоритма системы с РОС НП

В случае отсутствия ошибок или необнаруженных ошибок принимается решение о выдаче информации ПИ и устройство управления приемника (УУ 2) выдает сигнал, открывающий элемент И 2 , что обеспечивает выдачу m - элементной комбинации из НК 2 к ПИ. Устройством формирования сигнала обратной связи (УФС) вырабатывается сигнал подтверждения приема комбинации, который по обратному каналу (ОК) передается в передатчик. Если приходящий из ОК сигнал дешифрирован устройством декодирования сигнала обратной связи (УДС) как сигнал подтверждения, то на вход устройства управления передатчика (УУ 1) передатчика подается соответствующий импульс, по которому УУ 1 производит запрос от ИИ следующей комбинации. Логическая схема И 1 в этом случае закрыта, и комбинация, записанная в НК 1 , стирается при поступлении новой.

В случае обнаружения ошибок РУ принимает решение о стирании комбинации, записанной в НК 2 , при этом УУ 2 вырабатываются управляющие импульсы, запирающие логическую схему И 2 и формирующие в УФС сигнал переспроса. При дешифровании схемой УДС поступающего на его вход сигнала как сигнала переспроса, блок УУ 1 вырабатывает управляющие импульсы, с помощью которых через схемы И 1 , ИЛИ и КУ в ПК производится повторная передача комбинации, хранящейся в НК 1 .

Размещено на Allbest.ru

...

Подобные документы

    Основные динамические характеристики средств измерения. Функционалы и параметры полных динамических характеристик. Весовая и переходная характеристики средств измерения. Зависимость выходного сигнала средств измерения от меняющихся во времени величин.

    презентация , добавлен 02.08.2012

    Разработка измерительного канала контроля физического параметра технологической установки: выбор технических средств измерения, расчет погрешности измерительного канала, дроссельного устройства, расходомерных диафрагм и автоматического потенциометра.

    курсовая работа , добавлен 07.03.2010

    Основы измерения физических величин и степени их символов. Сущность процесса измерения, классификация его методов. Метрическая система мер. Эталоны и единицы физических величин. Структура измерительных приборов. Представительность измеряемой величины.

    курсовая работа , добавлен 17.11.2010

    реферат , добавлен 09.01.2015

    Структура и параметры МДП-транзистора с индуцированным каналом, его топология и поперечное сечение. Выбор длины канала, диэлектрика под затвором транзистора, удельного сопротивления подложки. Расчет порогового напряжения, крутизны характеристики передачи.

    курсовая работа , добавлен 24.11.2010

    Прямые и косвенные измерения напряжения и силы тока. Применение закона Ома. Зависимость результатов прямого и косвенного измерений от значения угла поворота регулятора. Определение абсолютной погрешности косвенного измерения величины постоянного тока.

    лабораторная работа , добавлен 25.01.2015

    Физические величины и их измерения. Различие между терминами "контроль" и "измерение". Штриховая мера длины IА-0–200 ГОСТ 12069–90. Параметры для оценки шероховатости. Назначение, типы и параметры угольников поверочных. Измерение деформаций и напряжений.

    контрольная работа , добавлен 28.05.2014

    Магнитометр как прибор для измерения характеристик магнитного поля и магнитных свойств веществ (магнитных материалов), его разновидности и функциональные особенности. Феррозонд: понятие и типы, структура и элементы, принцип действия, назначение.

    реферат , добавлен 11.02.2014

    Разработка измерительного канала для контроля расхода воды через водогрейный котел: выбор диафрагмы, установка дифманометра, учет погрешностей измерения. Расчет схемы автоматического моста КСМ-4, работающего в паре с термометром сопротивления ТСМ (50).

    курсовая работа , добавлен 07.03.2010

    Разработка измерительного канала измерительного канала, его метрологическое обеспечение. Выбор математической модели ИК расхода вещества. Функциональная, структурная схема ИК, условия его эксплуатации. Блок распределения унифицированного токового сигнала.

Полезно напомнить, что внутри дискретного канала всегда содержится непрерывный канал. Преобразование непрерывного канала в дискретный осуществляет модем. Поэтому в принципе можно вывести математическую модель дискретного канала из моделей непрерывного канала при заданном модеме. Такой подход часто является плодотворным, однако он приводит к сложным моделям.

Рассмотрим простые модели дискретного канала, при построении которых свойства непрерывного канала и модема не учитывались. Следует, однако, помнить, что при проектировании системы связи имеется возможность варьировать в довольно широких пределах модель дискретного канала при заданной модели непрерывного канала изменением модема.

Модель дискретного канала содержит задание множества возможных сигналов на его входе и распределение условных вероятностей выходного сигнала при заданном входном. Здесь входным и выходным сигналами являются последовательности кодовых символов. Поэтому для определения возможных входных сигналов достаточно указать число различных символов (основание кода), а также длительность передачи каждого символа. Будем считать значение одинаковым для всех символов, что выполняется в большинстве со

временных каналов. Величина определяет количество символов, передаваемых в единицу времени. Как указывалось в гл. 1, она называется технической скоростью и измеряется в бодах. Каждый символ, поступивший на вход канала, вызывает появление одного символа на выходе, так что техническая скорость на входе и выходе канала одинакова.

В общем случае для любых должна быть указана вероятность того, что при подаче на вход канала любой заданной последовательности кодовых символов на выходе появится некоторая реализация случайной последовательности Кодовые символы обозначим числами от 0 до что позволит производить над ними арифметические операции. При этом все -последовательности (векторы), число которых равно образуют мерное конечное векторное пространство, если "сложение" понимать как поразрядное суммирование по модулю и аналогично определить умножение на скаляр. Для частного случая такое пространство было рассмотрено в гл. 2.

Введём ещё одно полезное определение. Будем называть вектором ошибок поразрядную разность (разумеется, по модулю между принятым и переданным векторами. Это значит, что прохождение дискретного сигнала через канал можно рассматривать как сложение входного вектора с вектором ошибки. Вектор ошибки играет в дискретном канале примерно ту же роль, что и помеха в непрерывном канале. Таким образом, для любой модели дискретного канала можно записать, пользуясь сложением в векторном пространстве (поразрядным, по модулю

где и случайные последовательности из символов на входе и выходе канала; случайный вектор ошибки, который в общем случае зависит от Различные модели отличаются распределением вероятностей вектора Смысл вектора ошибки особенно прост в случае двоичных каналов когда его компоненты принимают значения 0 и 1. Всякая единица в векторе ошибок означает, что в соответствующем месте передаваемой последовательности символ принят ошибочно, а всякий нуль означает безошибочный приём символа. Число ненулевых символов в векторе ошибок называется его весом. Образно говоря, модем, осуществляющий переход от непрерывного канала к дискретному, преобразует помехи и искажения непрерывного канала в поток ошибок. Перечислим наиболее важные и достаточно простые модели дискретных каналов.

Постоянный симметричный канал без памяти определяется как дискретный канал, в котором каждый переданный кодовый символ может быть принят ошибочно с фиксированной вероятностью и правильно с вероятностью причём в случае ошибки вместо переданного символа может быть с равной вероятностью принят любой другой символ. Таким образом, вероятность того, что принят символ если был передан

Термин "без памяти" означает, что вероятность ошибочного приёма символа не зависит от предыстории, т.е. от того, какие символы передавались до него и как они были приняты. В дальнейшем, для сокращения, вместо "вероятность ошибочного приёма символа" будем говорить "вероятность ошибки".

Очевидно, что вероятность любого -мерного вектора ошибки в таком канале

где - число ненулевых символов в векторе ошибки (вес вектора ошибки). Вероятность того, что произошло ошибок, расположенных как угодно на протяжении последовательности длины определяется формулой Бернулли

где биномиальный коэффициент, равный числу различных сочетаний I ошибок в блоке длиной

Эту модель называют также биномиальным каналом. Она удовлетворительно описывает канал, возникающий при определённом выборе модема, если в непрерывном канале отсутствуют замирания, а аддитивный шум белый (или по крайней мере квазибелый). Нетрудно видеть, что вероятность появления ошибок в двоичной кодовой комбинации длины (кратному согласно модели (4.53) при

Вероятности переходов в двоичном симметричном канале схематически показаны в виде графа на рис. 4.3.

Постоянный симметричный канал без памяти со стиранием отличается от предыдущего тем, что алфавит на выходе канала содержит дополнительный символ, часто обозначаемый знаком "?". Этот символ появляется тогда, когда 1-я решающая схема (демодулятор) не может надёжно опознать переданный символ. Вероятность такого отказа от решения или стирания символа в данной модели постоянна и не зависит от передаваемого символа. За счёт введения стирания удаётся значительно снизить вероятность ошибки, иногда её даже считают равной нулю. На рис. 4.4 схематически показаны вероятности переходов в такой модели.

Несимметричный канал без памяти характеризуется, как и предыдущие модели, тем, что ошибки возникают в нём независимо друг от друга, однако вероятности ошибок зависят от того, какой символ передаётся. Так, в двоичном несимметричном канале вероятность приёма символа 1 при

Рис. 4.3. Переходные вероятности в двоичном симметричном канале

Рис. 4.4. Переходные вероятности в двоичном симметричном канале со стиранием

Рис. 4.5. Переходные вероятности в двоичном несимметричном канале

передаче символа 0 не равна вероятности приёма 0 при передаче 1 (рис. 4.5). В этой модели вероятность вектора ошибки зависит от того, какая последовательность символов передаётся.

Дискретный канал предназначен для передачи дискретных сигналов (символов). При передаче по такому каналу сообщение представляется некоторой последовательностью элементарных дискретных сообщений , принадлежащих конечному множеству. В результате помехоустойчивого кодирования последовательность заменяется другой последовательностью , которая ставится в соответствие сообщению . Последовательность , состоящая из кодовых символов , подается на вход дискретного канала. Кодовые символы обычно (но не всегда) являются цифрами двоичной системы счисления. Таким образом, сообщение на входе дискретного канала может быть представлено последовательностью , где - номер позиции, а - дискретная случайная величина, принимающая значение 0 и 1. Сообщение на выходе дискретного канала также представляется в виде , где , а - аналогичная случайная величина. В идеальном случае, при отсутствии помех и искажений, для всех .

Ограничения на входные символы дискретного канала обычно задаются указанием алфавита символов и скорости их следования. Основной характеристикой дискретного канала является вероятность того или иного изменения символа на данной позиции. Эта характеристика определяется теми преобразованиями, которые претерпевает символ при передаче по каналу:

Смещение во времени (задержка символов);

Отличие на некоторых позициях выходных символов от входных (аддитивные ошибки);

Смещение номеров позиций выходной последовательности относительно номеров входной (ошибки синхронизации);

Появление на некоторых позициях символов стирания (невозможность принять надежное решение по какому-либо символу).

Первый фактор (задержка) является детерминированным или содержит детерминированную и случайную составляющие. Все остальные факторы случайны.

При действии рассмотренных факторов основная характеристика дискретного канала – вероятность искажения символа на определенной позиции – зависит от номера позиции, от значения передаваемого и всех ранее переданных символов.

Так определяются характеристики для нестационарного несимметричного канала с неограниченной памятью. Полное описание таких каналов задается совокупностью условных (переходных) вероятностей вида , т.е. вероятностей того, что выходные символы примут значения , если входные символы имеют значения , где и - номера позиций последовательностей и , - длина конечной последовательности (сообщение).

Естественно, что эти вероятности должны быть известны при любых и . Если рассматриваются стационарные каналы с идеальной синхронизацией, то полное описание канала задается системой переходных вероятностей . Располагая этой системой вероятностей, можно, например, найти такую важную характеристику, как пропускную способность дискретного канала.

В ряде случаев, особенно при анализе методов повышения достоверности, дискретный канал удобно описывать методами случайных процессов, а не заданием системы условных вероятностей рассмотренного вида.

Для канала с идеальной синхронизацией используется понятие потока ошибок. Поток представляет собой дискретный случайный процесс Е (иногда используется термин «последовательность ошибок»). Каждая позиция потока Е складывается по определенному правилу с соответствующей позицией процесса Y.

В общем случае реализации потока ошибок зависят от реализации помех в непрерывном канале, вида модели и реализации процесса Y. Так, например, при стационарном канале и стационарной передаваемой последовательности Y поток ошибок также будет стационарным.

Существует тип дискретного канала, для которого характеристики потока ошибок не зависят от вида информации, передаваемой по каналу. Такой тип канала принято называть симметричным. В этом случае переходные вероятности имеют вид , где - реализация потока ошибок.

Из изложенного следует, что модель двоичного канала это, но сути дела, статистическое описание двоичной последовательности Е. Полное описание таких последовательностей достигается на основе многомерных распределений, например, интервалов между элементами последовательности или через многомерные переходные вероятности. Располагая математической моделью, дающей полное описание ошибок двоичного симметричного канала, можно определить любую характеристику методов повышения достоверности при передаче информации по такому каналу. Наиболее удобный вариант модели для проектирования задается теорией случайных процессов в виде потока ошибок.

Представляется логичным и достаточно удобным рассматривать поток ошибок дискретного канала связи как ступенчатый случайный процесс. Такой подход позволяет при исследовании каналов связи использовать многочисленные важные результаты, полученные для случайных процессов.

Выделим среди различных способов задания потоков следующие два.

Первый способ описания потоков. Для задания потоков ошибок этим способом необходимо для любого натурального числа и произвольного набора чисел , указать r -мерную функцию распределения случайного вектора , где - количество ошибок, появившихся в промежутке времени , или найти

Где - начало отсчета времени.

Таким образом, есть вероятность того, что на последовательно расположенных промежутках времени (откладываемого от момента времени ), появится соответственно ошибок. Это распределение полностью определяет поток ошибок. На практике (1) наиболее часто используется для , что соответствует одномерному распределению числа ошибок в промежутке времени :

Для стационарного потока зависимость от отсутствует.

Второй способ описания потоков. Пусть - моменты наступления событий потока ошибок. Можно определить поток, задав распределение - мерного вектора:

Однако часто удобнее получать распределение моментов наступления событий потока не на основе , а несколько иначе. Положим , тогда поток считается заданным, если определено - мерное распределение вектора , т.е.

Если , то имеем одномерную функцию распределения интервалов, которая в общем случае может зависеть от номера интервала, что отражается следующим образом:

.

Страница 1

УДК 621.397

Модели дискретных каналов связи

Михаил Владимирович Марков , магистрант, mmarkov 1986@ mail . ru ,

ФГОУВПО «Российский государственный университет туризма и сервиса»,

г. Москва
The basic models of the discrete communication channels used for information transfer in wireless systems of access to information resources are described. The basic merits and demerits of various communication channels are considered and their general characteristic is given. The mathematical apparatus that is necessary for the description of the pulsing nature of the traffic in real channels of transfer is presented. The mathematical calculations used for definition of functions of density of probability are given. Models of channels with the memory, characterized by packing of errors in the conditions of a frequency-selective dying down and multibeam distribution of signals are considered.
Описаны основные модели дискретных каналов связи, используемых для передачи информации в беспроводных системах доступа к информационным ресурсам. Рассмотрены основные достоинства и недостатки различных каналов связи и дана их общая характеристика. Приведен математический аппарат, необходимый для описания пульсирующей природы трафика в реальных каналах передачи. Даны математические выкладки, используемые для определения функций плотности вероятности. Рассмотрены модели каналов с памятью, характеризующиеся пакетированием ошибок в условиях частотно-селективных замираний и многолучевого распространения сигналов.
Key words : models of communication channels, discrete channels without memory, channels with deleting, asymmetrical channels without memory, channels with memory

Ключевые слова : модели каналов связи, дискретные каналы без памяти, каналы со стиранием, несимметричные каналы без памяти, каналы с памятью.
Постановка задачи

Для описания каналов передачи информации принято использовать математические модели, учитывающие особенности распространения радиоволн в окружающей среде. Среди таких особенностей можно, например, отметить наличие частотно-селективных замираний, приводящих к явлению межсимвольной интерференции (МСИ). Эти явления существенно сказываются на качестве принимаемой информации, так как приводят в ряде случаев к пакетированию одиночных ошибок. Для описания процессов пакетирования было разработано множество моделей каналов связи с памятью. В статье описаны основные модели, обладающие различными характеристиками, описываемыми с помощью полигеометрических распределений длин безошибочных промежутков и пачек ошибок.

Каналы связи принято называть дискретными по времени только в том случае, если входные и выходные сигналы доступны для наблюдения и дальнейшей обработки в строго фиксированные моменты времени. Для определения моделей дискретных каналов связи достаточно описать случайные процессы, происходящие в них, а также знать вероятности появления ошибок. Для этого необходимо иметь входной (А ) и выходной () наборы передаваемых символов, должна быть задана совокупность переходных вероятностей p ( | a ), которая зависит от следующих величин:
– случайной последовательности символов входного алфавита, где
– символ на входе канала в i -й момент времени;
– последовательности принятых символов, взятой из выходного алфавита, где
– символ на выходе канала в i -й момент.

С математической точки зрения вероятность
можно определить как условную вероятность приема последовательности при условии, что передана последовательность a . Количество переходных вероятностей прямо пропорционально возрастает с увеличением длительности входных и выходных последовательностей. Например, при использовании бинарного кода для последовательности длиной n, количество переходных вероятностей составит
. Ниже приведено описание математических моделей дискретных каналов, содержащих ошибки. С их помощью можно достаточно просто определить переходные вероятности
для заданной последовательности длиной п.


Дискретный канал без памяти

Этот тип канала характеризуется тем, что вероятность появления символа на его выходе определяется только набором символов на его входе. Это утверждение справедливо для всех пар символов, передаваемых через данных канал связи. Наиболее ярким примером канала без памяти является бинарный симметричный канал. Принцип его функционирования можно описать в виде графа, показанного на рис. 1.

На вход канала подается произвольный символ из последовательности а . На приемной стороне он воспроизводится верно с постоянной вероятностью q равной , или неверно, в случае, если вероятность определяется выражением

Диаграмма переходов для бинарного канала (БСК) показана на рис. 1.

Рис. 1. Дискретный канал без памяти
Для БСК можно легко определить вероятность получения любой последовательности символов на выходе при условии, что задана некоторая входная последовательность, обладающая фиксированной длиной. Допустим, что такая последовательность имеет длину 3

Для удобства анализа представим БСК как канал, к которому подключен генератор ошибок. Такой генератор выдает случайную последовательность ошибок
. Каждый её символ складывается по модулю с символом , принадлежащим двоичному каналу -
. Сложение выполняется только при условии, что позиции ошибки и символа совпадают. Таким образом, если ошибка { } имеет единичное значение, передаваемый символ изменится на обратный, то есть на приемной стороне будет декодирована последовательность { }, содержащая ошибку.

Переходные вероятности, описывающие стационарный симметричный канал имеют вид

Из вышеприведенного выражения видно, что канал можно полностью описать статистикой последовательности ошибок { }, где
{0, 1} . Такую последовательность, обладающую длиной n , принято называть вектором ошибок. Компоненты данного вектора принимают единичные значения только на позициях, соответствующих неправильно принятым символам. Число единиц в векторе определяет его вес.


Симметричный канал без памяти со стиранием

Этот вид канала во многом аналогичен каналу без памяти за исключением того, что входной алфавит содержит дополнительный (m+1) символ "? ". Используется этот символ только в том случае, если детектор не способен надежно распознать переданный символ a i . Вероятность такого события Р с всегда является фиксированной величиной и не зависит от передаваемой информации. Граф вероятностей переходов для данной модели показан на рис. 2.

Рис. 2. Симметричный канал без памяти со стиранием
Несимметричный канал без памяти

Данный канал связи можно охарактеризовать тем, что отсутствует зависимость между вероятностями возникновения ошибки. Но сами они определяются передаваемыми в текущий момент времени символами. Таким образом, для бинарного канала можно записать
. Переходные вероятности, описывающие данную модель, показаны на рис. 3.


Рис. 3. Несимметричный канал без памяти
Дискретный канал с памятью.

Этот канал можно описать зависимостью между символами входной и выходной последовательностей. Каждый принятый символ зависит как от соответствующего переданного, так и от предыдущих входных и выходных бит. Большая часть реально функционирующих систем связи содержит именно такие каналы. Наиболее существенной причиной наличия памяти в канале является межсимвольная интерференция, проявляющаяся из-за ограничений, накладываемых на полосу пропускания канала связи. Каждый выходной символ обладает зависимостью от нескольких последовательных символов на входе. Вид этой зависимости определяется импульсной характеристикой канала связи.

Второй, не менее важной, причиной эффекта «памяти» являются паузы в передаче данных в канал. Длительность таких пауз может значительно превышать длительность одного бита данных. Во время перерыва в передаче вероятность неправильного приема информации резко возрастает, в результате возможно появление групп ошибок, называемых пакетами.

По этой причине многими исследователями рекомендуется использовать понятие “состояния канала”. В результате каждый символ принятой последовательности статистически зависит как от входных символов, так и с состояния канала в текущий момент времени. Под термином “состояние канала” обычно понимают вид последовательности входных и выходных символов вплоть до заданного момента времени. На состояние канала в том числе оказывает сильное влияние и межсимвольная интерференция. Память у каналов связи подразделяется на два вида: память по входу и выходу. Если присутствует зависимость между выходным символом и битами на входе
, то такой канал обладает памятью по входу. Его можно описать переходными вероятностями вида
, i = –1, 0, 1, 2, … С точки зрения математического анализа память канала бесконечна. На практике количество символов оказывающих влияние на вероятность правильного или неверного приема информации конечно.

Память канала вычисляется как число символов N, начиная с которого справедливо равенство условных вероятностей

Для всех
. (4)

Последовательность входных символов
можно представить как состояние канала
в (i- 1)-й момент. В таком случае канал можно охарактеризовать набором переходных вероятностей вида
.

В том случае если принятый бит данных характеризуется зависимостью от предшествующих выходных символов, то канал связи принято называть каналом с памятью по выходу. Переходные вероятности можно представить в виде выражения

где выходные символы
определяют состояние канала
в (i –1)-й момент.

Использование переходных вероятностей для описания каналов с памятью очень неэффективно в виду громоздкости математических выкладок. Например, если имеется канал с межсимвольной интерференцией, а его память ограничена пятью символами, то количество возможных состояний канала составит 2 5 =32.

Если же память только по входу или только по выходу ограничивается в двоичном канале N символами, то число состояний равно 2 N , то есть растет по экспоненциальному закону в зависимости от количества символов памяти N. На практике чаще всего приходиться сталкиваться с каналами, обладающими памятью в десятки, сотни и даже тысячи символов.


Дискретно-непрерывный канал

Рассмотрим дискретно-непрерывный канал на входе которого имеются независимые символы a i , а на выходе присутствует непрерывный сигнал
. Для его описания воспользуемся переходными (условными) плотностями
декодируемой реализации z (t) при условии, что передан символ , а также априорными вероятностями передаваемых символов
. Переходные плотности также принято называть функциями правдоподобия. С другой стороны, дискретно-непрерывный канал можно описать апостериорными вероятностями
передачи символа при получении на выходе колебания z (t ). При использовании формулы Байеса получим

, (6).

В данном выражении используется плотность декодируемого колебания, которая определяется как

(7).

Непрерывно-дискретный канал описывается аналогично.


Дискретный канал с памятью, характеризующийся коррелированными

замираниями

Замирания возникают, когда амплитуда или фаза сигнала, переданного через канал изменяются по случайному закону. Понятно, что замирания приводят к существенному ухудшению качества принятой информации. Одной из наиболее существенных причин появления замираний считается многолучевое распространение сигналов.

Здесь буквами E, T обозначена энергия и длительность сигнала,

–целые числа, l k > 1. (9).

На приемной стороне будет наблюдаться случайный процесс y (t )

В данном выражении используются следующие параметры:

µ -коэффициент передачи канала, выбираемый случайным образом,

- случайный фазовый сдвиг,

n (t ) - белый гауссовский шум (АБГШ). Его спектральная плотность мощности равна N 0 /2.

Если передается некоторая последовательность a , то выходной сигнал когерентного демодулятора примет вид . Названная последовательность поступает на вход декодера. Полученную последовательность можно представить в виде вектора

, для вычисления компонент которого используются выражения (11) и (12):

(12)


,

- квадратурные компоненты в сумме дающие коэффициент передачи канала,

- случайные величины, связанные с влиянием белого гауссовского шума,

-- отношение сигнал/шум.

Данные выражения имеют силу, только если передается символ
.

Если имеет место передача символа
, то правые части равенств (11) и (12) меняются местами. Случайные величины подчиняются гауссовскому распределению, обладающему параметрами

(15)

Анализируя эти выражения можно прийти к выводу, что канальный коэффициент передачи

зависит от рэлеевского распределения.

Канал с замираниями характеризуется наличием памяти между элементами последовательности символов . Эта память зависит от характера связей между членами рядов

Предположим, что

, (18),

где
.

В таком случае µ c и µ s образуют независимые Марковские последовательности. А функция плотности вероятностей w (µ) для последовательности µ при N> 1 будет равна



(20)

(21).

В приведенном выражении (х) является функцией Бесселя первого рода нулевого порядка. Параметр будет равен среднему значению отношения С/Ш для релеевского канала. Параметр r характеризует зависимость случайных канальных коэффициентов передачи от времени. Этот параметр может лежать в интервале 0,99-0,999.

Зная все вышеперечисленные параметры можно определить условную функцию плотности вероятности
. Аналитическое выражение для этой функции имеет вид

С учетом выше приведенных уравнений, получим

(23).

Таким образом, условные функции плотности вероятности
являются произведением функций плотности вероятности в случае центрированного и не центрированного X 2 – распределения. Такое распределение имеет две степени свободы.

Модель Гильберта

К сожалению, все выше описанные модели каналов не способны описать пульсирующую природу реальных каналов передачи. Поэтому Гильбертом была предложена следующая модель канала с ошибками. Вероятность ошибки в текущем состоянии сети зависит от того, в каком состоянии находилась сеть в предыдущий момент времени. То есть подразумевается, что имеет место корреляция между двумя последовательными событиями. Таким образом, проявляется память канала и его пульсирующая природа. Модель Гильберта по сути является моделью Маркова первого порядка с двумя состояниями – «хорошим» и «плохим». Если ошибки в принятых данных отсутствуют, то речь идет о «хорошем» состоянии. В «плохом» состоянии вероятность ошибки принимает некоторое значение большее, чем 0. На рис. 4 показана модель Гильберта.

Рис. 4. Схематическая иллюстрация модели Гильберта

Рис. 5. Схематическая иллюстрация модели Гильберта-Эллиота
Вероятность того, что канал находится в «плохом» состоянии равна

(24),

и таким образом, полная вероятность ошибки

Модель Гильберта является самовозобновляемой моделью, это означает, что длины пачек ошибок и длины безошибочных промежутков не зависят от предшествующих пачек и промежутков ошибок. Это так называемая скрытая модель Маркова (HMM). Текущее состояние модели (Х или П) не может быть определено до тех пор, пока не будет получен выходной сигнал модели. Кроме того, параметры модели {p , q , P(1|B) } не могут быть получены непосредственно во время моделирования. Они могут быть оценены лишь с помощью специальных триграмм или с помощью аппроксимации кривых, как это предложено в работе Гильберта.

Из-за возможности прямой оценки параметров чаще всего использовалась упрощенная версия модели Гильберта, в которой вероятность ошибки в «плохом» состоянии всегда равна 1. Эта модель может быть несколько модифицирована и представлена в виде цепи Маркова первого порядка с двумя состояниями. Два параметра упрощенной модели Гильберта {p, q} могут быть вычислены непосредственно путем измерений трасс ошибок при учете средней длины пачек ошибок

(26)

и среднем значении длин промежутков

или полной вероятности ошибки

Улучшения модель Гильберта впервые была описана в работе Элиота. В ней ошибки могут происходить также и в хорошем состоянии, как это показано на рис. 5.

Эта модель, также известная как канал Гильберта – Элиота (GEC), преодолевает ограничение модели Гильберта в отношении геометрических распределений длин пачек ошибок. Кроме того, что данная модель должна соответствовать модели HMM, она должна быть не возобновляемой, то есть длины пачек ошибок должны быть статистически независимы от длин промежутков. Это привносит новые возможности для моделирования радиоканала, но и усложняет процедуру оценки параметров. Параметры для не возобновляемой модели HMM и модели GEC могут быть оценены с использованием алгоритма Баума-Валия.

Рис. 6. Разделенные цепи Маркова
В 1960-х годах, исследователи Бергер, Манделброт, Суссман и Элиот предложили использовать возобновляемые процессы для моделирования характеристик ошибок коммуникационных каналов. Для этого Бергер и Манделброт использовали независимое распределение Парето вида

для интервалов между последовательными ошибками.

Рис. 7. Разделенные цепи Маркова с двумя безошибочными и тремя ошибочными состояниями

Дальнейшие улучшения модели Гильберта были опубликованы Фричманом (1967), который предложил разделить цепи Маркова на несколько цепей с ошибочными и безошибочными состояниями (рис. 6). Было введено ограничение по количеству запрещенных переходов между ошибочными состояниями и состояниями, свободными от ошибок. Параметры этой модели могут быть несколько улучшены благодаря выборочной аппроксимации полигеометрических распределений длин промежутков и длин пачек ошибок. Полигеометрическое распределение вычисляется как

при следующих ограничениях

0 i 1 и 0 i 1.

Параметры μ i и λ i соответствуют вероятностям перехода к новому состоянию и вероятности перехода в пределах нового состояния, K – это число безошибочных состояний, N – общее количество состояний.

Конфигурация данной модели показана на рис. 7. Она включает в себя два безошибочных состояния и три состояния соответствующие ошибкам. Однако все еще имеется статистическая зависимость между текущим промежутком и предыдущей пачкой ошибок, а также между текущим промежутком (пачкой ошибок) и предыдущим промежутком (пачкой ошибок). Поэтому для полного описания модели эти зависимости также необходимо рассмотреть. Однако здесь имеется ограничение, связанное с сохранением фиксированных пропорций вероятностей перехода из одного состояния в другое. В связи с этим модель становится возобновляемой. Например, в случае конфигурации модели 2/3 соотношения между вероятностями будут такими: p 13 : p 14 : p 15 = p 23 : p 24 : p 25 и p 31 : p 32 = p 41 : p 42 = p 51 : p 52 . Так, модель Фричмана, показанная на рис. 8, является частным случаем разделенной цепи Маркова. На этом рисунке показано только одно ее ошибочное состояние. Такая конфигурация распределения промежутков между ошибками уникально характеризует модель, а ее параметры могут быть найдены путем аппроксимации соответствующей кривой. Каждое состояние модели Фричмана представляет собой ошибочную модель без памяти, и поэтому модель Фричмана ограничивается полигеометрическими распределениями длин промежутков и пачек ошибок.

Рис. 8. Модель Фричмана

В статье были рассмотрены основные модели каналов связи, используемых для передачи различной дискретной информации и обеспечивающих доступ к разделяемым информационным ресурсам. Для большинства моделей даны соответствующие математические выкладки, на основе анализа которых сделаны выводы об основных достоинствах и ограничениях этих моделей. В работе было показано, что все рассматриваемые модели обладают существенными различиями в характеристиках ошибок.
Литература


  1. Adoul, J-P.A., Fritchman, B.D. and Kanal, L.N. A critical statistic for channels with memory // IEEE Trans. on Information Theory. 1972. № 18.

  2. Aldridge, R.P. and Ghanbari, M. Bursty error model for digital transmission channels. // IEEE Letters. 1995. № 31.

  3. Murthy, D.N.P., Xie, M. and Jiang, R. Weibull Models. John Wiley & Sons Ltd., 2007.

  4. Pimentel, C. and Blake, F. Modelling Burst Channels Using Partitioned Fritchman’s Markov Models. // IEEE Trans. on Vehicular Technology. 1998. № 47.

  5. McDougall, J., Yi, Y. and Miller, S. A Statistical Approach to Developing Channel Models for Network Simulations. // Proceedings of the IEEE Wireless Communication and Networking Conference. 2004. vol. 3. Р. 1660–1665.
страница 1