Сайт о телевидении

Сайт о телевидении

» » В чем измеряется работа тока. Работа электрического тока: общая характеристика, формула, практическое значение

В чем измеряется работа тока. Работа электрического тока: общая характеристика, формула, практическое значение

У каждого из нас дома есть счетчик, по показаниям которого мы ежемесячно платим за электричество. Мы оплачиваем какое-то количество киловатт-часов. Что же такое эти киловатт-часы? За что конкретно мы платим? Разберемся:)

Мы используем электричество с определенными целями. Электрический ток выполняет какую-то работу, вследствие этого и функционируют наши электроприборы. Что же такое – работа электрического тока? Известно, что работа тока по перемещению электрического заряда на некотором отрезке цепи равна численно напряжению на этом участке. Если же заряд будет отличаться, например, в большую сторону, то и работа, соответственно, будет совершена большая.

Работа тока на участке цепи: формула

Итак, мы приходим к тому, что работа тока равна произведению напряжения на участке электрической цепи на величину заряда. Заряд же, как известно, можно найти произведением силы тока на время прохождения тока. Итак, получаем формулу для определения работы тока:

A=Uq , q=It , получаем A=UIt ;

где A - работа, U- напряжение, I - сила тока, q - заряд, t - время.

Измеряется работа тока в джоулях (1 Дж). 1 Дж = 1 В * 1 А * 1 с. То есть, чтобы измерить работу, которую совершил ток, нам нужны три прибора: амперметр , вольтметр и часы. Счетчики электроэнергии, которые стоят в квартирах, как бы сочетают в себе все эти вышеперечисленные приборы в одном. Они измеряют работу, совершенную током. Работа тока в нашей квартире – это энергия, которую он израсходовал на всех включенных в сеть квартиры приборах. Это и есть то, за что мы платим. Однако, мы платим не за джоули, а за киловатт-часы. Откуда возникают эти единицы?

Мощность электрического тока

Чтобы разобраться с этим вопросом, надо рассмотреть еще одно понятие - мощность электрического тока. Мощность тока – это работа тока, совершенная в единицу времени. То есть, мощность можно найти, разделив работу на время. А работа, как мы уже знаем – это произведение силы тока на напряжение и на время. Таким образом, время сократится, и мы получим произведение силы тока на напряжение. Для мощности тока формула будет иметь следующий вид:

P=A/t , A=UIt , получаем P=UIt/t , то есть P=UI ;

где P - мощность тока. Мощность измеряется в ваттах (1 Вт). Применяют кратные величины – киловатты, мегаватты.

Работа и мощность электрического тока связаны теснейшим образом. Фактически, работа – это мощность тока в каждый момент времени, взятая за определенный промежуток времени. Именно поэтому счетчики в квартирах измеряют работу тока не в джоулях, а в киловатт-часах. Просто величина мощности в 1 ватт – это очень небольшая мощность, и если бы мы платили за ватты-в-секунду, мы бы оплачивали десятки и сотни тысяч таких единиц. Для упрощения расчетов и приняли единицу «киловатт-час».

где A – работа электрического тока или израсходованная электроэнергия на участке цепи (Дж); I – сила тока (А); U – напряжение на участке (В); Δt

С учетом закона Ома для участка цепи I=UR , работу тока можно найти, если известны время Δt и любые две величины из трех: I , U , R .

A=I2⋅R⋅Δt или A=U2R⋅Δt ,

где R

Если на участке цепи не совершается механическая работа и ток не производит химического или иного действия, то

где Q – количество теплоты, выделяемое проводником с током (Дж).

где P – мощность тока (Вт); A – работа электрического тока или израсходованная электроэнергия на участке цепи (Дж); Δt – время прохождения тока (с).

Так как A=U⋅I⋅Δt , а I=UR , то мощность тока можно также найти, если известны любые две величины из трех: I , U , R .

P=U⋅I , P=I2⋅R или P=U2R ,

где U – напряжение на участке (В); I – сила тока (А); R – сопротивление участка (Ом).

58. чему равна мощность постоянного тока - МОЩНОСТЬ ПОСТОЯННОГО ТОКА

Отношение работы тока за время t к этому интервалу времени.

В системе СИ:

59. что называют термодинамической системой, процессом - Термодинамическая система Термодинамическая система - выделяемая (реально или мысленно) для изучения макроскопическая физическая система, состоящая из большого числа частиц и не требующая для своего описания привлечения микроскопических характеристик отдельных частиц ,

60. Дайте определение обратимого и не обратимого процесса - ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ

Пути изменения состояния термодинамич. системы. Процесс наз.обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходноечерез ту же последовательность промежут. состояний, что и в прямом процессе, но проходимую в обратномпорядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процессвозможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, чторавновесие существует между отдельными частями рассматриваемой системы и на границе с окружающейсредой. Обратимый процесс - идеализир. случай, достижимый лишь при бесконечно медленном изменениитермодинамич. параметров. Скорость установления равновесия должна быть больше, чем скоростьрассматриваемого процесса. Если невозможно найти способ вернуть и систему, и тела в окружающей средев исходное состояние, процесс изменения состояния системы наз. необратимым.



61. Дайте определение внутренней энергии системы - нутренняя энергия - это энергия системы за вычетом ее полной механической энергии (которая складывается из кинетической энергии системы как целого и ее потенциальной энергии в поле внешних сил):

Внутренняя энергия системы складывается из:
а) кинетической энергии непрерывногохаотического движения молекул;
б) потенциальной энергии взаимодействия молекул между собой;
в) внутримолекулярной энергии (энергии химических связей, ядерной энергии и т.п.).

Для идеального газа внутренняя энергия равна суммарной кинетической энергии хаотического движения всех N молекул газа:
.

Внутренняя энергия системы аддитивна , т.е. складывается из внутренних энергий ее частей.

Внутренняя энергия системы является функцией состояния . Поэтому приращение внутренней энергии (как и приращение всех функций состояния) всегда будет полным дифференциалом dU.

При циклическом процессе, когда система приходит в исходное состояние, ее внутренняя энергия не меняется.

В каждой замкнутой цепи в обязательном порядке имеет место двойное преобразование энергии. В источнике тока совершается видоизменение какой-либо энергии (например, в генераторе - механической) в электрическую, а в цепи тока она опять превращается в равносильное количество энергии иного вида. Мера превращения в цепи тока электроэнергии в какие-либо иные виды энергии - величина работы тока.

Но мы понимаем, что работа и тока является работой электрических сил поля, перемещающих заряды; поэтому ее легко подсчитать.

Работа по переносу электрического заряда в электрическом поле оценивается произведением величины перенесенного заряда на величину разности потенциалов между точками в начале и конце переноса, т.е. на величину напряжения:

Очевидно, что это соотношение может быть применимо и для оценки таких понятий, как работа и тока. О величине заряда, протекшего в цепи, мы можем судить по току, текущему в цепи, и времени его протекания, так как q = It.

Используя такое соотношение, мы получаем формулу, выражающую величину работы тока на отдельном участке цепи, имеющем напряжение U:

Работа и мощность измеряются следующим образом: если измерять ток в амперах, время работы в секундах, а напряжение в вольтах, то работу - в джоулях (Дж).

Таким образом, 1 джоуль = 1 ампер х 1 вольт х 1 секунду.

Мощность измеряется ваттами (Вт):

1 ватт = 1 джоуль/1 секунда, или 1 ватт = 1 вольт х 1 ампер.

Вопрос о подсчете величины работы тока на этом участке совершенно не связан с вопросом о том, в какой вид энергии превратится на данном участке электрическая энергия. Эта работа является мерой электроэнергии, превращенной в другие виды.

Электрический ток, выполняя работу, может накалять нить электролампы, плавить металлы, вращать якорь электродвигателя, вызывать химические превращения и т.д. Во всех случаях работа и мощность электрического тока определяют уровень преобразования электроэнергии в иные формы - механическую энергию, энергию теплового движения и т.д.

Зная, что мощность P = A/t, можно получить формулу, с помощью которой рассчитывается мощность тока на отдельном участке цепи:

Работа и мощность могут быть вычислены при помощи этих формул, а также при помощи амперметра, вольтметра. На практике работу электрического поля измеряют специальным прибором - счетчиком. Проходя через счетчик, внутри него начинает совершать обороты легкий и его скорость вращения будет прямо пропорциональна силе тока и напряжению. Число оборотов, которое он сделает за определенное время, поможет сделать выводы о совершенной за это время работе. Счетчики электроэнергии можно увидеть в каждой квартире.

Мощность тока измеряют, используя специальный прибор - ваттметр. В устройстве этого прибора совмещаются принципы вольтметра и амперметра.

На многих электрических приборах и технических устройствах указывается их мощность. Например, мощность лампочки накаливания может быть 25 Вт, 75 Вт и др., или утюга около 1000 Вт, мощность электродвигателей может достигать очень больших значений - до нескольких тысяч киловатт. При этом имеют в виду мощность тока, который проходит через тот или иной прибор.

Работа и мощность переменного тока рассчитываются иначе. Так, для вычисления работы, совершаемой переменным током за определенный промежуток времени, можно воспользоваться формулой:

P = 1/2I₀U₀ cos φ. Зачастую эту формулу записывают в таком виде: P = IU cos φ, где I и U - значения напряжения и силы тока, которое в 2 раза меньше соответствующих амплитудных значений.

Формула вычисления мощности переменного тока будет такой же, как и для постоянного.

Единицы энергии и работы:

1 ватт-секунда = 1 Дж 1 ватт-час = 3600 Дж;

1 гектоватт-час = 360000 Дж;

1 киловатт-час = 3600000дж.

Единицы мощности:

1 ампер-вольт = 1 Вт;

1 гектоватт = 100 Вт;

1 киловатт = 1000 Вт.

Содержание:

Электрический ток вырабатывается для того, чтобы в дальнейшем использовать его в определенных целях, для совершения какой-либо работы. Благодаря электричеству, функционируют все приборы, устройства и оборудование. Сама работа представляет собой определенные усилия, прилагаемые для перемещения электрического заряда на установленное расстояние. Условно, такая работа в пределах участка цепи, будет равна численному значению напряжения на данном участке.

Для выполнения необходимых расчетов необходимо знать, в чем измеряется работа тока. Все расчеты проводятся на основании исходных данных, полученных с помощью измерительных приборов. Чем больше величина заряда, тем больше усилий требуется для его перемещения, тем большая работа будет совершена.

Что называют работой тока

Электрический ток, как физическая величина, сам по себе не имеет практического значения. Наиболее важным фактором является действие тока, характеризующееся выполняемой им работой. Сама работа представляет собой определенные действия, в процессе которых один вид энергии превращается в другой. Например, электрическая энергия с помощью вращения вала двигателя, превращается в механическую энергию. Работа самого электрического тока заключается в движении зарядов в проводнике под действием электрического поля. Фактически вся работа по перемещению заряженных частиц выполняется электрическим полем.

С целью выполнения расчетов должна быть выведена формула работы электрического тока. Для составления формул понадобятся такие параметры, как сила тока и . Поскольку работа электрического тока и работа электрического поля - это одно и то же, она будет выражаться в виде произведения напряжения и заряда, протекающего в проводнике. То есть: A = Uq. Данная формула была выведена из соотношения, определяющего напряжение в проводнике: U = A/q. Отсюда следует, что напряжение представляет собой работу электрического поля А по переносу заряженной частицы q.

Сама заряженная частица или заряд отображается в виде произведения силы тока и времени, затраченного на движение этого заряда по проводнику: q = It. В этой формуле было использовано соотношение для силы тока в проводнике: I = q/t. То есть, является отношением заряда к промежутку времени, за которое заряд проходит через поперечное сечение проводника. В окончательном виде формула работы электрического тока будет выглядеть, как произведение известных величин: A = UIt.

В каких единицах измеряется работа электрического тока

Прежде чем непосредственно решать вопрос, в чем измеряется работа электрического тока, необходимо собрать единицы измерений всех физических величин, с помощью которых вычисляется этот параметр. Любая работа , следовательно, единицей измерения данной величины будет 1 Джоуль (1 Дж). Напряжение измеряется в вольтах, сила тока - в амперах, а время - в секундах. Значит единица измерения будет выглядеть следующим образом: 1 Дж = 1В х 1А х 1с.

Исходя из полученных единиц измерения, работа эл тока будет определяться, как произведение силы тока на участке цепи, напряжения на концах участка и промежутка времени, за которое ток протекает по проводнику.

Измерение проводятся с помощью , вольтметра и часов. Эти приборы позволяют эффективно решить проблему, как найти точное значение данного параметра. При включении амперметра и вольтметра в цепь, необходимо следить за их показаниями в течение установленного промежутка времени. Полученные данные вставляются в формулу, после чего выводится конечный результат.

Функции всех трех приборов объединяются в электросчетчиках, учитывающих потребленную энергию, а фактически работу, совершенную электротоком. Здесь используется уже другая единица - 1 кВт х ч, что также означает, сколько работы было совершено в течение единицы времени.

Электрическая энергия. В природе и технике непрерывно происходят процессы превращения энергии из одного вида в другой (рис. 30). В источниках электрической энергии различные виды энергии превращаются в электрическую энергию. Например, в электрических генераторах 1, приводимых во вращение каким-либо механизмом, происходит превращение в электрическую энергию механической, в термогенераторах 2 - тепловой, в аккумуляторах 9 при их разряде и гальванических элементах 10 - химической, в фотоэлементах 11 - лучистой.
Приемники электрической энергии, наоборот, электрическую энергию превращают в другие виды энергии - тепловую, механическую, химическую, лучистую и пр. Например, в электродвигателях 3 электрическая энергия превращается в механическую, в электронагревательных приборах 5 - в тепловую, в электролитических ваннах 8 и аккумуляторах 7 при их заряде - в химическую, в электрических лампах 6 - в лучистую и тепловую, в антеннах 4 радиопередатчиков - в лучистую.

Мерой количества энергии является работа. Работа W, совершаемая электрическим током за время t при известном напряжении U силе тока I, равна произведению напряжения на силу тока и на время его действия:

W = UIt (29)

Работа, совершаемая электрическим током силой 1 А при напряжении 1 В в течение 1 с, принята за единицу электрической энергии. Эта единица называется джоулем (Дж). Джоуль, который называют также ватт-секундой (Вт*с), - очень маленькая единица измерения, поэтому на практике для измерения электрической энергии приняты более крупные единицы - ватт-час (1 Вт*ч = 3600 Дж), киловатт-час (1 кВт*ч = 1000 Вт*ч = 3,6*10 6 Дж), мегаватт-час (1 МВт*ч=1000 кВт*ч=3,6*10 9 Дж).

Электрическая мощность. Энергия, получаемая приемником или отдаваемая источником тока в течение 1 с, называется мощностью. Мощность Р при неизменных значениях U и I равна произведению напряжения U на силу тока I:

P = UI (30)

Используя закон Ома для определения силы тока и напряжения в зависимости от сопротивления R и проводимости G, можно получить и другие выражения для мощности. Если заменить в формуле (30) напряжение U=IR или силу тока I=U/R=UG, то получим

P = I 2 R (31)

P = U 2 /R = U 2 G (32)

Следовательно, электрическая мощность равна произведению квадрата силы тока на сопротивление, или электрическая мощность квадрату напряжения, поделенному на сопротивление, либо квадрату напряжения, умноженному на проводимость.

Мощность, которая создается силой тока 1 А при напряжении 1 В, принята за единицу измерения мощности и называется ватт (Вт). В технике мощность измеряют более крупными единицами: киловаттами (1 кВт =1000 Вт) и мегаваттами (1 МВт=1 000 000 Вт).

Потери энергии и коэффициент полезного действия. При превращении электрической энергии в другие виды энергии или наоборот не вся энергия превращается в требуемый вид энергии, часть ее непроизводительно затрачивается (теряется) на преодоление трения в подшипниках машин, нагревание проводов и пр. Эти потери энергии неизбежны в любой машине и любом аппарате.
Отношение мощности, отдаваемой источником или приемником электрической энергии, к получаемой им мощности, называется коэффициентом полезного действия источника или приемника. Коэффициент полезного действия (к. п. д.)

? = P 2 /P 1 = P 2 /(P 2 + ?P) (33)

Р 2 - отдаваемая (полезная) мощность;
Р 1 - получаемая мощность;
?Р - потери мощности.

К. п. д. всегда меньше единицы, так как в любой машине и любом аппарате имеются потери энергии. Иногда к. п. д. выражают в процентах. Так, тяговые двигатели электровозов и тепловозов имеют к. п. д. 86-92 %, мощные трансформаторы - 96-98 %, тяговые подстанции - 94-96 %, контактная сеть электрифицированных железных дорог - около 90 %, генераторы тепловозов - 92-94 %.
Рассмотрим в качестве примера распределение энергии в электрической цепи (рис. 31). Генератор 1, питающий эту цепь, получает от первичного двигателя 2 (например, дизеля) механическую мощность Р mx = 28,9 кВт, а отдает электрическую мощность Р эл = 26 кВт (2,9 кВт составляют потери мощности в генераторе). Поэтому он имеет к. п. д. ? ген = Р эл /Р mx = 26/28,9 = 0,9.

Мощность Р эл = 26 кВт, отдаваемая генератором, расходуется на питание электрических ламп (6 кВт), на нагрев электрических плиток (7,2 кВт) и на питание электродвигателя (10,8 кВт). Часть мощности?P пр = 2 кВт теряется на бесполезный нагрев проводов, соединяющих генератор с потребителями.

В каждом приемнике электрической энергии также имеют место потери мощности. В электрическом двигателе 3 потери мощности составляют 0,8 кВт (он получает из сети мощность 10,8 кВт, а отдает только 10 кВт), поэтому к. п. д. ?дв = 10/10,8 = 0,925. Из мощности 6 кВт, полученной лампами, лишь незначительная часть идет на Создание лучистой энергии, большая часть ее бесполезно рассеивается в виде тепла. В электрической плитке на нагрев пищи расходуется не вся полученная мощность 7,2 кВт, так как часть созданного ею тепла рассеивается в окружающем пространстве. При рассмотрении электрических цепей наряду с определением токов и напряжений, действующих на отдельных участках, необходимо определять и передаваемую по ним мощность. При этом должен соблюдаться так называемый энергетический баланс мощностей. Это означает, что мощность, получаемая каким-либо устройством (источником тока или потребителем) или участком электрической цепи, должна быть равна сумме отдаваемой ими мощности и потерь мощности, которые возникают в данном устройстве или участке цепи.