Сайт о телевидении

Сайт о телевидении

» » Состоит блок питания для компьютера. Разъемы блока питания. Чем больше, тем лучше

Состоит блок питания для компьютера. Разъемы блока питания. Чем больше, тем лучше

Многие пользователи, которые пытаются разобраться в устройстве своего ПК, не понимают, что такое БП в компьютере. А между тем, это один из самых важных элементов в системе, без которого вообще ни одно комплектующее работать не будет. Давайте разберемся, что собой представляют блоки питания, определим их устройство, виды, плюсы и минусы.

Определение

Что такое БП в компьютере? Если сказать коротко, это - устройство для преобразования сетевого переменного напряжения в постоянное для питания всех комплектующих в системном блоке. В частности, блок питания подает напряжение на компоненты: видеокарту, оперативную память, жесткий диск, сетевую карту, процессор, подключенные периферийные устройства. Если все эти комплектующие подключить напрямую к сети 220 В, то они просто сгорят. Комплектующие для работы требуют наличия напряжения 12 или 24 В (в основном), и задача блока питания - дать требуемое напряжение.

Также есть и другая задача этого элемента - защищать комплектующие компьютера от возможных перепадов напряжения. По сути, это устройство изменения сетевого напряжения, которое выглядит как небольшая черная коробка с вентилятором. Она устанавливается в системный блок, и именно в нее входит сетевой кабель.

Требуемое напряжение

Питание БП компьютера осуществляется от сети с напряжением 220 В. Но в разных странах напряжение тока и его частота в сети могут различаться. Например, в России и в большинстве европейских стран напряжение в сети составляет 220/230 В при частоте 50 Гц. Однако в США напряжение в сети равно 120 В при частоте 60 Гц. Австралия в этом плане тоже отличается - там напряжение равно 240 В/50 Гц. Следовательно, при создании блока питания учитывают параметры сети той страны, в которую планируются поставки. То есть, если привезти в Россию блок питания, купленный в США, то он, вероятнее всего, работать не будет.

Есть также универсальные блоки питания со специальным регулятором напряжения. То есть на блоке можно выставить значение напряжения в сети, и прибор самостоятельно будет адаптирован к нему.

Если компьютер не включается при нажатии на кнопку включения, то в первую очередь причину нужно искать именно в блоке и при необходимости заменять его. К сожалению, недорогие модели, которыми сегодня завален рынок России, ломаются слишком часто.

Мощность БП компьютера

Сегодня есть много разных блоков, которые способны выдавать мощность в огромном диапазоне. В современных ноутбуках мощность может варьироваться в диапазоне 25-100 Вт. Что касается персональных компьютеров, то здесь в зависимости от энергопотребления комплектующих можно использовать БП на 2000 Вт.

Среди пользователей ходят слухи, что чем мощнее будет блок, тем лучше, хотя на самом деле это не совсем так. Не каждому пользователю нужно столь мощное и дорогое устройство. Если рассудить, то приобретение дорогого и мощного БП для слабого компьютера - это бесполезная трата денег не только при покупке самого агрегата, но и при эксплуатации, так как он будет потреблять много лишней электроэнергии.

Впрочем, на сегодняшний день на полках магазинов в основном представлены устройства на 400-500 Вт. Мощности таких комплектующих вполне достаточно для обеспечения питанием стандартного компьютера с хорошим "железом". Но стабильную работу мощного игрового компьютера они обеспечить не способны.

Виды и различия БП

Теперь, когда мы понимаем, что такое БП в компьютере, можно поговорить про их виды и отличительные особенности. Сегодня существуют импульсные и трансформаторные блоки. Каждый вид имеет свои достоинства и недостатки, которые необходимо рассмотреть подробнее.

Трансформаторные

Это самый распространенный вид, который продается чаще всего. В большинстве современных системах практически не используется подобное устройство БП компьютера, которое представлено следующими элементами:

  1. Трансформатор.
  2. Выпрямитель.
  3. Сетевой фильтр.

Один из таких блоков показан на фото ниже.

Принцип работы

Принцип работы такого устройства относительно прост: через первичную обмотку трансформатор принимает на себя напряжение сети. Затем с помощью выпрямителя переменный разнонаправленный ток преобразовывается в постоянный и однонаправленный. При этом может использоваться разные выпрямители: одно- или двухполупериодный. В любом случае применяются диодные мосты, которые состоят из:

  1. Двух диодов - в первом типе.
  2. Четырех диодов - во втором типе.

Применение двух элементов в выпрямителе характерно для БК с удвоенным напряжением либо в трехфазных устройствах.

Сетевой фильтр в устройстве БП компьютера - это обычный конденсатор с большой емкостью. Он сглаживает пульсации тока, из-за чего на комплектующие подается относительно чистый и равномерный ток.

Также вместо обычных трансформаторов внутри таких блоков могут использоваться автоматические устройства.

Работа трансформаторных БП

Чтобы детальнее понять, что такое БП в компьютере и как они работают, нужно иметь хотя бы начальные знания законов электротехники. Габариты блоков питания трансформаторного типа напрямую зависят от габаритов используемых внутри трансформаторов. Размеры устройств высчитываются по формуле:

В этой формуле:

  1. N - число витков на 1 В напряжения;
  2. f - частота тока (переменного);
  3. B - образующаяся в магнитопроводе индукция магнитного поля;
  4. S - площадь сечения магнитопровода.

Следовательно, чем будет больше витков и сечение провода, тем и трансформатор будет больше. Это влечет за собой увеличение габаритов самого блока. Однако если сечение провода уменьшить, то придется увеличить количество витков (N), что не удастся в компактных трансформаторах. Если трансформатор является маломощным, то много витков с малым сечением не повлияет на работу самого блока питания, так как сила тока в подобных устройствах будет низкой. Однако при повышением мощности ток будет расти, что приведет к рассеиванию тепловой мощности.

Следовательно, трансформаторные блоки питания с частотой работы 50 Гц могут быть только большими и тяжелыми. Подобные устройства непрактично использовать в современных компьютерах в силу их веса и габаритов, а также низкого КПД.

Однако есть и положительные стороны: надежность и простота, удобство ремонта (все элементы легко заменить в случае поломки), отсутствие радиопомех.

Импульсные блоки питания

В этих устройствах используются иные конструкторские решения, позволяющие увеличить частоту тока. Ниже представлен классический БП подобного типа.

Работает подобный блок питания следующим образом:

  1. Переменный ток из сети поступает в устройство, выпрямляется и становится постоянным.
  2. Постоянный ток конвертируется в частотные импульсы.
  3. Эти импульсы поступают на трансформатор. Если предусмотрена гальваническая развязка, то прямоугольные импульсы поступают на выходной ФНЧ.

Отметим, что есть кардинальные отличия между этими двумя типами БП. В частности импульсные отличаются следующими особенностями:

  1. При повышение частоты тока возрастает КПД трансформатора.
  2. Требования к сечению сердечника минимальные.
  3. Возможность создания компактных и легких блоков питания за счет установки эффективных и небольших трансформаторов.
  4. Применение отрицательной обратной связи дает возможность стабилизировать выходное напряжение, что положительно повлияет на стабильность работы всех комплектующих и системы в целом.

Достоинства импульсных блоков питания

  1. Высокий КПД, который достигает 92-98%.
  2. Малый вес и габариты.
  3. Надежность.
  4. Возможность работы в широком частотном диапазоне. Один и тот же импульсный блок способен работать в разных странах мира.
  5. Защита от короткого замыкания.
  6. Низкая стоимость.
  1. Плохая ремонтопригодность. Если обычный трансформаторный блок легко отремонтировать, заменив практически любой элемент на плате, то с импульсным устройством все сложнее. Поэтому переделка БП компьютера импульсного типа считается сложной задачей. Ремонт в мастерской может обойтись дорого.
  2. Излучение высокочастотных помех.

Теперь мы выяснили, что такое БП в компьютере и как они работают. На данный момент на рынке продаются в основном импульсные приборы, а трансформаторные практически отсутствуют.

Как проверить БП компьютера?

Если компьютер не включается, то проблема может заключаться именно в БП. Для проверки устройства нам понадобится мультиметр. Итак, перед тем, как проверить БП компьютера на работоспособность, необходимо отключить все комплектующие и сам БП. Затем берем обычную скрепку, распрямляем ее в форме U. Берем коннектор на 20/24 пина (самый большой) и с помощью нашей скрепки замыкаем черный и зеленый контакты. Учитывая, что пальцы будут касаться металла, нужно убедиться, что блок питания отключен от розетки.

Теперь опускаем скрепку и включаем БП в розетку. Если вентилятор начал вращаться при включении устройства, то значит, что оно рабочее.

Теперь необходимо замерить напряжение на разъемах. В зависимости от модели блока питания напряжение на разъемах может немного отличаться. Поэтому в инструкции (или в интернете) необходимо найти информацию о том, какие параметры напряжения должны быть на разных разъемах и замерить их мультиметром. Если параметры отличаются от нормальных, то значит, что с БП что-то не так.

В настоящее время практически не используются.

  • Напряжение −5 В использовался только интерфейсом ISA и из-за фактического отсутствия этого интерфейса на современных материнских платах провод −5 В в новых блоках питания отсутствует.
  • Напряжение −12 В необходим лишь для полной реализации стандарта последовательного интерфейса RS-232 , поэтому также часто отсутствует.
  • Напряжения ±5, ±12, +3,3, +5 В дежурного режима используются материнской платой. Для жёстких дисков , оптических приводов , вентиляторов используются только напряжения +5 и +12 В.
  • Современные электронные компоненты используют напряжение питания не выше +5 Вольт. Наиболее мощные потребители энергии, такие как видеокарта , центральный процессор , северный мост подключаются через размещенные на материнской плате или на видеокарте вторичные преобразователи с питанием от цепей как +5 В так и +12 В.
  • Напряжение +12 В используется для питания наиболее мощных потребителей. Разделение питающих напряжений на 12 и 5 В целесообразно как для снижения токов по печатным проводникам плат, так и для снижения потерь энергии на выходных выпрямительных диодах блока питания.
  • Напряжение +3,3 В в блоке питания формируется из напряжения +5 В, а потому существует ограничение суммарной потребляемой мощности по ±5 и +3,3 В.
  • В большинстве случаев используется импульсный блок питания, выполненный по полумостовой (двухтактной) схеме . Блоки питания с накапливающими энергию трансформаторами (обратноходовая схема) естественно ограничены по мощности габаритами трансформатора и потому применяется значительно реже.

    Устройство (схемотехника)

    Импульсный блок питания компьютера (ATX) со снятой крышкой: A - входной диодный выпрямитель , ниже виден входной фильтр ; B - входные сглаживающие конденсаторы , правее виден радиатор высоковольтных транзисторов ; C - импульсный трансформатор , правее виден радиатор низковольтных диодных выпрямителей ; D - дроссель групповой стабилизации ; E - конденсаторы выходного фильтра

    Широко распространённая схема импульсного источника питания состоит из следующих частей:

    Входные цепи

    • Отдельный маломощный блок питания, выдающий +5 В дежурного режима мат. платы и +12 В для питания микросхемы преобразователя самого ИБП. Обычно он выполнен в виде обратноходового преобразователя на дискретных элементах (либо с групповой стабилизацией вых. напряжений через оптрон плюс регулируемый стабилитрон TL431 в цепи ОС , либо линейными стабилизаторами 7805/7812 на выходе) или же (в топовых моделях) на микросхеме типа TOPSwitch.
    Преобразователь
    • Полумостовой преобразователь на двух биполярных транзисторах
    • Схема управления преобразователем и защиты компьютера от превышения/снижения питающих напряжений, обычно на специализированной микросхеме (TL494, UC3844, KA5800, SG6105 и пр.).
    • Импульсный высокочастотный трансформатор , который служит для формирования необходимых номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга). Пиковые напряжения на выходе высокочастотного трансформатора пропорциональны входному питающему напряжению и значительно превышают требуемые выходные.
    • Цепи обратной связи , которая поддерживает стабильное напряжение на выходе блока питания.
    • Формирователь напряжения PG (Power Good, «напряжение в норме»), обычно на отдельном ОУ .
    Выходные цепи
    • Выходные выпрямители. Положительные и отрицательные напряжения (5 и 12 В) используют одни и те же выходные обмотки трансформатора, с разным направлением включения диодов выпрямителя. Для снижения потерь, при большом потребляемом токе, в качестве выпрямителей используют диоды Шоттки , обладающие малым прямым падением напряжения.
    • Дроссель выходной групповой стабилизации. Дроссель сглаживает импульсы, накапливая энергию между импульсами с выходных выпрямителей. Вторая его функция - перераспределение энергии между цепями выходных напряжений. Так, если по какому-либо каналу увеличится потребляемый ток, что снизит напряжение в этой цепи, дроссель групповой стабилизации как трансформатор снизит напряжение по другим цепям. Цепь обратной связи обнаружит снижение выходных цепей, увеличит общую подачу энергии, и восстановит требуемые значения напряжений.
    • Выходные фильтрующие конденсаторы. Выходные конденсаторы, вместе с дросселем групповой стабилизации интегрирует импульсы, тем самым получая необходимые значения напряжений, которые значительно ниже напряжений с выхода трансформатора
    • Один (на одну линию) или несколько (на несколько линий, обычно +5 и +3,3) нагрузочных резисторов 10-25 Ом, для обеспечения безопасной работы на холостом ходу .

    Достоинства такого блока питания:

    • Простая и проверенная временем схемотехника с удовлетворительным качеством стабилизации выходных напряжений.
    • Высокий КПД (65-70 %). Основные потери приходятся на переходные процессы, которые длятся значительно меньшее время, чем устойчивое состояние.
    • Малые габариты и масса, обусловленные как меньшим выделением тепла на регулирующем элементе, так и меньшими габаритами трансформатора, благодаря тому, что последний работает на более высокой частоте.
    • Меньшая металлоёмкость, благодаря чему мощные импульсные источники питания стоят дешевле трансформаторных, несмотря на бо́льшую сложность
    • Возможность включения в сети широкого диапазона напряжений и частот, или даже постоянного тока. Благодаря этому возможна унификация техники, производимой для различных стран мира, а значит и её удешевление при массовом производстве.

    Недостатки полумостового блока питания на биполярных транзисторах:

    Стандарты

    AT (устаревший)

    В блоках питания у компьютеров форм-фактора выключатель питания разрывает силовую цепь и обычно вынесен на переднюю панель корпуса отдельными проводами; питание дежурного режима с соответствующими цепями отсутствует в принципе. Однако почти все материнские платы стандарта АТ+ATX имели выход управления блоком питания, а блоки питания, в то же время, вход, позволяющий материнской плате стандарта АТ управлять им (включать и выключать).

    Блок питания стандарта AT подключается к материнской плате двумя шестиконтактными разъёмами, включающимися в один 12-контактный разъём на материнской плате. К разъёмам от блока питания идут разноцветные провода, и правильным является подключение, когда контакты разъёмов с чёрными проводами сходятся в центре разъёма материнской платы. Цоколёвка AT-разъёма на материнской плате следующая:

    1 2 3 4 5 6 7 8 9 10 11 12
    -
    PG пустой +12V -12V общий общий общий общий -5V +5V +5V +5V

    ATX (современный)

    У 24-контактного ATX разъёма, последние 4 контакта могут быть съёмными, для обеспечения совместимости с 20-контактным гнездом на материнской плате

    Повышены требования к +5VDС - теперь БП должен отдавать ток не менее 12 А (+3.3 VDC - 16,7 А соответственно, но при этом совокупная мощность не должная превысить 61 Вт) для типовой системы потребления мощностью 160 Вт. Выявился перекос выходной мощности: раньше основным был канал +5 В, теперь были продиктованы требования по минимальному току +12 В. Требования были обусловлены дальнейшим ростом мощности комплектующих (в основном, видеокарты), чьи требования не могли быть удовлетворены линиями +5 В из-за очень больших токов в этой линии.

    Разъёмы БП / потребителей питания

    Распиновка SATA-разъёмов

    Разъём ATX PS 12V (P4 power connector)

    Один из двух шестиконтактных разъёмов питания AT

    • 20-контактный разъём основного питания +12V1DCV использовался с первыми материнскими платами форм-фактора ATX , до появления материнских плат с шиной PCI-Express .
    24-контактный разъём питания материнской платы ATX12V 2.x
    (20-контактный не имеет последних четырёх: 11, 12, 23 и 24)
    Цвет Сигнал Контакт Контакт Сигнал Цвет
    Оранжевый +3.3 V 1 13 +3.3 V Оранжевый
    +3.3 V sense Коричневый
    Оранжевый +3.3 V 2 14 −12 V Синий
    Чёрный Земля 3 15 Земля Чёрный
    Красный +5 V 4 16 Power on Зелёный
    Чёрный Земля 5 17 Земля Чёрный
    Красный +5 V 6 18 Земля Чёрный
    Чёрный Земля 7 19 Земля Чёрный
    Серый Power good 8 20 −5 V Белый
    Фиолетовый +5 VSB 9 21 +5 V Красный
    Жёлтый +12 V 10 22 +5 V Красный
    Жёлтый +12 V 11 23 +5 V Красный
    Оранжевый +3.3 V 12 24 Земля Чёрный
    Контакт 20 (и белый провод) используется для обеспечения −5 В постоянного тока в ATX и ATX12V версии до 1.2. Это напряжение не является обязательным уже в версии 1.2 и полностью отсутствует в версиях 1.3 и старше.
    В 20-контактной версии правые контакты нумеруются с 11 по 20.
    Провод +3.3 VDC оранжевого цвета и отводка +3.3 V sense коричневого цвета, подключенные к 13-му контакту, имеют толщину 18 AWG ; все остальные - 22 AWG

    Также на БП размещаются:

    КПД - «80 PLUS»

    Внешние изображения
    Чертеж БП FSP600-80GLN
    Сборочный чертеж БП FSP600-80GLN в формате PDF

    Производители компьютерных блоков питания

    • Cooler Master
    • Corsair

    См. также

    Примечания

    1. для соответствия требованиям законодательства стран по электромагнитным излучениям , в России - требованиям СанПиН 2.2.4.1191-03 2.2.4.1191-03.htm «Электромагнитные поля в производственных условиях, на рабочих местах. Санитарно-эпидемиологические правила и нормативы»
    2. Б.Ю. Семенов Силовая электроника: от простого к сложному. - М .: СОЛОМОН-Пресс, 2005. - 415 с. - (Библиотека инженера).
    3. На пиковой нагрузке +12 VDC, диапазон выходного напряжения +12 VDC может колебаться в пределах ± 10.
    4. Минимальное напряжение уровнем 11.0 VDC во время пиковой нагрузки по +12 V2DC.
    5. Выдержка в диапазоне требуется разъёму основного питания материнской платы и разъёму питания S-ATA .
    6. Совокупная мощность по линиям +3.3 VDC и +5 VDC не должная превысить 61 Вт
    7. Совокупная мощность по линиям +3.3 VDC и +5 VDC не должная превысить 63 Вт
    8. Совокупная мощность по линиям +3.3 VDC и +5 VDC не должная превысить 80 Вт

    Приветствую, уважаемые читатели. Столкнулся с такой проблемой: с недавнего времени мой компьютер стал тормозить. И это совпало как раз с понижением напряжения в электрической сети. А заметил я это по накалу ламп освещения. Так что все подозрения на вирусы и прочие неполадки я сразу отбросил.

    Просто мой старенький блок питания не стал справляться, ему не хватало сил вытянуть напряжения до нужного уровня. Вот отсюда и пошли проблемы с системой. И в этой статье я поделюсь с вами некоторыми мыслями о блоках питания в компьютере.

    Казалось бы, маленький компонент системного блока (это же не видеокарта), зачем ему уделять целую статью? Все просто: очень многие не относятся с должным «уважением» к источнику питания своего ПК, что приводит к неприятным последствиям. Поэтому давайте разбираться, зачем нужен блок питания в компьютере и как правильно его выбрать.

    Что собой представляет блок питания и для чего служит

    Блок питания (он же БП) – источник питания в , который отвечает за обеспечение энергией остальных компонентов. От БП во многом зависит долговечность и стабильность работы всей системы. Помимо этого, компьютерный блок питания препятствует потере информации с персонального компьютера, предотвращая скачки энергии.

    Уверен, известно каждому человеку мало-мальски знакомому с техникой, что работает от розетки. Однако далеко не каждый пользователь в курсе, что компоненты системы не могут получать энергию напрямую.
    Вот так плавно мы подошли к самому интересному: для чего нужен блок питания в ПК. По двум причинам:

    • Во-первых, ток в электросети переменный, что очень «не нравится» компьютерам. Блок питания делает ток постоянным, исправляя положение;
    • Во-вторых, каждый компонент ПК, да и ноутбука, требует различного напряжения. И вновь на помощь приходит БП, выдавая процессору и видеокарте необходимый ток.

    Выбираем блок питания для компьютера

    Конечно, куда интереснее выбирать для своего «товарища» дорогую видеокарту или внешний , чем БП. Поэтому этот компонент часто покупается не в первую очередь, и так сказать, на последние деньги. Однако следует понимать: модель, у которой низкая мощность, может не потянуть современную видеокарту. Но не расстраивайтесь – БП не так уж много стоит. Итак, я расскажу вам, на что обратить внимание при покупке, а вы уже решите, какой выбрать.

    Мощность

    Первое, на что следует обратить внимание– мощность модели. Выбирать её следует исходя из личных потребностей и остального «железа». Если у вас персональный компьютер офисного типа (слабые компоненты, задачи сводятся к работе с текстовыми редакторами и серфингу в Сети), то достаточно модели на 300 - 400 Ватт. Стоят они довольно дёшево, поэтому наиболее популярны на рынке. А вот любителям «погонять» в современные игры придётся раскошелиться на более дорогой БП, который сможет потянуть все ваше «железо». Не помешает еще и прикупить.

    Как узнать, какая нужна мощность? К счастью пользователей, сегодня в интернете полно сервисов, которые помогут сделать расчёт, чтобы определить необходимую мощность для ваших компонентов. Рассчитать можно и самостоятельно, не так уж это и сложно. Достаточно сложить мощность всех компонентов вашей системы: материнская плата (50-100 Ватт); процессор (65-125 Ватт); видеокарта (50-200 Ватт); жёсткий диск (12-25 Ватт); ОЗУ (2-5 Ватт). Рекомендуется к получившемуся числу добавить 30% на случай перегрузок. Дерзайте!

    КПД

    Этому очень важному моменту частенько пользователи-новички не уделяют внимание. А надо бы. От коэффициента полезного действия зависит долговечность блока питания, а также расход электроэнергии. Дело в том, что БП принимает определённое количество энергии, но отдаёт уже меньшее, теряя часть. Производители решили эту проблему, разделив модели по классам: дорогие – более эффективные, дешёвые – будьте добры мириться с потерей энергии. Такая классификация осуществляется при помощи специальных наклеек: Bronze, Silver, Gold, Platinum (от лучшего к худшему).

    Разъёмы

    Итак, до подключения БП ещё далеко – определяемся с разъёмами. Здесь советов быть не может, особенно если вы уже выбрали основные компоненты для системы. Выбирайте набор разъёмов, отталкиваясь остального «железа». Если вы решили уделить блоку больше внимания, купив его в первую очередь, то присмотритесь к последним моделям, которые получили современные порты. Конечно, если финансы позволяют.

    Стандартный набор разъёмов сегодня выглядит следующим образом: разъем для подключения материнской платы (24-пиновый), питание процессора (4-пиновый), оптические приводы и жёсткие диски (15-контактные SATA), питание видеокарты (хотя бы один 6-пиновый). Учтите, что если у вас очень старая система, то этот набор разъёмов может не подойти. Да и найти БП для устаревших компонентов очень проблематично.

    Защита

    Сталкиваясь с различными сбоями и проблемами, производители постепенно наделяли свой продукт всевозможной защитой от неблагоприятных воздействий. Сегодня список таких функций включает десятки наименований. Найдите на коробке или в приложенной инструкции, от чего защищена модель (скачки напряжения, сбои и так далее). Больше функций – лучше.

    Шум и охлаждение

    Да-да, эти характеристики взаимосвязаны. Маломощный БП греется не сильно, поэтому и система охлаждения у него состоит из небольшого вентилятора. Покупая модель для игровой системы, можете быть уверены, что нагреваться он будет не хуже печки (исключение – дорогие блоки известных производителей). Никуда не денешься и от шума, который издаёт мощный БП вкупе с остальными компонентами.

    Современные производители предлагают модели с вентиляторами разного размера, самый распространённый – 120 мм. Есть ещё блоки на 80 мм и 140 мм. В первом варианте – сильный шум и слабое охлаждение, во втором – сложная замена вентилятора в случае выхода из строя.


    Это всё. Есть, конечно, ряд других параметров, на которые эксперты обращают при выборе блока питания, но учитывать их стоит, если покупаете модель для сложных (редких) задач. В остальных случаях - сборка домашнего ПК - и наших советов будет достаточно.

    Цены

    Сегодня производители предлагают огромное количество блоков питания по самым разным ценам. Хотите сэкономить? Не вопрос, модели для офисной системы можно купить в районе 25-35 долларов. Добавляем ещё 25 долларов и у нас неплохой БП на 700 Ватт. Модели для мощных игровых систем могут стоить 250 долларов и выше.

    Подключаем

    Купить – купили, но ведь не для того, чтобы на полке лежал. Теперь его необходимо подключить. Самый простой вариант, если вы совсем не разбираетесь в компьютерах – друг, который сделает все за несколько минут. А если вы сами хотите собрать свою систему, то ждите новую статью, в которой мы подробно разберём подключение блока питания. На самом деле, сложного ничего нет. Главное – не пытайтесь впихнуть кабель в разъем, если он не хочет влезать.
    Читайте другие интересные статьи в блоге, делитесь с друзьями. Удачи!

    Дорогой читатель! Вы посмотрели статью до конца.
    Получили вы ответ на свой вопрос? Напишите в комментариях пару слов.
    Если ответа не нашли, укажите что искали .

    Трансформаторные БП

    Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора , у которого первичная обмотка рассчитана на сетевое напряжение . Затем устанавливается выпрямитель , преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр , сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

    Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков, защиты от КЗ , стабилизаторы напряжения и тока.

    Габариты трансформатора

    Существует формула, несложно выводимая из базовых законов электротехники (и даже уравнений Максвелла):

    (1 / n) ~ f * S * B

    где n - число витков на 1 вольт (в левой части формулы стоит ЭДС одного витка, которая есть по уравнению Максвелла производная от магнитного потока, поток есть нечто в виде sin (f * t), в производной f выносится за скобку), f - частота переменного напряжения, S - площадь сечения магнитопровода, B - индукция магнитного поля в нем. Формула описывает амплитуду B, а не мгновенное значение.

    Величина B на практике ограничена сверху возникновением гистерезиса в сердечнике, что приводит к потерям на перемагничивание и перегреву трансформатора.

    Если принять, что f есть частота сети (50 Гц), то единственные два параметра, доступные для выбора при разработке трансформатора, есть S и n. На практике принята эвристика n = (от 55 до 70) / S в см^2.

    Увеличение S означает повышение габаритов и веса трансформатора. Если же идти по пути снижения S, то это означает повышение n, что в трансформаторе небольшого размера означает снижение сечения провода (иначе обмотка не поместится на сердечнике).

    Увеличение n и снижение сечения означает сильное увеличение активного сопротивления обмотки. В маломощных трансформаторах, где ток через обмотку невелик, этим можно пренебречь, но с повышением мощности ток через обмотку растет и, при высоком сопротивлении обмотки, рассеивает на ней значительную тепловую мощность, что недопустимо.

    Перечисленные выше соображения приводят к тому, что на частоте 50 Гц трансформатор большой (от десятков ватт) мощности может быть успешно реализован только как устройство большого габарита и веса (по пути повышения S и сечения провода со снижением n).

    Потому в современных БП идут по другому пути, а именно по пути повышения f, т.е. переходу на импульсные блоки питания. Таковые блоки питания в разы легче (причем основная часть веса приходится на экранирующую клетку) и значительно меньше габаритами, чем классические. Кроме того, они не требовательны к входному напряжению и частоте.

    Достоинства трансформаторных БП

    • Простота конструкции
    • Доступность элементной базы
    • Отсутствие создаваемых радиопомех (в отличие от импульсных, создающих помехи за счет гармонических составляющих)

    Недостатки трансформаторных БП

    • Большой вес и габариты, особенно при большой мощности
    • Металлоёмкость
    • Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.

    Импульсные БП

    Импульсные блоки питания являются инверторной системой . В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности , либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы - это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

    В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи . Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространенными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона . В зависимости от величины сигнала обратной связи (зависящему от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения . Таким образом, блок питания поддерживает стабильное выходное напряжение.

    Достоинства импульсных БП

    Сравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами:

    • меньшим весом за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса линейных стабилизаторов складывается в основном из мощных тяжелых низкочастотных силовых трансформаторов и мощных радиаторов силовых элементов, работающих в линейном режиме;
    • значительно более высоким КПД (вплоть до 90-98%) за счет того, что основные потери в импульсных стабилизаторах связаны с переходными процессами в моменты переключения ключевого элемента. Поскольку основную часть времени ключевые элементы находятся в одном из устойчивых состояний (т.е. либо включен, либо выключен) потери энергии минимальны;
    • меньшей стоимостью, благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности. Кроме этого следует отметить значительно более низкую стоимость импульсных трансформаторов при сравнимой передаваемой мощности, и возможность использования менее мощных силовых элементов, поскольку режим их работы ключевой;
    • сравнимой с линейными стабилизаторами надежностью. (Блоки питания вычислительной техники, оргтехники, бытовой техники почти исключительно импульсные).
    • широким диапазоном питающего напряжения и частоты, недостижимым для сравнимого по цене линейного. На практике это означает возможность использования одного и того же импульсного БП для носимой цифровой электроники в разных странах мира - Россия/США/Англия, сильно отличных по напряжению и частоте в стандартных розетках.
    • наличием в большинстве современных БП встроенных цепей защиты от различных непредвиденных ситуаций, например от короткого замыкания и от отсутствия нагрузки на выходе.

    Недостатки импульсных БП

    • Работа основной части схемы без гальванической развязки от сети, что, в частности, несколько затрудняет ремонт таких БП;
    • Все без исключения импульсные блоки питания являются источником высокочастотных помех, поскольку это связано с самим принципом их работы. Поэтому требуется предпринимать дополнительные меры помехоподавления, зачастую не позволяющие устранить помехи полностью. В связи с этим часто недопустимо применение импульсных БП для некоторых видов аппаратуры.
    • В распределённых системах электропитания: эффект гармоник кратных трём. При наличии эффективно действующих корректоров фактора мощности и фильтров во входных цепях этот недостаток обычно не актуален.

    Вторичный источник электропитания - устройство, которое преобразует параметры электроэнергии основного источника электроснабжения (например, промышленной сети) в электроэнергию с параметрами, необходимыми для функционирования вспомогательных устройств.

    Источник электропитания может быть интегрированным в общую схему (обычно в простых устройствах; либо когда недопустимо даже незначительное падение напряжения на подводящих проводах - например материнская плата компьютера имеет встроенные преобразователи напряжения для питания процессора), выполненным в виде модуля (блока питания , стойки электропитания и так далее), или даже расположенным в отдельном помещении (цехе электропитания).

    Задачи вторичного источника электропитания

    • Обеспечение передачи мощности - источник электропитания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.
    • Преобразование формы напряжения - преобразование переменного напряжения в постоянное , и наоборот, а также преобразование частоты , формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.
    • Преобразование величины напряжения - как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины, для питания различных цепей.
    • Стабилизация - напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и так далее. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.
    • Защита - напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.
    • Гальваническая развязка цепей - одна из мер защиты от протекания тока по неверному пути.
    • Регулировка - в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.
    • Управление - может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).
    • Контроль - отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

    Чаще всего перед вторичными источниками питания стоит задача преобразования электроэнергии из сети переменного тока промышленной частоты (например, в России - 240 В 50 Гц, в США - 120 В 60 Гц).

    Две наиболее типичных конструкции - это трансформаторные и импульсные источники питания.

    Трансформаторный

    Линейный блок питания

    Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора или автотрансформатора , у которого первичная обмотка рассчитана на сетевое напряжение . Затем устанавливается выпрямитель , преобразующий переменное напряжение в постоянное (пульсирующее однонаправленное). В большинстве случаев выпрямитель состоит из одного диода (однополупериодный выпрямитель) или четырёх диодов, образующих диодный мост (двухполупериодный выпрямитель). Иногда используются и другие схемы, например, в выпрямителях с удвоением напряжения. После выпрямителя устанавливается фильтр , сглаживающий колебания (пульсации). Обычно он представляет собой просто конденсатор большой ёмкости.

    Также в схеме могут быть установлены фильтры высокочастотных помех, всплесков (варисторы), защиты от короткого замыкания (КЗ), стабилизаторы напряжения и тока.

    Габариты трансформатора

    E e f f 1 = S 33...70 , {\displaystyle E_{eff1}={\frac {S}{33...70}},}

    Здесь S {\displaystyle S} выражено в см 2 , E e f f 1 {\displaystyle E_{eff1}} - в вольтах. Меньшие значения знаменателя выбирают для маломощных трансформаторов, большие - для мощных.

    Другой путь повышения мощности трансформатора - повышение рабочей частоты. Приблизительно можно считать, что при заданных размерах трансформатора его мощность прямо пропорциональна рабочей частоте. Поэтому увеличение частоты в k {\displaystyle k} раз при неизменной мощности позволяет уменьшить размеры трансформатора в ∼ k {\displaystyle \sim {\sqrt {k}}} раз (площадь сечения магнитопровода уменьшается в ∼ k {\displaystyle \sim k} раз), или, соответственно, его массу в ∼ k 3 / 2 {\displaystyle \sim {\sqrt[{3/2}]{k}}} раз.

    В частности, в том числе и этими соображениями, в силовых бортовых сетях летательных аппаратов и судов обычно применяется частота 400 Гц с напряжением 115 В.

    Но повышение частоты ухудшает магнитные свойства магнитопроводов, в основном из-за увеличения потерь на гистерезис, поэтому при рабочих частотах свыше единиц кГц применяют ферродиэлектрические магнитопроводы трансформаторов, например, ферритовые или изготовленные из карбонильного железа.

    Современные источники вторичного электропитания различной бытовой техники, компьютеров, принтеров и др. сейчас практически полностью выполняются по схемам и практически полностью вытеснили классические трансформаторы. В таких источниках гальваническое разделение питаемой цепи и питающей сети, получение набора необходимых вторичных напряжений, производится посредством высокочастотных трансформаторов с ферритовыми сердечниками. Источником высокочастотного напряжения являются импульсные ключевые схемы с полупроводниковыми ключами, обычно транзисторными . Применение таких устройств, часто называемых инверторами позволяет многократно снизить массу и габариты устройства, а также, дополнительно - повысить качество и надёжность электропитания, так как импульсные источники менее критичны к качеству электропитания в первичной сети, - они менее чувствительны к всплескам и провалам сетевого напряжения, изменениям его частоты.

    Достоинства и недостатки

    Достоинства трансформаторных БП. Недостатки трансформаторных БП.
    • Большой вес и габариты, пропорционально мощности.
    • Металлоёмкость.
    • Компромисс между снижением КПД и стабильностью выходного напряжения: для обеспечения стабильного напряжения требуется стабилизатор, вносящий дополнительные потери.

    Импульсный источник питания