Сайт о телевидении

Сайт о телевидении

» » Устройство для зарядки и тренировке аккамуляторов. Схема восстановления автомобильного аккумулятора

Устройство для зарядки и тренировке аккамуляторов. Схема восстановления автомобильного аккумулятора

Многие владельцы автомобилей полагают, что "жизнь" аккумулятора зависит только от качества его изготов­ления, поэтому покупают импортные аккумуляторы. В некоторых автомо­бильных журналах даже высказывает­ся мнение о том, что срок службы ак­кумулятора должен быть не более грда. Это, конечно, очень выгодно ком паниям - производителям.

Практика показывает, что если сле­дить за уровнем электролита и раз в 3 месяца производить тренировочный цикл (полный разряд с последующим полным зарядом), то срок службы ак­кумулятора можно увеличить до 9 лет при сохранении достаточно высоких параметров (емкости и максимально­го разрядного тока). Проведение тре­нировочных циклов не только продле­вает срок эксплуатации аккумулятора, но и увеличивает максимальный раз­рядный ток (уменьшает внутреннее сопротивление).

Но тренировочные циклы (тем бо­лее, устранение сульфатации) отни­мают много времени. Поэтому в ра­диолюбительской литературе опуб­ликовано много описаний автомати­ческих зарядных устройств , каж­дое из которых имеет как достоин­ства, так и недостатки.

Предлагаю еще одно устройство, которое при простой схеме облада­ет широкими функциональными возможностями.

Схема состо ит из стабилизатора напряжения (микро­схема DA 1), триггера Шмитта (эле­менты DD 1.1, DD 1.2), счетчика цик­лов разряда-заряда (микросхема DD 2) с узлом индикации состояния этого счетчика (R 8. . .. R 1 3, VT 1 . ... VT 6, VD 4.... VD 9), двух ключей (VT 7, VD 2, К1 и VT 8, VD 3, К2), инвертора DD 1.3, силового выпрямителя (HL 2, Т1, VD 10.... VD 1 3) и нагрузочного сопротивления, роль которого вы­полняет лампа HL 1 .

Стабилизатор на­пряжения на микро­схеме DA 1 служит для питания микро­схем DD 1, DD 2, а также источником опорного напряже­ния при контроле напряжения на аккумуляторе. Триг­гер Шмитта управляет ключом VT 7, VD 2, К1. Счетчик на микросхеме DD 2 подсчитывает количество разрядно- зарядных циклов и управляет ключом VT 8, VD 3, К2, который отключает на­грузку HL 1 от аккумулятора.

Работает прибор следующим обра­зом. Сначала нужно подключить к ус­тройству аккумулятор GB 1. При этом на выходе стабилизатора DA 1 появ­ляется напряжение +5 В, а на резис­торе R 15 образуется короткий поло­жительный импульс напряжения, ус­танавливающий счетчик DD 2 в нуле­вое состояние. При этом на его вы­ходе 0 высокий уровень, который от­крывает транзистор VT 1. Загорается светодиод VD 4. Если напряжение подключенного аккумулятора мень­ше 15 В, то на выходе триггера (вы­воде 3 DD 1.1) - "1", транзистор VT 7 открыт, а реле К1 включено. Реле К2 также включено, поскольку на выво­де 5 DD 2 - "О", соот­ветственно, на выходе (выводе 10) DD 1.3 - "1", и VT 8 открыт.

Устройство подклю­чается к сети 220 В. При этом начинается зарядка аккумулятора GB 1. Зарядный ток про­текает по цепи: диоды VD 10....VD 13, замкну­тые контакты К1.1, ак­кумулятор GB 1. Вели­чина зарядного тока ог­раничивается сопро­тивлением лампы накаливания HL 2, включенной в разрыв первичной об­мотки трансформатора Т1. По мере зарядки аккумулятора напряжение на нем и на резисторе R 2 увеличивает­ся. Когда напряжение на GB 1 дости­гает 15 В, триггер Шмитта переклю­чается, на выводе 3 DD 1.1 - "0", и транзистор VT 7 закрывается. Реле К1 отпускает, и его контакты К1.1 пе­реключают аккумулятор на разрядку (подключают нагрузку - лампу HL 1). Ток разрядки аккумулятора опреде­ляется сопротивлением лампы HL1.

При этом перепад напряжения с вы­хода триггера (вывода 4 DD 1.2) по­ступает на вывод 14 счетчика DD 2 и переключает его в следующее состо­яние, т.е. "1" на выходе 1. Тогда от­крывается транзистор VT 2, и загора­ется светодиод VD 5.

По мере разрядки аккумулятора напряжение на нем (и на резисторе R 2) уменьшается. Когда напряжение GB 1 уменьшается до 10,7 В, триггер опять переключается, транзистор VT 7 открывается. Срабатывает реле К1 и переключает аккумулятор на за­рядку. Через несколько циклов заряда - разряда при очередном срабаты­вании счетчика DD 2 на его выводе 5 появляется "1", соответственно, на выходе DD 1.3 - "0". Транзистор VT 8 закрывается, реле К2 отпускает, и лампа HL 1 отключается от аккуму­лятора. На этом тренировка аккуму­лятора заканчивается. Дальше оба реле выключены, а аккумулятор разряжается небольшим током, равным общему току потребления микросхем DDI , DD 2, DA 1 (всего около 4 мА).

Количество циклов тренировки аккумулятора можно изменять, под­ключая входы (выводы 8 и 9) эле­мента DD 1.3 к разным выходам мик­росхемы DD 2. Зарядный и разряд­ный ток аккумулятора регулируется подбором ламп HL 1 и HL 2 (HL 1 дол­жна быть рассчитана на напряже­ние 12 В, a HL 2 - на 220 В). При помощи резисторов R 2 и R 3 можно в широких пределах регулировать пороги напряжения на аккумулято­ре, при которых происходят пере­ключения триггера. При этом R 3 ре­гулирует ширину гистерезиса харак­теристики триггера, a R 2 одновре­менно и пропорционально изменя­ет оба пороговых напряжения сра­батывания.

Описанный способ тренировки ак­кумулятора, когда он полностью раз­ряжается (до напряжения 10,7 В), а затем полностью заряжается (до 15 В), является "классическим". В специальной литературе рекоменду­ются и другие способы тренировки, например, такой режим. Аккумулятор полностью заряжают до напряжения 15 В и отключают от зарядного уст­ройства. При снижении напряжения на нем до 12,8 В аккумулятор опять подключают к зарядному устройству и доводят его напряжение до 15 В. Процесс повторяют несколько раз. Предлагаемый прибор позволяет реализовать и этот режим. Для этого лампа HL 1 из схемы исключается, а HL 2 подбирается такой мощности, чтобы зарядный ток аккумулятора был около 0,05 от его номинальной емкости. В перерывах между заряда­ми аккумулятор будет разряжаться током примерно 4 мА.

Конденсатор С1 подавляет пуль­сации напряжения на входе тригге­ра, что повышает четкость его ра­боты. Диод VD 1 ограничивает на­пряжение на С1 в пределах 0...5 В (в принципе, VD 1 можно исклю­чить). Напряжения, при которых срабатывает триггер, достаточно стабильны, т.к. микросхема DD 1 пи­тается стабилизированным напря­жением.

Замена деталей должна произ­водиться в соответствии с их элект­рическими характеристиками. Мик­росхемы серии К561 желательно за­менить на микросхемы серии 564, т.к. последние имеют более широкий температурный диапазон. В каче­стве К1 и К2 использованы реле включения фар (90.3747-01) от ав­томобиля "УАЗ". Мощность транс­форматора Т1 должна быть не ме­нее 150 Вт (для зарядки током 6 А 12-вольтового аккумулятора). Для того, чтобы лампа HL 2 эффективно ограничивала и стабилизировала зарядный ток, на ней должна выде­ляться достаточная мощность, по­этому напряжение холостого хода трансформатора должно быть в пре­делах 19....30 В. Пампу HL 2 можно заменить конденсатором большой емкости, но практически это неудоб­но, т.к. трудно подобрать нужный конденсатор, и не будет стабилизи­роваться ток зарядки.

Для удобства пользования в схему можно добавить переключатель, из­меняющий количество циклов заряда-разряда. Он должен поочередно подключать входы DD 1.3 к выходам DD 2. Для повышения экономичнос­ти прибора в отключенном состоянии можно установить тумблеры, отклю­чающие светодиоды (VD 6....VD 9).

Например, если подключить входы DD 1.3 к выводу 7 DD 2, то светодиод VD 7 нужно отключить, иначе ток по­требления увеличится с 4 до 15 мА. Для уменьшения потребляемого тока можно также увеличить сопротивле­ние R 7 до 3 кОм, но при этом умень­шится яркость свечения светодиодов. Исходное (нулевое) положение стрелки амперметра РА1 должно быть в середине шкалы, а диапазон измерения тока - 1.0...10 А.

Устройство размещено в двух ме­таллических корпусах. В одном нахо­дится узел питания (VD 10 ...VD 13, Т1, FU 1), в другом - все остальные элементы (кроме лампы HL 1). Со­единение элементов, а также под­ключение лампы HL 1 и аккумулято­ра осуществляется при помощи стан­дартных вилок и розеток (220-воль- товых), закрепленных на корпусах.

Налаживание правильно со­бранного устройства заключается, в основном, в установке пороговых напряжений срабатывания тригге­ра. Для этого прибор отключается от сети, отсоединяется лампа HL 1, а вместо аккумулятора к прибору подключается регулируемый ис­точник постоянного напряжения. Изменяя сопротивления R 2 и R 3, устанавливаются нужные напряже­ния срабатывания (моменты сра­батывания определяются по щел­чкам реле К1).

Литература

1. К.Казьмин. Автоматическое за­рядное устройство. В помощь радио­любителю. Вып. 87. - M .: ДОСААФ, 1978.

2. В.Сосницкий. Зарядное устрой­ство-автомат. В помощь радиолюби­телю. Вып. 92. - M .: ДОСААФ, 1986.

3. А.Коробков. Прибор для автома­тической тренировки аккумуляторов. В помощь радиолюбителю. Вып. 96. - M .: ДОСААФ.1987.

4. А.Коробков. Приставка-автомат к зарядному устройству. В помощь радиолюбителю. Вып. 100. - M .: ДОСААФ, 1988.

5. Н.Дробница. Автоматическое за­рядное устройство. В помощь радио­любителю. Вып. 77. - M .: ДОСААФ, 1982.

Раздел: [Зарядные устройства (для авто)]
Сохрани статью в:

Метод базируется на восстановлении аккумуляторов "ассимметричным" током. При этом соотношение тока заряда и разряда выбрано 10:1 (оптимальный вариант). Этот режим позволяет с легкостью восстановить засульфатированные аккумуляторные батареи, но и осуществить профилактическую процедуру исправным АКБ.

Для восстановления и тренировки аккумуляторных батарей лучше всего задавать импульсный ток заряда на уровне 5 А. При этом разрядный ток составит около 0,5 А. Он в первую очередь определен номиналом сопротивления резистора R4. Схема построена так, что заряд АКБ происходит токовыми импульсами в течение одной половины периода сетевого напряжения, в тот момент, когда напряжение на выходе устройства превысит уровень потенциала на аккумуляторе. В течение другого полупериода диоды VD1, VD2 заперты и батарея разряжается через сопротивление нагрузки R4.

Значение тока заряда настраивается переменным резистором R2 по аналоговому амперметру. Учитывая, что во время заряда часть тока идет и через сопротивление R4 (10%), то показания амперметра должны быть 1,8 А (для импульсного зарядного тока в районе 5 А), так как аналоговый амперметр показывает среднее значение тока за период времени, а заряд происходит в течение половины периода.

В схеме имеется защита батареи от неконтролируемого разряда в случае случайного пропадания сетевого напряжения. В этом варианте развития события, реле К1 своими контактами разорвет цепь подсоединения аккумуляторной батареи.

Реле К1 взял старое советское типа РПУ-0 с рабочим напряжением обмотки на 24 В, последовательно с обмоткой включил ограничительное сопротивление. Для этой схемы подойдет практически любой трансформатор мощностью не ниже 150 Вт с напряжением во вторичной обмотке примерно 22-25 В.

Технология восстановления автомобильных аккумуляторов переменным током позволяет достаточно быстро снизить внутреннее сопротивление практически до заводского уровня, при минимальном нагреве электролита. Положительный полупериод тока задействован полностью при зарядке автомобильных батарей с минимальной рабочей сульфатацией, когда мощности импульсного тока заряда хватает для восстановления пластин АКБ.

При восстановлении АКБ с длительным сроком эксплуатации рекомендуется использовать оба полупериода переменного тока в соизмеримых величинах: при зарядном токе величиной в 0,05С (С - емкость), ток разряда выбирается в диапазоне 1/10-1/20 оттока заряда. Интервал времени тока заряда не должен быть более 5 мс, т. о процесс восстановление должен происходить на максимальном уровне напряжения положительной части синусоиды, при которой энергии импульса хватает для химического перехода сульфата свинца в аморфное состояние. Освободившийся остаток SO4 повышает плотность электролита до тех пор, пока все кристаллы сульфата свинца не восстановятся, при этом из-за происходящего электролиза напряжение на аккумуляторной батареи возрастет.

При зарядно-восстановительных процедурах требуется использовать максимальную токовую амплитуду при минимуме времени его действия. Крутой передний фронт токового импульса расплавляет кристаллы сульфата, когда другие методы не приносят ощутимых результатов. Время между зарядом и разрядом требуется также для охлаждения пластин и рекомбинацию электронов в кислотном электролите. Плавное падение тока во второй полуволне синусоиды создает необходимые условия для торможения электронов при переходе тока в отрицательную полуволну синусоиды через точку нуля. Для создания необходимых условий восстановления используется тиристорно-диодная схема регулирования тока. Тиристор во время своего переключения вырабатывает достаточно крутой передний токовый фронт и практически не подвержен нагреву во время работы, в отличии от возможного транзисторного исполнения. Синхронизация импульса тока заряда с питающим напряжением снижает вероятный уровень помех.

Момент роста уровня напряжения на батареи контролируется добавлением в схему отрицательной обратной связи по напряжению, с батареи на ждущий мультивибратор на микросхеме таймере DA1. Также в конструкции используется температурный датчик для защиты от перегрева основных силовых компонентов. Токовый регулятор заряда позволяет задать начальный уровень тока восстановления, исходя от параметров емкости аккумулятора. Контроль среднего тока заряда осуществляется по аналоговому амперметру с линейной шкалой и внутренним шунтом. В его оказаниях токи суммируются, поэтому показания среднего зарядного тока будут занижены.

Не следует долгое время подавать на батарею только отрицательную токовую полуволну - это приводит к разряду батареи с переполюсовкой пластин. В заряженной батареи всегда идет саморазряд из-за разного уровня плотности верхнего и нижнего уровня электролита в банке и других факторов.

В состав принципиальной схемы входит ждущий мультивибратор - генератор синхронизированных импульсов на широко распространенном таймере КР1006ВИ1, усилитель амплитуды токового импульса выполнен на биполярном транзисторе VT1, температурный датчик и усилитель напряжения отрицательной обратной связи на VT2 Напряжение синхронизации идет с двухполупериодного выпрямителя на диодах VD3, VD4 и поступает через резисторный делитель напряжения R13, R14 на второй вход нижнего компаратора микросборки DA1.

Частота импульсов ждущего мультивибратора определяется параметрами резисторов R1, R2 и емкости С1. В начальный момент на третьем выходе DA1 имеется высокий уровень напряжения при отсутствии на втором входе DA1 напряжения выше 1/3 U п, после его появления микросборка срабатывает с порогом, заданным резистором R14, на выходе генерируется импульс с периодом 10 мс и длительностью, зависящей от положения регулятора переменного сопротивления R2, - времени заряда емкости конденсатора С1. Сопротивление R1 задает минимальную длительность импульсов на выходе. Пятый вывод микросборки имеет прямой доступ к точке 2/3 U n внутреннего делителя напряжения. С ростом напряжения на батареи в конце заряда отпирается биполярный транзистор VT2 цепи отрицательной обратной связи и падает напряжение на пятом выводе DA1, с длительность импульса сокращается, время работы открытого тиристора падает. Импульс с третьего пина таймера через резистор R5 следует на вход усилителя на VT1.

Усиленный импульс через оптопару поступает на управляющий электрод тиристора, тиристор открывается и подает в цепь восстановления автомобильного аккумулятора импульс двухполупериодного тока заряда с продолжительностью, зависящей от положения движка переменного сопротивления R2. Резисторы R9, R10 защищают оптопару от возможных перегрузок. Температура силовых компонентов контролируется терморезистором R11, установленного в делителе цепи отрицательной ОС. С ростом температуры сопротивления терморезистора падает и шунтирование транзистором VT2 пятого вывода микросхемы, длительность импульса падает - ток тоже.

Питание таймера в схеме стабилизировано стабилитроном VD1. Электронная конструкция питается от вторичной обмотки трансформатора через VD2-VD4, пульсации сглаживаются емкостью С3. Тиристор питается от двухполупериодного пульсирующего напряжением и выполняет функцию ключа с регулируемым временем включения положительных токовых импульсов, отрицательный импульс следует в автомобильный аккумулятор с однополупериодного выпрямителя VD5.

В гелевых аккумуляторах нет газа – гелия, в них электролит просто находится в состоянии геля. Поэтому, не стоит опасаться за разгерметизацию, данный тип необслуживаемых аккумуляторов вполне можно открыть, при условии, что его не получается зарядить, и напряжение на нём просело ниже уровня в 10 В.

В гелевых аккумуляторах обязательно имеется электролит на основе воды, которая является типовым расходным материалом АКБ, так как она, при восстановлении с помощью электролиза разрушается на гидроксильную группу и водород. А утечку самого легкого элемента в окружающий воздух, прекратить практически невозможно, т.к водород просачивается через резиновые колпачки-клапаны, находящиеся под внешней пластмассовой крышкой.

Для восстановления гелевого аккумулятора необхожимо сорвать приклеенную верхнюю крышку, и вытащить все колпачки-клапаны. Воды надо долить совсем немного – залитая жидкость будет впитываться в фильтровальную бумагу, поэтому через полчаса проверьте – сколько дистиллированной воды осталось в каждой секции батареи. Ее уровень должен слегка покрывать поверхность пластин, поэтому лишнюю воду рекомендуется откачать с помощью резиновой груши.

Для этого закрываем все отсеки АКБ на колпачки-клапаны. А также не забываем накрыть их внешней крышкой, и придавливаем ее грузом (приклеим чуть позже). Во время заряда через колпачки будет скидываться избыточное давление, из-за образования водорода, а крышка будет служить для них препятствием.

Потерявшая ёмкость батарея из-за высыхания электролита, н начальный момент заряда не будет потреблять ток от ЗУ, поэтому напряжение следует выбрать в районе 15 В.

Заряжать придётся довольно долго – пока батарея не начнёт потреблять ток. Но если через 15 часов она не "кушает Амперы", то не ждите от моря погоды, а повышайте напряжение зарядного устройства до 20 В и не оставляйте аккумулятор без присмотра, до момента начала потребления тока.

Хорошо «раскачивает» нежелающий заряжаться аккумулятор метод, при котором сначала дают АКБ зарядиться, а потом разряжают её – и так поочерёдно, небольшими временными интервалами. Первые циклы, должны осуществляться под высоким напряжением – в районе 30 В, а в последующих напряжение зарядки нужно плавно снижать до 14 В.

Разряжать подзарядившейся аккумулятор нужно совсем маленькой нагрузкой например лампочкой или резистором на 5 или 10 Вт при этом следите за напряжением на АКБ, чтобы оно не стало ниже 10,5 В.

После того как вам удалось заставить «проблемный» аккумулятор потреблять ток, продолжайте восстанавливать его до полного заряда длительным заряжанием малым током где-то на уровне 0,05 от ёмкости.

Многие владельцы автомобилей полагают, что "жизнь" аккумулятора зависит только от качества его изготов­ления, поэтому покупают импортные аккумуляторы. В некоторых автомо­бильных журналах даже высказывает­ся мнение о том, что срок службы ак­кумулятора должен быть не более грда. Это, конечно, очень выгодно ком паниям - производителям.

Практика показывает, что если сле­дить за уровнем электролита и раз в 3 месяца производить тренировочный цикл (полный разряд с последующим полным зарядом), то срок службы ак­кумулятора можно увеличить до 9 лет при сохранении достаточно высоких параметров (емкости и максимально­го разрядного тока). Проведение тре­нировочных циклов не только продле­вает срок эксплуатации аккумулятора, но и увеличивает максимальный раз­рядный ток (уменьшает внутреннее сопротивление).

Но тренировочные циклы (тем бо­лее, устранение сульфатации) отни­мают много времени. Поэтому в ра­диолюбительской литературе опуб­ликовано много описаний автомати­ческих зарядных устройств , каж­дое из которых имеет как достоин­ства, так и недостатки.

Предлагаю еще одно устройство, которое при простой схеме облада­ет широкими функциональными возможностями.

Схема состо ит из стабилизатора напряжения (микро­схема DA 1), триггера Шмитта (эле­менты DD 1.1, DD 1.2), счетчика цик­лов разряда-заряда (микросхема DD 2) с узлом индикации состояния этого счетчика (R 8. . .. R 1 3, VT 1 . ... VT 6, VD 4.... VD 9), двух ключей (VT 7, VD 2, К1 и VT 8, VD 3, К2), инвертора DD 1.3, силового выпрямителя (HL 2, Т1, VD 10.... VD 1 3) и нагрузочного сопротивления, роль которого вы­полняет лампа HL 1 .

Стабилизатор на­пряжения на микро­схеме DA 1 служит для питания микро­схем DD 1, DD 2, а также источником опорного напряже­ния при контроле напряжения на аккумуляторе. Триг­гер Шмитта управляет ключом VT 7, VD 2, К1. Счетчик на микросхеме DD 2 подсчитывает количество разрядно- зарядных циклов и управляет ключом VT 8, VD 3, К2, который отключает на­грузку HL 1 от аккумулятора.

Работает прибор следующим обра­зом. Сначала нужно подключить к ус­тройству аккумулятор GB 1. При этом на выходе стабилизатора DA 1 появ­ляется напряжение +5 В, а на резис­торе R 15 образуется короткий поло­жительный импульс напряжения, ус­танавливающий счетчик DD 2 в нуле­вое состояние. При этом на его вы­ходе 0 высокий уровень, который от­крывает транзистор VT 1. Загорается светодиод VD 4. Если напряжение подключенного аккумулятора мень­ше 15 В, то на выходе триггера (вы­воде 3 DD 1.1) - "1", транзистор VT 7 открыт, а реле К1 включено. Реле К2 также включено, поскольку на выво­де 5 DD 2 - "О", соот­ветственно, на выходе (выводе 10) DD 1.3 - "1", и VT 8 открыт.

Устройство подклю­чается к сети 220 В. При этом начинается зарядка аккумулятора GB 1. Зарядный ток про­текает по цепи: диоды VD 10....VD 13, замкну­тые контакты К1.1, ак­кумулятор GB 1. Вели­чина зарядного тока ог­раничивается сопро­тивлением лампы накаливания HL 2, включенной в разрыв первичной об­мотки трансформатора Т1. По мере зарядки аккумулятора напряжение на нем и на резисторе R 2 увеличивает­ся. Когда напряжение на GB 1 дости­гает 15 В, триггер Шмитта переклю­чается, на выводе 3 DD 1.1 - "0", и транзистор VT 7 закрывается. Реле К1 отпускает, и его контакты К1.1 пе­реключают аккумулятор на разрядку (подключают нагрузку - лампу HL 1). Ток разрядки аккумулятора опреде­ляется сопротивлением лампы HL1.

При этом перепад напряжения с вы­хода триггера (вывода 4 DD 1.2) по­ступает на вывод 14 счетчика DD 2 и переключает его в следующее состо­яние, т.е. "1" на выходе 1. Тогда от­крывается транзистор VT 2, и загора­ется светодиод VD 5.

По мере разрядки аккумулятора напряжение на нем (и на резисторе R 2) уменьшается. Когда напряжение GB 1 уменьшается до 10,7 В, триггер опять переключается, транзистор VT 7 открывается. Срабатывает реле К1 и переключает аккумулятор на за­рядку. Через несколько циклов заряда - разряда при очередном срабаты­вании счетчика DD 2 на его выводе 5 появляется "1", соответственно, на выходе DD 1.3 - "0". Транзистор VT 8 закрывается, реле К2 отпускает, и лампа HL 1 отключается от аккуму­лятора. На этом тренировка аккуму­лятора заканчивается. Дальше оба реле выключены, а аккумулятор разряжается небольшим током, равным общему току потребления микросхем DDI , DD 2, DA 1 (всего около 4 мА).

Количество циклов тренировки аккумулятора можно изменять, под­ключая входы (выводы 8 и 9) эле­мента DD 1.3 к разным выходам мик­росхемы DD 2. Зарядный и разряд­ный ток аккумулятора регулируется подбором ламп HL 1 и HL 2 (HL 1 дол­жна быть рассчитана на напряже­ние 12 В, a HL 2 - на 220 В). При помощи резисторов R 2 и R 3 можно в широких пределах регулировать пороги напряжения на аккумулято­ре, при которых происходят пере­ключения триггера. При этом R 3 ре­гулирует ширину гистерезиса харак­теристики триггера, a R 2 одновре­менно и пропорционально изменя­ет оба пороговых напряжения сра­батывания.

Описанный способ тренировки ак­кумулятора, когда он полностью раз­ряжается (до напряжения 10,7 В), а затем полностью заряжается (до 15 В), является "классическим". В специальной литературе рекоменду­ются и другие способы тренировки, например, такой режим. Аккумулятор полностью заряжают до напряжения 15 В и отключают от зарядного уст­ройства. При снижении напряжения на нем до 12,8 В аккумулятор опять подключают к зарядному устройству и доводят его напряжение до 15 В. Процесс повторяют несколько раз. Предлагаемый прибор позволяет реализовать и этот режим. Для этого лампа HL 1 из схемы исключается, а HL 2 подбирается такой мощности, чтобы зарядный ток аккумулятора был около 0,05 от его номинальной емкости. В перерывах между заряда­ми аккумулятор будет разряжаться током примерно 4 мА.

Конденсатор С1 подавляет пуль­сации напряжения на входе тригге­ра, что повышает четкость его ра­боты. Диод VD 1 ограничивает на­пряжение на С1 в пределах 0...5 В (в принципе, VD 1 можно исклю­чить). Напряжения, при которых срабатывает триггер, достаточно стабильны, т.к. микросхема DD 1 пи­тается стабилизированным напря­жением.

Замена деталей должна произ­водиться в соответствии с их элект­рическими характеристиками. Мик­росхемы серии К561 желательно за­менить на микросхемы серии 564, т.к. последние имеют более широкий температурный диапазон. В каче­стве К1 и К2 использованы реле включения фар (90.3747-01) от ав­томобиля "УАЗ". Мощность транс­форматора Т1 должна быть не ме­нее 150 Вт (для зарядки током 6 А 12-вольтового аккумулятора). Для того, чтобы лампа HL 2 эффективно ограничивала и стабилизировала зарядный ток, на ней должна выде­ляться достаточная мощность, по­этому напряжение холостого хода трансформатора должно быть в пре­делах 19....30 В. Пампу HL 2 можно заменить конденсатором большой емкости, но практически это неудоб­но, т.к. трудно подобрать нужный конденсатор, и не будет стабилизи­роваться ток зарядки.

Для удобства пользования в схему можно добавить переключатель, из­меняющий количество циклов заряда-разряда. Он должен поочередно подключать входы DD 1.3 к выходам DD 2. Для повышения экономичнос­ти прибора в отключенном состоянии можно установить тумблеры, отклю­чающие светодиоды (VD 6....VD 9).

Например, если подключить входы DD 1.3 к выводу 7 DD 2, то светодиод VD 7 нужно отключить, иначе ток по­требления увеличится с 4 до 15 мА. Для уменьшения потребляемого тока можно также увеличить сопротивле­ние R 7 до 3 кОм, но при этом умень­шится яркость свечения светодиодов. Исходное (нулевое) положение стрелки амперметра РА1 должно быть в середине шкалы, а диапазон измерения тока - 1.0...10 А.

Устройство размещено в двух ме­таллических корпусах. В одном нахо­дится узел питания (VD 10 ...VD 13, Т1, FU 1), в другом - все остальные элементы (кроме лампы HL 1). Со­единение элементов, а также под­ключение лампы HL 1 и аккумулято­ра осуществляется при помощи стан­дартных вилок и розеток (220-воль- товых), закрепленных на корпусах.

Налаживание правильно со­бранного устройства заключается, в основном, в установке пороговых напряжений срабатывания тригге­ра. Для этого прибор отключается от сети, отсоединяется лампа HL 1, а вместо аккумулятора к прибору подключается регулируемый ис­точник постоянного напряжения. Изменяя сопротивления R 2 и R 3, устанавливаются нужные напряже­ния срабатывания (моменты сра­батывания определяются по щел­чкам реле К1).

Литература

1. К.Казьмин. Автоматическое за­рядное устройство. В помощь радио­любителю. Вып. 87. - M .: ДОСААФ, 1978.

2. В.Сосницкий. Зарядное устрой­ство-автомат. В помощь радиолюби­телю. Вып. 92. - M .: ДОСААФ, 1986.

3. А.Коробков. Прибор для автома­тической тренировки аккумуляторов. В помощь радиолюбителю. Вып. 96. - M .: ДОСААФ.1987.

4. А.Коробков. Приставка-автомат к зарядному устройству. В помощь радиолюбителю. Вып. 100. - M .: ДОСААФ, 1988.

5. Н.Дробница. Автоматическое за­рядное устройство. В помощь радио­любителю. Вып. 77. - M .: ДОСААФ, 1982.

ИСТОЧНИКИ ПИТАНИЯ

А. Коробков

прибор для АВТОМАТИЧЕСКОЙ ТРЕНИРОВКИ АККУМУЛЯТОРОВ

Описываемый прибор предназначен для обслуживания кислотных аккумуляторных батарей с номинальным напряжением 12 В и емкостью от 40 до 100 А*ч. Основ­ное «заболевание» таких батарей - сульфатация, вы­зывающая повышение внутреннего сопротивления и сни­жение емкости батареи . Один из наиболее изве­стных методов борьбы с сульфатацией заключается в периодической (1 - 2 раза в год) разрядке батареи ма­лым током (не более 0,05 ее емкости) и последующей зарядке ее таким же током .

Менее известен способ десульфатации, предусматривающий зарядку аккумуляторной батареи циклами: 6... 8 ч зарядки током 0,04...0,06 от значения емкости с пе­рерывом не менее 8 ч. В течение перерыва электродные потенциалы на поверхности и в глубине активной массы пластин аккумуляторов выравниваются, более плотный электролит из пор пластин диффундирует в межэлек­тродное пространство, при этом напряжение аккумуля­тора понижается, а плотность электролита увеличи­вается.

Рис. 1. Схема прибора для автоматической тренировки аккумуляторов

В предлагаемом приборе использован псевдокомби­нированный способ, при котором, производится разрядка до напряжения на каждом аккумуляторе 1,7...1,8 В, а за­тем последующая зарядка циклами. Критерием, исполь­зуемым при управлении процессом зарядки, является напряжение на аккумуляторной батарее, функционально связанное со степенью заряженности ее . Зарядка в каждом цикле заканчивается при достижении на клем­мах батареи напряжения 14,8В, а возобновляется при снижении его до 12,8...13 В. О таком способе заряд­ки рассказано в статье .

Прибор для автоматической тренировки аккумуля­торов (ПАТА) проводит разрядку батареи до напря­жения 10,5...10,8 В, автоматически переключается на режим зарядки и осуществляет ее циклами, как указа­но выше. Прибор работает в трех режимах. В первом режиме («Щ») возможны два варианта: либо зарядка циклами, либо разрядка до напряжения 10,5...10,8 В, а затем зарядка циклами. В следующем режиме («NU») происходит многократный переход от зарядки к разряд­ке при достижении на клеммах аккумуляторной бата­реи напряжения 14,8...15 В и от разрядки к зарядке при напряжении на клеммах 10,5...10,8 В. Третий режим («НЗ») соответствует работе обычного зарядного устрой­ства без автоматики.

Разряжается батарея током 2...1,7 А, а заряжается током 2 или 5 А (в первом случае он изменяется от 2 до 1,5 А, во втором - от 5,8 до 4,5 А).

Прибор питается от сети переменного тока напряже­нием 220 В и потребляет не более 25 Вт при отсутствии зарядки и не более 180 Вт при максимальном зарядном токе.

Принципиальная схема прибора приведена на рис. 1. Понижающий трансформатор Т1 обеспечивает на вто­ричной обмотке переменное напряжение около 19 В. С помощью диодов VD 1 - VD 4 получается пульсирую­щее напряжение амплитудой около 27 В, а после диода VD 5 на конденсаторе С1 образуется постоянное напря­жение около 26 В, необходимое для питания узла авто­матики. Пульсирующее напряжение подается на анод тринистора VS 1. Если на управляющий электрод три-нистора подать соответствующее напряжение, тринистор откроется и пропустит ток для зарядки аккумуляторной батареи через лампы HL 2 - HL 6 и выключатель SA 3. Ток зарядки ограничивается лампами накаливания HL 6 (в режиме «2А») или HL 4 - HL 6 (в режиме «5А»). Раз­ряжается батарея через транзистор VT 13 и резисторы R 25, R 26.

Управляются тринистор и транзистор VT 13 узлом автоматики. Он содержит источник образцового напря­жения (резистор R 15, диоды VD 9, VD 10), пороговый выключатель разрядки (транзисторы V - T 7, VT 8, рези­сторы R 17 - R 20), усилитель сигнала разрядного тока (транзисторы VT 10 - VT 12), пороговый переключатель зарядки (транзисторы VT 3 - VT 6 с соответствующими резисторами, включая R 13, R 16), усилитель. сигнала за­рядного тока (транзисторы VT 1, VT 2) и элементы за­прета сигнала зарядки (диод VD 7, транзистор VT 9). Рассмотрим работу этих каскадов.

Пороговый переключатель разрядки подключен к вы­ходным зажимам прибора ХТЗ, ХТ4, предназначенным для подключения аккумуляторной батареи. Имеющееся на них напряжение является одновременно и питающим и контролируемым напряжением выключателя.

Радиолюбителям известен аналог тринистора, состоя­щий из двух транзисторов разной структуры. Аналог способен по внешнему сигналу переходить в открытое состояние и сохранять его, пока хотя бы один из тран­зисторов находится в насыщении. Выключение насту­пает при снижении тока до порогового значения, когда оба транзистора выходят из насыщения. Пороговый вы­ключатель выполнен с аналогичными связями, но не непосредственными, а через резисторы, причем эмиттер одного из транзисторов подключен к образцовому на­пряжению, а база - к делителю напряжения. Благодаря этому пороговый выключатель обладает температурной стабильностью напряжения порога выключения. Наст­раивают выключатель на пороговое напряжение (10,5... 10,8 В) подстроечным резистором R 19.

Усилитель сигнала разрядного тока состоит из це­почки транзисторов с чередующейся структурой. Тран­зисторы работают в ключевом режиме. Работа одного из них (VT 11) поставлена в зависимость от наличия на­пряжения 26 В. Это сделано для прекращения разрядки батареи в случае аварийного выключения сетевого на­пряжения.

Пороговый переключатель зарядки состоит из тран­зисторного усилителя (VT 6), триггера Шмитта (VT 3, VT 4) и ключевого транзистора (VT 5). Последний пред­назначен для устранения влияния нижнего порога пере­ключения (резистор R 13) на верхний (резистор R 16).

Усилитель зарядного тока, как и разрядного,-состоит из цепочки транзисторов разной структуры, работающих в ключевом режиме. При этом коллекторный ток тран­зистора VT 1 может протекать через базовую цепь тран­зистора VT 2, когда закрыт транзистор VT 9 (т. е. нет разрядки). Диод VD 7 повышает надежность закрыва­ния транзистора VT 2 при открывании транзистора VT 9 (когда идет разрядка батареи и ток через управляющий электрод тринистора не должен протекать).

Диод VD 8 защищает управляющий электрод трини­стора от обратного тока, который мог бы быть при вы­ключении сети и подключенной аккумуляторной батарее.

Цепочка С2, R 29, VD 11 нужна для случая зарядки глубоко разряженной или сульфатированной батареи, когда на ее клеммах может возникнуть пульсирующее напряжение. Благодаря диоду VD 11 на конденсаторе С2 оказывается сглаженное напряжение. Без этой цепочки выбросы напряжения могли бы раньше времени вывести пороговый выключатель из режима зарядки.

Конденсатор СЗ играет роль своеобразного аккуму­лятора и используется для контроля исправности при­бора. В положении «Контроль», выключателя SA 3 он мо­жет наряжаться только через диод VD 12 и резистор R 34, а разряжаться через узел автоматики. Поскольку в режимах «1Ц» и «NЦ.» процессы зарядки и разрядки происходят с периодом повторения около 1 с, на вольт­метре PU 1 наблюдаются колебания стрелки, отражаю­щие напряжения порогов переключения и управляемость всех цепей зарядки и порогового выключателя.

Зажимы ХТ1 и ХТ2 с напряжением 12,6 В предна­значены для подключения вулканизатора, лампы под-светки, малогабаритного паяльника и другой нагрузки мощностью до 100 Вт.

Рассмотрим более подробно работу прибора в раз­личных режимах при установке выключателя SA 3 в по­ложение «Контроль» (аккумуляторная батарея не под­ключена) .

В режиме «1Ц» после подачи на блок сетевого на­пряжения на конденсаторе СЗ напряжение не повыша­ется, потому что отсутствует ток базы транзистора VT 1. Чтобы обеспечить начальные условия работы, переклю­чателем SA 1 кратковременно устанавливают режим «НЗ» и возвращают в положение «1Ц». После этого по­роговый переключатель начинает работать, запрещая зарядку при повышении напряжения на конденсаторе выше установленного максимума (14,8...15 В) и разре­шая, если оно стало ниже установленного минимума (12Д..13В).

При переводе переключателя SA 1 в режим «МЦ» на коллектор транзистора VT 8 подается через диод VD 6 напряжение, и пороговый выключатель срабатывает, разрешая разрядку. При. этом открытый транзистор VT 9 запрещает зарядку, и конденсатор СЗ разряжается че­рез узел автоматики до напряжения 10,5...10,8 В.

После опрокидывания порогового выключателя тран­зистор VT 9 закрывается, коллекторный ток транзисто­ра VT 1 протекает через диод VD 7 и базовую цепь тран­зистора VT 2. Этот транзистор, а вслед за ним и трини-стор открываются. Через конденсатор СЗ протекает за­рядный ток, и напряжение на конденсаторе повышается до 14,8...15 В.

Во время указанного контроля остаются непроверен­ными элементы разрядки, поскольку такие дефекты, как обрыв в цепях транзисторов VT 11 - VT 13, никак не отразятся на показаниях вольтметра PU 1. Для контро­ля работы этих элементов выключатель SA 3 устанавли­вают в положение «Работа» - тогда в режиме «NIJ,» конденсатор СЗ будет разряжаться в основном через транзистор VT 13. В результате начнет мигать лампа HL 7 «Разрядка», свидетельствуя об исправности цепей разрядки.

Аналогично работает прибор с подключенной акку­муляторной батареей. В режиме «1Ц» сразу начинается зарядка циклами (имеется в виду, что напряжение ба­тареи не превышает порогового напряжения 12,8...13 В). Горит лампа HL 2 при зарядном токе 2 А или HL 3 при токе 5 А. Нажатием кнопочного выключателя SB 1 «Раз­рядка» на запускающий вход порогового выключателя подается напряжение, в результате чего он срабатывает. Разрядка индицируется лампой HL 7.

В режиме «NU» при подключении аккумуляторной батареи работа может начаться как с зарядки, так и с разрядки - в зависимости от того, в каком режиме в момент включения находился пороговый выключатель. При желании установить какой-то конкретный режим, переключатель SA 1 сначала устанавливают в положе­ние «1Ц», а после этого - в положение «МЦ».

В режиме неавтоматической зарядки («НЗ») контак­ты переключателя блокируют пороговый выключатель, и тринистор управляется непосредственно от источника постоянного тока.

Рис. 2. Внешний вид прибора

Какие детали использованы в приборе? Постоянные резисторы R 25, R 26 - остеклованные проволочные типа ПЭВ-10, остальные - МЛТ указанной на схеме мощно­сти, подстроечные резисторы R 13, R 16, R 19 - типа ППЗ или другие. Кроме указанных на схеме, транзисторы VT 1, VT 6, VT 7, VT 10 могут быть П307, П307В П309-VT 2 - ГТ403А, ГТ403В - ГТ403Ю; VT 3, VT 4, VT 8 VT 9, VT 11 - МП20, МП20А, МП20Б, МП2.1, МП21А - МП21Е; VT 5, VT 12 - КТ603А, КТ608А, КТ608Б; VT 13 - любой из серий П214 - П217. Диоды VD 1 - VD 4 могут быть, кроме указанных на схеме, Д242, Д243 Д243А Д245, Д245А, Д246, Д246А, Д247; VD 5 - КД202Б - КД202С; VD 6, VD 7 - Д223А, Д223Б, Д219А, Д220- VD 8, VD 11, УШ2 - Д226В - Д226Д, Д206-Д211; вместо стабилитронов Д808 подойдут Д809 - Д813, Д814А - Д814Д. Тринистор может быть КУ202А - КУ202Н.

Конденсаторы С1, СЗ - К50-6; С2 - К50-15. Лампы HL 1- HL 3, Н17-СШ8, HL 4- HL 6 - автомобильные на напряжение 12 В и мощность 50 + 40 Вт (использует­ся нить на 50 Вт). Выключатель Q1 - тумблер ТВ (ТП), выключатели . SA 2, SA 3 - тумблеры ВБТ, кнопочный выключатель SB 1 - КМ-1, переключатель SA 1 - типа ПКГ (ЗПЗН). Трансформатор 77 - готовый, ТН-61-220/127-50 (номинальная мощность 190 Вт). Вольтметр постоянного тока - типа М4200 со шкалой на 30 В.

Конструкция прибора показана на рис. 2 и 3. Осно­вой его является основание размерами 240x225 мм из дюралюминия толщиной 3 мм. К основанию прикрепле­ны лицевая панель, монтажная плата с деталями узла автоматики, конденсаторы С1, СЗ, трансформатор пи­тания, задняя и боковая монтажные платы.

На лицевой панели расположены органы управления и индикации, а также зажимы ХТ1, ХТ2. На задней монтажной плате, изготовленной из стеклотекстолита толщиной 3 мм (размеры платы 105x215 мм), смонти­рованы диоды VD 1 - VD 4 (на ребристых радиаторах), диод VD 5, тринистор (на ребристом радиаторе), тран­зистор VT 13 (на П-образном радиаторе), резисторы R 25, R 26, лампы HL 4 - HL 6. На боковой монтажной плате, установленной рядом с трансформатором, смон­тированы резисторы Rll , R 29, R 32 - R 34, диоды VD 8, VD 11, VD 12, конденсатор С2, подстроечные резисторы.

Для подключения аккумуляторной батареи через отверстие в лицевой панели выведен шланг с двумя тол­стыми, проводами и маркированными (знаками « + » и « - ») зажимами на концах. Сверху блок прикрыт ко­жухом, изготовленным из листового алюминия .

Чертеж платы узла автоматики приведен на рис. 4. К основанию ее крепят с помощью двух Г-образных уголков-кронштейнов.

Рис. 3. Вид на монтаж прибора

Для налаживания прибора понадобятся регулируе­мый источник постоянного тока с максимальным напря­жением 15 В и током нагрузки не менее 0,2 А, контроль­ный вольтметр или сигнальная лампа на напряжение 27 В.

Рис. 4. Печатная плата (а) узла автоматики и расположение деталей на ней (б)

Перед налаживанием движки подстроечных резисто­ров устанавливают в положение максимального сопро­тивления, контрольный вольтметр или сигнальную лампу подключают между выводом 2 платы узла автоматики и общим проводом (зажим ХТ4), а источник питания подключают (с соблюдением полярности) к выходным зажимам прибора. Переключатель SA 1 устанавливают в положение «1Ц», выключатель SA 3 - в положение «Контроль». Выходное напряжение источника постоян­ного тока должно быть 14,8...15 В.

После включения прибора в сеть на контрольном вольтметре должно быть напряжение около 26 В. Плав­но перемещая движок подстроечного резистора R 16, добиваются, чтобы контрольное напряжение упало скач­ком, до нуля.

Устанавливают на источнике напряжение 12,8...13 В и плавно перемещают движок резистора R 13 до появ­ления на контрольном вольтметре скачком напряжения 26 В. Нажимают кнопку SB 1 - контролируемое напря­жение вновь должно упасть до нуля. Установив на источнике напряжение 10,5...10,8 В, перемещают движок резистора R 19 до появления на контрольном вольтметре напряжения 26 В.

После этого следует проверить и при необходимости подобрать точнее уровни срабатывания автомата при изменении напряжения источника питания.

Установка.верхнего порога 15 В не вызывает выки­пания электролита после полной зарядки батареи, по­тому что батарея в этом случае включается автоматом на зарядку на 8...10 мин и отключается примерно на 2 ч. Наблюдения показали, что при работе в таком режиме даже в течение нескольких месяцев уровень электролита в банках аккумуляторов не понижается.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их "асимметричным" током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

На рис. 1 приведено простое , рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.

Рис. 1 Электрическая схема зарядного устройства.

Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22...25 В.

Измерительный прибор РА1 подойдет со шкалой 0...5 А (0...3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000...18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости. Последняя буква в обозначении транзистора может быть любой.

Рис. 2 Электрическая схема пускового устройства.

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.

Резисторы применены такие R1 типа С2-23, R2 - ППБЕ-15, R3 - С5-16MB, R4 - ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.

Приведенные схемы пускового (рис.2) и зарядного устройств (рис. 1) можно легко объединить (при этом не потребуется изолировать корпус транзистора VT1 от корпуса конструкции), для чего на пусковом трансформаторе достаточно намотать еще одну обмотку примерно 25...30 витков проводом ПЭВ-2 диаметром 1,8...2,0 мм.