Сайт о телевидении

Сайт о телевидении

» » Программирование с использованием библиотеки opengl. Значения параметров функции glPolygonMode

Программирование с использованием библиотеки opengl. Значения параметров функции glPolygonMode

Вы читаете мой первый урок по OpenGL!

Прежде чем начинать изучать сам OpenGL, мне кажется, лучше рассказать вам как компилировать код, запускать его и самое главное - как экспериментировать с исходными кодами, приведенными в этих уроках.

Что нужно знать

Данные уроки ориентируются на читателя без особых познаний в программировании. Конечно, знание какого-либо языка программирования(C, Java, Lisp, JavaSript) будет огромным плюсом, но это не обязательно, просто вам придется изучать два предмета одновременно – 3д графику и программирование.

Весь код в данных уроках написан на C++ в максимально простом стиле. Никаких шаблонов, классов и арифметики с указателями. Поэтому глядя на код вы сможете понять что он делает, даже если знакомы лишь с JavaSript.

Забудьте все, что знали про OpenGL 1/2

Данные уроки предполагают, что вы ничего не знаете про 3д графику. Но если вы читали уроки по OpenGL и встречали что-то наподобие glBegin(),то забудьте это. Тут мы будем изучать OpenGL 3 и 4, а то, что вы читали относиться к OpenGL 1 или 2. Поэтому рекомендую вам забыть все, что вы знали раньше, иначе ваши мозги начнут плавиться от нестыковок.

Сборка проекта

Код из данных уроков можно скомпилировать под Windows, Linux. Чтобы начать компилировать код под любую из платформ, нужно сделать следующее:

  1. Обновите драйвера на вашу видеокарту!! Я вас предупредил:)
  2. Скачайте компилятор, если у вас его еще нет.
  3. Установите CMake
  4. Скачайте готовые исходники уроков.
  5. Сгенерируйте проект с помощью CMake
  6. Соберите проект.
  7. Поэкспериментируйте с кодом для лучшего понимания, что там происходит.

Ниже я привел более детализированное описание сборки проектов под каждую из платформ. Но в зависимости от версии ОС скриншоты могут слегка отличатся от того, что будет у вас на экране, но в целом, все должно быть приблизительно таким.

Сборка под Windows


Сборка под Linux

В мире существует громадное число разных вариаций линукса, поэтому мне совсем не хочется приводить примеры сборки проекта под каждую. Если что-то не получается, как написано ниже, почитайте документацию, или поищите в интернете.

  1. Установите последние драйвера на вашу видеокарту. Очень рекомендую не опенсорсные драйвера. Они не входят в состав GNU, но они часто работают гораздо лучше. Если ваша сборка линукса не предоставляет автоматического инсталлятора, попробуйте почитать Ubuntu"s guide.
  2. Поставьте компилятор со всеми необходимыми библиотеками и инструментами. Вот список того, что вам нужно: cmake make g++ libx11-dev libgl1-mesa-dev libglu1-mesa-dev libxrandr-dev libxext-dev. Используйте sudo apt-get install ***** или su /yum install ******
  3. Скачайте исходники примеров и разархивируйте их в папку, например, ~/Projects/OpenGLTutorials/
  4. Зайдите в папку ~/Projects /OpenGLTutorials / и введите следующие команды:
  • mkdir build
  • cd build
  • cmake ..
  1. Если предыдущие команды были выполнены успешно, то в папке build/ будет создан makefile
  2. введите «make all» и после этого будут скомпилированы все примеры и их зависимости. Если не будет никаких ошибок, то готовые исполняемые файлы будут помещены в папку ~/Projects/OpenGLTutorials/

Мне очень нравится использовать IDE QtCreator. Данная IDE умеет из коробки работать с CMake и предоставляет кучу других плюшек, таких как отладка автодополнение итд.

Инструкция по сборке проекта в QtCreator:

1. В QtCreator нажмите File->Tools->Options->Compile&Execute->CMake

2. Укажите путь к CMake. Скорее всего, это будет /usr/bin/cmake

3. File->Open Project ивыберите tutorials/CMakeLists.txt

4. Укажите build папку, папка желательно должна быть вне папки tutorials.

5. Опционально установите –DCMAKE_BUILD_TYPE=Debug в поле параметры.

6. Щелкните на молоток внизу. После этого примеры можно будет запустить из папки tutorials/

7. Чтобы запустить примеры из QtCreator выберите Projects ->Execution parameters ->Working Directory , и выберите каталог где лежат шэйдеры текстуры и модели. Для урока 2 это будет ~/opengl -tutorial /tutorial02_red_triangle/

Запуск примеров

После того, как проект будет скомпилирован, приложения можно будет запускать прямо из каталога.
Если нужно запускать примеры прямо из-под IDE, воспользуйтесь инструкцией приведенной выше, чтобы правильно установить рабочий каталог.

Как проходить эти уроки

Каждый урок идет вместе с исходным кодом и данными. Все эти файлы можно найти в соответствующем каталоге tutorialXX/.

Но я рекомендую вам не менять в этих файлах ничего, они лишь для справки. Лучше играйтесь в playground/playground.cpp и изменяйте там все что захотите. Если вы что-то сломали и не можете восстановить назад, то можно вернуть этот файл просто скопировав его из любого другого урока.

Пока вы будете читать эти уроки, вам везде будут попадаться кусочки кода. Не стесняйтесь и копируйте их в playground.cpp чтобы пощупать их в действии – эксперименты, это всегда хорошо. Повторю еще раз, не просто читайте готовый код, а пробуйте его запустить. Просто читая исходники, вы не научитесь многому. Даже с простым копипастингом вы получите свой ковш проблем, решая которые, приобретете необходимый опыт.

Открываем окно

Наконец-то! OpenGL!

Хотя, придется еще немного подождать. Во всех уроках 3д операции будут выполнятся на очень низком уровне, поэтому там не будет для вас никакой магии. Однако работа с окнами и сообщениями системы не интересная и скучная, поэтому мы позволим библиотеке GLFW сделать всю грязную работу за нас. Если вам конечно очень сильно хочется, вы можете использовать Win32 Api для Windows или X11 API для Linux, или использовать что-нибудь другое, типа SFML, FreeGLUT, SDL, … почитайте страничку ссылки.

Ладно, давайте уже начнем. Начнем с того, что нам нужно подключить зависимости. Так как нам необходимо выводить сообщения на консоль, мы напишем следующее:

// Подключаем стандартные заголовки

#include

#include

Потом подключаем GLEW

// Нужно не забывать, что GLEW обязательно необходимо подключать перед gl . h или glfw . h

#include

Потом подключаем GLFW. Эта библиотека будет делать всю магию управления окнами.

#include

На данном этапе нам не нужна эта библиотека, но она содержит математические функции и вскоре нам понадобится. Никакой магии в GLM нет, и если вам сильно хочется, вы можете использовать любую другую библиотеку по работе с матрицами и векторами. Мы подключаем «using namespace» для того, чтобы писать «vec3», а не «glm::vec3»

#include

using namespace glm;

Если вы скопируете эти куски кода в playground.cpp, то компилятор начнет возмущаться, что нет функции main(). Поэтому давайте добавим:

int main(){

Сначала лучше бы инициализировать GLFW:

// Инициализируем GLFW

if(!glfwInit())

{

fprintf(stderr, "Failed to initialize GLFW\n");

return -1;

}

А теперь создадим наше OpenGL окошко:

glfwOpenWindowHint ( GLFW _ FSAA _ SAMPLES , 4); // 4 x сглаживание

glfwOpenWindowHint(GLFW_OPENGL_VERSION_MAJOR, 3); // нам нужен OpenGL 3.3

glfwOpenWindowHint(GLFW_OPENGL_VERSION_MINOR, 3);

glfwOpenWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // нам не нужен старый OpenGL

// Откроем окно и создадим контекст

if(!glfwOpenWindow(1024, 768, 0,0,0,0, 32,0, GLFW_WINDOW))

{

fprintf(stderr, "Failed to open GLFW window\n");

Это стандартное графическое приложением для 2D и 3D-визуализации, разработанного в 1992 году. Opengl поставляется в двух вариантах. Первый из них — «Микрософт OpenGL», который часто включается в «Виндовс» для установки графической карты. Второй — Cosmo OpenGL - предназначен для систем, у которых нет ускоренной видеокарты. Библиотека OpenGL - основное условие работы приложения.

Пользовательский обзор OpenGL

До OpenGL любая компания, разрабатывающая графическое приложение, должна была переписать графическую часть для каждой платформы операционной системы. С ним можно создавать одни и те же эффекты в разных операционных системах, используя любой графический адаптер, поддерживающий программу. OpenGL задает набор «команд» или сразу выполняемых функций, каждая из которых направляет действие рисования или вызывает специальные эффекты. Список их может быть создан для повторяющихся эффектов.

OpenGL не зависит от характеристик «Виндовс» каждой операционной системы, но предоставляет специальные подпрограммы для ОС. Она выпускается с огромным перечнем встроенных возможностей, запрашиваемых через API. К ним относятся:

  • скрытое удаление поверхности;
  • альфа-смешение (прозрачность);
  • сглаживание;
  • текстурное картирование;
  • операции с пикселями;
  • просмотр и моделирование трансформаций;
  • атмосферные эффекты (туман и дымка).

Silicon Graphics - разработчики передовых графических рабочих станций - инициировала разработку OpenGL. DEC, Intel, IBM, Microsoft и Sun Microsystems вошли в отраслевую комиссию по обзору архитектуры. Разработка приложений, использующих API OpenGL, не несет никаких затрат, кроме обучения. Microsoft предлагает бесплатную загрузку ее библиотек для своих систем.

Набор модулей для Windows

Приложение доступно на многих системах Win32 и Unix. А f90gl — это реализация публичного домена официальных связей Fortran 90 для OpenGL, оформленная в виде базы данных модулей и библиотек, определяющей необходимые интерфейсы для функциональности программы. Сам f90gl был разработан Уильямом Ф. Митчеллом технологического института Гейтерберга в США. До недавнего времени OpenGL LF9x можно было создавать только в виде статически связанных программ, ориентированных на Visual C.

В настоящее время доступен гораздо более дружелюбный метод благодаря усилиям по переносу, реализованным Lawson B. Wakefield из Великобритании. Эта реализация сделала интерфейс OpenGL доступным в рамках WiSK и Winteracter и была выполнена на добровольной, некоммерческой основе. Для подключения библиотеки OpenGL нужны определенные DLL OpenGL, установленные в каталоге Windows SYSTEM32. К ним относятся следующие:

  • opengl32.dll;
  • glu32.dll;
  • glut32.dll.

Первые две из этих библиотек OpenGL (изучить их перед установкой необходимо), являются стандартной частью Windows разных модификаций и Me. Библиотеки и модули f90gl должны быть установлены в LIB-каталоге LF95:

  • F90GL.LIB;
  • F90GLU.LIB;
  • F90GLUT.LIB;
  • OPENGL32.LIB;
  • GLU32.LIB;
  • GLUT32.LIB;
  • OPENGL.MOD;
  • OPENGL2.MOD;
  • OPENGL_KINDS.MOD;
  • OPENGL_GLINTERFACES.MOD;
  • OPENGL_FWRAP.MOD;
  • OPENGL_GLUINTERFACES.MOD;
  • OPENGL_GLU.MOD;
  • OPENGL_GLUTINTERFACES.MOD;
  • OPENGL_GLUT.MOD;
  • OPENGL_GL.MODd.

Компиляция и связывание программ f90gl требует, чтобы каталог LF95 LIB указывался в пути модуля компилятора и имена библиотек f90gl для связывания.

Библиотеки изображений

DevIL используется для разработчиков. Он поддерживает множество форматов изображений для чтения и записи, несколько компиляторов и ОС («Виндовс», «Линукс», Мас). Библиотека имеет следующий синтаксис:

  1. FreeImage — это кросс-платформенная библиотека OpenGL загрузки изображений с очень широкой поддержкой форматов (включая некоторые HDR-форматы, такие как OpenEXR).
  2. OpenImageIO (OIIO) — это библиотека для чтения и записи изображений, а также множество связанных классов, утилит и приложений. Широко используется в анимационных и VFX-студиях по всему миру, а также встроена в несколько коммерческих продуктах.
  3. SOIL — это кросс-платформенный загрузчик изображений общего пользования, который чрезвычайно мал. C ++, способный загружать текстуры DDS (DDS9 и DDS10) по лицензии MIT.
  4. Glraw предоставляет инструмент командной строки, который преобразует файлы изображений в необработанные, непосредственно содержащие простые текстурные данные.

Импорт активов 3D-файлов

Графическая библиотека OpenGL для импорта активов (Assimp) представлена как библиотека с для импорта разнообразных популярных трехмерных моделей. Самая последняя версия экспортирует 3d-файлы и подходит как конвертер общего назначения. Имеется несколько видов таких библиотек:

  1. Может считывать различные форматы 3D-файлов - COLLADA, собственные файлы Blender3D, Wavefront Obj (.obj) и многие другие. Библиотека lib3ds предназначена для чтения 3ds-файлов.
  2. Open3mod — это средство просмотра модели на базе Windows. Он загружает все форматы файлов, которые поддерживает Assimp, и идеально подходит для быстрой проверки 3D-активов.
  3. AssetKit (In Progress) — библиотека OpenGL импортер/экспортер 3D-ресурсов, утилита, основанная на спецификациях COLLADA/glTF. Главное внимание здесь уделено COLLADA и glTF. Она будет полностью поддерживать форматы 1.4, 1.4.1, 1.5+, а также некоторые другие в качестве библиотеки для загрузки моделей в OpenGL.

Высокопроизводительная 2D/3D-графика

Графическая библиотека OpenGL для Android включает поддержку высокопроизводительной 2D и 3D-графики с открытой библиотекой, в частности API OpenGL ES. Android поддерживает ее как через API-интерфейс инфраструктуры, так и Native Development Kit (NDK). В платформе названной операционной системы есть два фундаментальных класса, которые позволяют создавать и манипулировать графикой с помощью API: GLSurfaceView и GLSurfaceView.Renderer.

Если есть цель использовать OpenGL в приложении для Android, то нужно понимать, как реализовать эти классы в действии. Так, GLSurfaceView может рисовать и манипулировать объектами, используя вызовы API OpenGL аналогично функции SurfaceView. Этот интерфейс определяет методы, необходимые для рисования графики в a GLSurfaceView. И пользователь должен обеспечить реализацию этого интерфейса как отдельный класс и прикрепить к GLSurfaceView экземпляр GLSurfaceView.setRenderer. После того как создан контейнерный вид для OpenGL ES, GLSurfaceView и GLSurfaceView.Renderer, можно начать подключение библиотеки OpenGL и использовать API.

Набор мобильных графических устройств

Реализации приложения различаются для Android-устройств поддерживаемыми расширениями API и включают сжатие текстур и другой набор функций. Android Extension Pack (AEP) поддерживает стандартную базу расширений. Упаковка их вместе способствует последовательному набору функциональности на всех устройствах, позволяя разработчикам в полной мере использовать новейший пакет мобильных графических конструкций.

AEP также улучшает поддержку изображений, буферов хранения шейдеров и счетчиков. Чтобы приложение могло использовать AEP, версия платформы должна поддерживать ее. Нужно также обозначит требование AEP следующим образом: <использует функцию android: name = "android.hardware.opengles.aep" android: required = "true" />

Проверка и выбор версии OpenGL ES

На Android-устройствах доступно несколько версий приложения. Можно указать минимальную версию API, которая требуется приложению в телефоне. Версия API opengl ES 1.0, версия 2.0 и версия 3.0 обеспечивают высокопроизводительные графические интерфейсы для создания 3D-игр, визуализации и пользовательских интерфейсов. Программа для OpenGL ES 2.0 во многом похожа на версию 3.0, представляющую собой надмножество API 2.0 с дополнительными функциями.

Программирование для 1.0 / 1.1 API по сравнению с 2.0 и 3.0 значительно отличается, и поэтому разработчикам следует внимательно изучить некоторые факторы, прежде чем начинать разработку с помощью этих API. Так, в общем, 2 и 3 обеспечивают более быструю графическую производительность, чем API ES 1/1,1. Тем не менее разница в ней может варьироваться в зависимости от устройства Android, на котором работает приложение, из-за различий в реализации аппаратного обеспечения графического конвейера.

Сравнение с драйверами DirectX

В Windows графические драйверы DirectX поддерживаются качественнее, чем OpenGL, несмотря на то что разработчики управляют из более быстрых.

Библиотеки OpenGL и DirectX (история и перспективы их) связаны с «Микрософт», которая фактически выступила против OpenGL. В 2003 году Microsoft заявила, что ей больше не интересны планы OpenGL. Затем в 2005 году они на презентации в SIGGRAPH сделали заявление, что Windows Vista удалит ее поддержку.

Эта кампания вызвала хаос в сообществе OpenGL, после чего многие программисты в области профессиональной графики перешли на DirectX. После того как Vista все же была выпущена, громкие заявления выполнены не были - поставщики создали новые производительные драйверы (ICD), которые восстанавливают встроенную функцию. Open рассылала информационные бюллетени с информацией, что по-прежнему является лучшим приложением. Тем не менее ущерб уже был нанесен, а общественное доверие к OpenGL сильно пошатнулось.

На самом деле OpenGL более мощный, чем DirectX, поддерживает больше платформ и имеет преимущественное значение для будущего игр. История и перспективы библиотек OpenGL и DirectX говорят о том, что первая из них имеет все же больше позитива:

  1. Предоставляет возможность использовать функции графики для оперативных систем, в то время как DirectX предоставляет только моментальные элементы из них в новейших версиях «Виндовс». Технология тесселяции, которую Microsoft разработывал для DirectX 11, была расширением OpenGL в течение трех лет. Путем кропотливого труда удалось добиться того, что DirectX 10 и 11 теперь работают так же быстро, как и OpenGL, и поддерживают почти столько же функций. Однако есть одна большая проблема: они не работают в Windows XP, которой до сих пор пользуются много людей.
  2. Кросс-платформенный. Многие пользователи Lugaru работают на Mac, Linux и Windows XP и не могут играть через DirectX. Единственный способ доставить новейшую графику для геймеров Windows XP — через 32bits opengl библиотеки.
  3. Лучше для будущего игр. Это некоммерческий открытый стандарт, созданный для того, чтобы пользователи на любой платформе могли получать высококачественную графику, которую предоставиляет их оборудование. Его развитие разрушается сегодня монополистической атакой корпоративного гиганта, пытающегося доминировать в отрасли. Вот почему Direct3D становится единственным игровым графическим API, поддерживаемым в Windows.

C ++ и настройка Visual Studio

Библиотека OpenGL для c имеет бесплатную версию. Специалисты рекомендуют скомпилировать программы, написанные на ANSI C с OpenGL и GLUT, с помощью Dev-C ++.

Bloodshed Dev-C ++ - это бесплатный компилятор C ++ и среды разработки для операционных систем Windows. Как и большинство таких же технических средств, его можно использовать для компиляции ANSI C. Установив файлы заголовков GLUT и библиотеки, его применяют для написания программ. Для реализации этого проекта можно использовать 32-разрядную или 64-разрядную «Виндовс».

Перед тем как подключить к dev c библиотеку OpenGL, понадобятся заголовки glew, которые можно найти на вебсайте sourceforge Extension Wrangler, и версия freeglut для Visual Studio:

  1. Нажать ссылку внутри пакета freeglut 3.0.0 MSVC.
  2. Ввести имя файла, который нужно скачать.
  3. Загрузить его, в папке с freeglut.
  4. Извлечь и переименовать в freeglut.
  5. Общий каталог для установки: C: \ DEV.
  6. Каталог, в котором находятся проекты: C: \ DEV \ visual-studio-c ++.
  7. Каталог, в котором находятся библиотеки: C: \ DEV \ Lib Visual Studio.
  8. Открыть его и создать пустой проект > «Шаблоны»> Visual C ++> Пустой проект.
  9. Затем написать «Имя»: Shapes2D.
  10. Местоположение: C: \ dev \ visual-studio-c ++ \.
  11. Создать новое решение в OpenGL-библиотеке для Visual Studio. Название решения: BadprogTutorial OK.
  12. Проект Shapes2D создан в решении BadprogTutorial.
  13. Добавить main.cpp> Кликнуть правой кнопкой мыши «Проект»> «Добавить»> «Новый элемент»> Visual C ++> Файл C ++. Написать имя: main.cpp и добавить.
  14. Настроить конфигурации библиотеки GL и OpenGL glut.
  15. Кликнуть мышью проект Shapes2D> «Свойства». В левом верхнем углу раскрывающегося меню найти «Конфигурация» и выбрать все конфигурации (вместо Debug).
  16. Кликнуть мышью на «Свойства конфигурации»> C / C ++> «Общие»> «Дополнительные каталоги вложений». Справа находится раскрывающееся меню, нажать «Изменить...».
  17. Появилось новое окно: «Дополнительные каталоги».
  18. Нажать значок «Новая линия»> кнопку обзора и выбрать две следующие папки: C: \ DEV \ Lib \ Glew-1.12.0 \ . C: \ DEV \ Lib \ freeglut-3.0.0 \ .
  19. Нажать кнопку ОК. Применить использование библиотеки OpenGL, включая библиотеки, библиотечные папки.
  20. Кликнуть правой кнопкой мыши проект Shapes2D> «Свойства» > «Свойства конфигурации»> «Коннектор»> «Общие»> «Дополнительные каталоги библиотек».
  21. Справа находится раскрывающееся меню. Нажать на «Изменить...». Появилось новое окно: «Дополнительные библиотеки».
  22. Нажать значок «Новая линия»> нажать кнопку обзора> выбрать две следующие папки для 64-разрядной версии: C: \ DEV \ Lib \ Glew-1.12.0 \ Lib \ Release \ x64 и C: \ DEV \ Lib \ freeglut-3.0.0 \ Lib \ x64.
  23. Нажать кнопку ОК> применить библиотечные файлы. Кликнуть мышью проект Shapes2D> «Свойства» > «Свойства конфигурации»> «Коннектор»> «Ввод».
  24. Справа находится раскрывающееся меню, нажмите «Изменить...».
  25. Появилось новое окно: «Дополнительные зависимости». Кликнуите по белой области и напишите: freeglut.lib.
  26. Нажать Enter, чтобы перейти к следующей строке: glew32.lib.
  27. Нажать «Применить» и ОК.

Теперь Visual Studio IDE готова работать с OpenGL.

Загрузка Dev-C ++

Эти инструкции были протестированы на большом множестве систем Windows, которые поставляются с файлами, необходимыми для OpenGL, но не для файлов, необходимых для GLUT. Dev-C ++ не работает с Vista от Microsoft.

Процедура загрузки:

  1. Загрузите Dev-C ++ и установите его.
  2. Получите Dev-C ++ 5.0 beta 9.2 (4.9.9.2) (9.0 MB) с Mingw / GCC 3.4.2 (хотя это «бета-версия», она отлично работает).
  3. Теперь нужно нажать на SourceForge, чтобы перейти к списку сайтов загрузки, и выбрать один.
  4. Сохранить этот файл в таком месте, как C: \ Temp.
  5. Когда загрузка будет завершена, нажать кнопку «открыть», чтобы начать процесс установки. Или перейти к C: \ Temp и дважды кликнуть по devcpp4.9.9.2_setup.exe.
  6. Выбрать «типичную» установку. Принять предложенный пункт назначения для установки.
  7. Ответить: «Да», когда установка спрашивает, хотите ли установить Dev-cpp для всех пользователей. На экране появляется сообщение, что установка завершена. Нажать «Готово». Появится первый экран конфигурации.
  8. Выбрать «Английский» и «Новый взгляд». На следующих нескольких экранах нажать «Да». Программа запускается автоматически.
  9. Нажать «Файл», затем создать проект.
  10. Выбрать имя для проекта (например, «myProject»).
  11. Нажать «C Project», «Пустой проект» и ОК.
  12. В окне «Создать новый проект» нажать «Сохранить».
  13. Нажать «Файл / Новый / Исходный файл» и в «Добавить исходный файл в текущий проект» нажать «Да».
  14. Нажать «Файл / Сохранить как» и сохранить файл как «hello.c» (или другое имя). Важно убедиться, что расширение файла.c. С любым другим расширением (например, предлагаемым.cpp) возникнут проблемы с компиляцией.
  15. Нажать «Выполнить / Скомпилировать и запустить». Программа компилирует, запускает и записывает свой вывод в окно DOS.
  16. Попробовать другой способ запуска программы (после ее компиляции) — запустить окно DOS вне системы Dev-Cpp.
  17. Перейти к подкаталогу, в котором содержится проект, и набрать hello.exe.
  18. Найти Dev-C ++, указанный в разделе «Программы» из пускового меню.

Теперь пользователь сможет создавать, компилировать и запускать программы C (и C ++). У него будут файлы, библиотеки и dll для OpenGL (и всех других стандартных пакетов), но не GLUT. GLUT управляет окнами и другими компонентами пользовательского интерфейса, необходимыми для него, и их устанавливают отдельно.

Установка и запуск программы на Windows 7

Платформа выполнения для Visual Studio 2010 - Integrated. Среда (IDE), под управлением Windows 7. Вам нужно загрузить и установить Microsoft Visual C ++ 2010 Express. А после того как Visual C ++ будет успешно установлен, следует выполнить следующие действия:

  1. Загрузить и распаковать файл freeglut-MSVC-2.8.1-1.
  2. Открыть экран приветствия Visual C ++ 2010 из меню «Пуск».
  3. Создать новый проект, выбрав File -> New -> Project.
  4. Выбрать Win32 на панели «Установленные шаблоны», а затем «Консольное приложение Win32» со следующей панели.
  5. Назвать свой проект и выбрать папку, в которую нужно его сохранить.
  6. Снять флажок «Создать каталог для решения».
  7. Нажать ОК, чтобы открыть окно приветствия мастера и «Параметры приложения» для диалогового окна настроек.
  8. Снять флажок «Предварительно скомпилированный заголовок», установить флажок «Пустое проект» и выбрать «Консольное приложение».
  9. Нажать «Готово», чтобы увидеть новое окно проекта библиотеки OpenGL для Windows 7.
  10. Нажать мышью на Source Files и выбрать Add -> New Item, чтобы открыть диалоговое окно.
  11. Выбрать «Код» на панели «Установленные шаблоны» и «Файл C ++» (.cpp) со следующей панели.
  12. Назвать свой файл и нажать «Добавить», чтобы увидеть пустую панель кода в окне проекта с названием «Выбранное имя».
  13. Сохранить и создайть проект, перейдя в Debug -> Build Solution. Затем выполнить программу с помощью Debug -> Start Debugging.

Если графическая карта не поддерживает OpenGL 4.3, то программы, использующие его, могут компилироваться, но не выполняться, поскольку система не может предоставить контекст рендеринга OpenGL 4.3, заданный командой glutInitContextVersion (4. 3) в основной процедуре. В этом случае можно заменить Version 4.3 на 3.3 или даже на 2.1.

Хотя почти все платформы поддерживают OpenGL API, разработчикам по-прежнему необходимо создавать индивидуальные приложения для разных платформ. Это связано с тем, что графика является лишь частью приложения, а другие компоненты по-прежнему отличаются между платформами. Чтобы исправить это, WebApp был разработан для запуска целых программ в веб-браузере, таких как Chrome и Firefox. Так что одна программа может работать на всех платформах с совместимым браузером.

Между тем на стороне клиента все передается «на лету» с серверов, поэтому дальнейшая установка приложения не требуется. Специальный API под названием WebGL также был создан для Интернета и основан на ES, подмножестве OpenGL, разработанном специально для мобильных устройств. Чтобы достичь аналогичной цели для VR, другой API, называемый WebVR, был разработан, чтобы легко довести опыт VR до браузеров, независимо от платформы.

В этом разделе мы научимся создавать трехмерные изображения с помощью функций библиотеки OpenGL, для того чтобы в следующей главе разработать Windows-приложение, которое можно рассматривать как инструмент просмотра результатов научных расчетов. Материал этого раздела позволит вам постепенно войти в курс дела и овладеть очень привлекательной технологией создания и управления трехмерными изображениями. Сначала мы рассмотрим основные возможности библиотеки OpenGL, затем научимся управлять функциями OpenGL на примере простых приложений консольного типа и лишь после этого приступим к разработке Windows-приложения.

Читатель, наверное, знает, что OpenGL это оптимизированная, высокопроизводительная графическая библиотека функций и типов данных для отображения двух-и трехмерной графики. Стандарт OpenGL был утвержден в 1992 г. Он основан на библиотеке IRIS GL, разработанной компанией Silicon Graphics (www.sgi.com). OpenGL поддерживают все платформы. Кроме того, OpenGL поддержана аппаратно. Существуют видеокарты с акселераторами и специализированные SD-карты, которые выполняют примитивы OpenGL на аппаратном уровне.

Материал первой части этого урока навеян очень хорошей книгой (доступной в online-варианте) издательства Addison-Wesley "OpenGL Programming Guide, The Official Guide to Learning OpenGL". Если читатель владеет английским языком, то мы рекомендуем ее прочесть.

Подключаемые библиотеки

Microsoft-реализация OpenGL включает полный набор команд OpenGL, то есть глобальных функций, входящих в ядро библиотеки OPENGL32.LIB и имеющих префикс gl (например, glLineWidth). Заметьте, что функции из ядра библиотеки имеют множество версий, что позволяет задать желаемый параметр или настройку любым удобным вам способом. Посмотрите справку по функциям из семейства glColor*. Оказывается, что задать текущий цвет можно 32 способами. Например, функция:

Void glColorSb(GLbyte red, GLbyte green, GLbyte blue);

Определяет цвет тремя компонентами типа GLbyte, а функция:

Void glColor4dv (const GLdouble *v);

Задает его с помощью адреса массива из четырех компонентов.

С учетом этих вариантов ядро библиотеки содержит более 300 команд. Кроме того, вы можете подключить библиотеку утилит GLU32.LIB, которые дополняют основное ядро. Здесь есть функции управления текстурами, преобразованием координат, генерацией сфер, цилиндров и дисков, сплайновых аппроксимаций кривых и поверхностей (NURBS - Non-Uniform Rational B-Spline ), а также обработки ошибок. Еще одна, дополнительная (auxiliary ) библиотека GLAUX.LIB позволяет простым способом создавать Windows-окна, изображать некоторые SD-объекты, обрабатывать события ввода и управлять фоновым процессом. К сожалению, эта библиотека не документирована. Компания Microsoft не рекомендует пользоваться ею для разработки коммерческих проектов, так как она содержит код цикла обработки сообщений, в который невозможно вставить обработку других произвольных сообщений.

Примечание
Тип GLbyte эквивалентен типу signed char, a GLdouble - типу double. Свои собственные типы используются в целях упрощения переносимости на другие платформы. Список типов OpenGL мы приведем ниже. Четвертый компонент цвета определяет прозрачность цвета, то есть способ смешивания цвета фона с цветом изображения. Некоторые команды OpenGL имеют в конце символ v, который указывает, что ее аргументом должен быть адрес массива (вектора). Вектор в математике - это последовательность чисел (координат), единственным образом задающих элемент векторного пространства. Многие команды имеют несколько версий, позволяя в конечном счете задать вектор разными способами
.

Около двадцати Windows GDI-функций создано специально для работы с OpenGL. Большая часть из них имеет префикс wgl (аббревиатура от Windows GL). Эти функции являются аналогами функций с префиксом glx, которые подключают OpenGL к платформе X window System. Наконец, существует несколько Win32-функций для управления форматом пикселов и двойной буферизацией. Они применимы только для специализированных окон OpenGL.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

OpenGL - это программный интерфейс к графической аппаратуре. Этот интерфейс состоит приблизительно из 250 отдельных команд (около 200 команд в самой OpenGL и еще 50 в библиотеке утилит), которые используются для указания объектов и операций, которые необходимо выполнить, чтобы получить интерактивное приложение, работающее с трехмерной графикой. оpengl программный интерфейс графический

Библиотека OpenGL разработана как обобщенный, независимый интерфейс, который может быть реализован для различного аппаратного обеспечения. По этой причине сама OpenGL не включает функций для создания окон или для захвата пользовательского ввода; для этих операций вы должны использовать средства той операционной системы, в которой вы работаете. По тем же причинам в OpenGL нет высокоуровневых функций для описания моделей трехмерных объектов. Такие команды позволили бы вам описывать относительно сложные фигуры, такие как автомобили, части человеческого тела или молекулы. При использовании библиотеки OpenGL вы должны строить необходимые модели при помощи небольшого набора геометрических примитивов - точек, линий и многоугольников (полигонов).

Тем не менее, библиотека, предоставляющая описанные возможности может быть построена поверх OpenGL. Библиотека утилит OpenGL (OpenGL Utility Library -- GLU) предоставляет множество средств для моделирования, например, квадрические поверхности, кривые и поверхности типа NURBS. GLU - стандартная часть любой реализации OpenGL. Существуют также и более высокоуровневые библиотеки, например, Fahrenheit Scene Graph (FSG), которые построены с использованием OpenGL и распространяются отдельно для многих ее реализаций.

В следующем списке коротко описаны основные графические операции, которые выполняет OpenGL для вывода изображения на экран.

1. Конструирует фигуры из геометрических примитивов, создавая математическое описание объектов (примитивами в OpenGL считаются точки, линии, полигоны, битовые карты и изображения).

2. Позиционирует объекты в трехмерном пространстве и выбирает точку наблюдения для осмотра полученной композиции.

3. Вычисляет цвета для всех объектов. Цвета могут быть определены приложением, получены из расчета условий освещенности, вычислены при помощи текстур, наложенных на объекты или из любой комбинации этих факторов.

4. Преобразует математическое описание объектов и ассоциированной с ними цветовой информации в пиксели на экране. Этот процесс называется растеризацией (или растровой разверткой).

В течение всех этих этапов OpenGL может производить и другие операции, например, удаление частей объектов, скрытых другими объектами. В дополнение к этому, после того, как сцена растеризована, но до того, как она выводится на экран, вы можете производить некоторые операции с пиксельными данными, если это необходимо.

Общий порядок работы с библиотекой OpenGl таков:

1. Инициализировать окно (получить область для вывода изображения)

2. Установить камеру

3. Включить свет (если это необходимо)

4. В цикле начать выводить примитивы (точки, линии, полигоны), предварительно очищая окно от предыдущего рисунка.

Инициализация окна.

Если вы работаете в Visual C++, то окно, создается при помощи функций

auxInitDisplayMode

Основной цикл рисования кадра создается в функции Draw и регистрируется при помощи функции

auxMainLoop(Draw);

static void CALLBACK Draw(void) // создается пользователем

// расположение окна OpenGL на экране

auxInitPosition(100, 100, windowW, windowH);

// установка основных параметров работы OpenGL

// цветовой режим RGB | включение Z-буфера для сортировки по глубине

// |Двойная буферизация

auxInitDisplayMode(AUX_RGB | AUX_DEPTH | AUX_DOUBLE);

// инициализация окна OpenGL с заголовком Title

if(auxInitWindow("Example1") ==GL_FALSE) auxQuit();

// регистрация функции, которая вызывается при перерисовке

// и запуск цикла обработки событий

// Draw() - функция пользователя

auxMainLoop(Draw);

Если вы работаете в Borland C++ Builder, то для инициализации окна, надо получить Handle (уникальный идентификатор окна Windows) того окна, на котором вы будите рисовать. Handle имеется у всех окон-приложений верхнего уровня и у большинства дочерних окон. В наших примерах мы будем рисовать на дочернем окне StaticText.

Далее мы должны создать Контекст рисования (device context) и установить его формат. Для этого инициализируется структуру PIXELFORMATDESCRIPTOR (формат описания пикселей). В этой структуре описывается, требуется ли нам поддержка буфера глубины, двойной буферизации и проч.).

Затем следуют функции:

ChoosePixelFormat

Создается контекст рисования OpenGL:

wglCreateContext(hdc);

А потом связываются контексты OpenGL и Windows:

wglMakeCurrent(hdc, hrc)

void __fastcall TFormMain::FormCreate(TObject *Sender)

// возьмем ХЕНДЛ окошка StaticText

static HWND Handle=a->Handle;

// создадим Хендл места рисования для окна StaticText

hdc = GetDC (Handle) ;

// устанавливаем соответствующие настройки контекста устройства

PIXELFORMATDESCRIPTOR pfd = {

sizeof(PIXELFORMATDESCRIPTOR),

PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER,

// выбрать соответствующий формат

PixelFormat = ChoosePixelFormat(hdc, &pfd);

SetPixelFormat(hdc, PixelFormat, &pfd);

// создадим контекст устройства для OpenGL

// используя Хендл места рисования

hrc = wglCreateContext(hdc);

ShowMessage(":-)~ hrc == NULL");

if(wglMakeCurrent(hdc, hrc) == false)

ShowMessage("Could not MakeCurrent");

Установка камеры

По умолчанию камера расположена в начале координат (0, 0, 0), направлена вдоль отрицательного направления оси z, и вектором верхнего направления имеет (0, 1, 0).

Для установки камеры удобно использовать функцию gluLookAt(). Хотя она имеет 9 параметров, в них легко разобраться. Они делятся по три параметра, соответственно для трех точек: Eye (Глаз), Center, Up.

Глаз определяет точку откуда смотрим, Центр - куда смотрим, а вектор верха определяет, где у нас должен быть верх (представьте себе пилота в самолете летящего головой вниз). Вектора удобно заключать в классы с переопределенными операциями.

gluLookAt(e.x,e.y,e.z, c.x,c.y,c.z, u.x,u.y,u.z);

Основной цикл включает в себя следующие этапы рисования кадра:

1. Очистку буферов от рисования предыдущей картинки

2. Функции рисования примитивов

3. Функции завершения рисования и ожидания ответа видеокарты

4. Функции копирования изображения из памяти на экран

Основной цикл не включает в себя обработку событий,таких как нажатие клавиш и изменение размеров окна. Для обработки событий создаются отдельные функции и присоединяются к приложению дополнительно.

Если вы работаете в Visual C, то это осуществляется при помощи функций, прототипы которых описаны в файле glaux.h:

auxReshapeFunc()

Если вы работаете в Borland C, то обработка событий осуществляется традиционным для созданных этой программной средой образом: вы просто выбираете компонент(например, Button1), создаете обработчик (например нажатие клавиши) и внутри описываете тело функции.

Рисование примитивов

Рисование примитивов осуществляется командами glBegin() и glEnd().

Константа переданная функции glBegin определяет тип примитива, который будет рисоваться

Координаты точек задаются трехмерным пространственным вектором вектором. Цвета задаются тремя (RGB) или четырьмя (RGBA) параметрами. В нашем примере значение цветовой составляющей каждого цвета можно варьировать от 0 до 1. Если вы привыкли к значению цветовой составляющей от 0 до 255(MsPaint), то используется функция glColor3ub(255,0,0). Суффикс ub означает unsigned byte.

Освещение в Компьютерной графике имеет 3 составляющие

Фоновое излучение - это свет, который настолько распределен средой (предметами, стенами и так далее), что его направление определить невозможно - кажется, что он исходит отовсюду. Лампа дневного света имеет большой фоновый компонент, поскольку большая часть света, достигающего вашего глаза, сначала отражается от множества поверхностей. Уличный фонарь имеет маленький фоновый компонент: большая часть его света идет в одном направлении, кроме того, поскольку он находится на улице, очень небольшая часть света попадает вам в глаз после того, как отразится от других объектов. Когда фоновый свет падает на поверхность, он одинаково распределяется во всех направлениях.

Диффузный компонент - это свет, идущий из одного направления, таким образом, он выглядит ярче, если падает на поверхность под прямым углом, и выглядит тусклым, если касается ее всего лишь вскользь. Однако, когда он падает на поверхность, он распределяется одинаково во всех направлениях, то есть его яркость одинакова вне зависимости от того, с какой стороны вы смотрите на поверхность. Вероятно, любой свет, исходящий из определенного направления или позиции, имеет диффузный компонент.

Зеркальный свет исходит из определенного направления и отражается от поверхности в определенном направлении. При отражении хорошо сфокусированного лазерного луча от качественного зеркала происходит почти 100 процентное зеркальное отражение. Блестящий метал или пластик имеет высокий зеркальный компонент, а кусок ковра или плюшевая игрушка - нет. Вы можете думать о зеркальности как о том, насколько блестящим выглядит материал.

Помимо фонового, диффузного и зеркального цветов, материалы могут также иметь исходящий цвет, имитирующий свет, исходящий от самого объекта. В модели освещения OpenGLисходящий свет поверхности добавляет объекту интенсивности, но на него не влияют никакие источники света, и он не производит дополнительного света для сцены в целом.

Хотя источник света излучает единое распределение частот, фоновый, диффузный и зеркальный компоненты могут быть различны. Например, если в вашей комнате красные стены и белый свет, то этот свет, отражаясь от стен будет скорее красным, чем белым (несмотря на то, что падающий на стену свет -- белый). OpenGL позволяет устанавливать значения красного, зеленого и синего независимо для каждого компонента света.

Команды, используемые для установления материала таковы:

// экземпляры для источника света и материала

// Включим свет источник номер ноль

glEnable(GL_LIGHT0);

// устанавливаем положение и цветовые составляющие источника света

glLightfv(GL_LIGHT0, GL_POSITION, LL.pos);

glLightfv(GL_LIGHT0, GL_AMBIENT, LL.amb);

glLightfv(GL_LIGHT0, GL_DIFFUSE, LL.dif);

glLightfv(GL_LIGHT0, GL_SPECULAR, LL.spec);

// включим режим затениения/освещения

glEnable(GL_LIGHTING);

// устанавливаем параметры материала обьекта

// на лицевых гранях --- GL_FRONT для задних GL_BACK для обоих - GL_FRONT_AND_BACK

// второй параметр - какая составляющая материала

// можно GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_EMISSION, GL_SHININESS

// соотв РАССЕЯННЫЙ, ОТРАЖЕННЫЙ, ЗЕРКАЛЬНЫЙ, САМОИЗЛУЧЕНИЯ, показатель зеркального блика

glMaterialfv(GL_FRONT,GL_AMBIENT,MM.amb);

glMaterialfv(GL_FRONT,GL_DIFFUSE,MM.dif);

glMaterialfv(GL_FRONT,GL_SPECULAR,MM.spec);

glMaterialf(GL_FRONT,GL_SHININESS,MM.pos);

glNormal3f(0,0,1);

glBegin(GL_QUADS);

for(i=-10; i<20;i++)

for(j=-10;j<20;j++)

glVertex3f(i,j,0);

glVertex3f(i+1,j,0);

glVertex3f(i+1,j+1,0);

glVertex3f(i,j+1,0);

Заключение

Система OpenGL является гибким процедурным интерфейсом, позволяющим программисту разрабатывать различные приложения с применением трехмерной графики. В стандарте нет регламентаций по описанию структуры графических объектов, главное внимание уделяется описанию процесса их визуализации. Благодаря этому возрастает эффективность работы имеющейся аппаратуры: от простых устройств, использующих только буфер кадра до современных графических систем, способных на аппаратном уровне визуализировать трехмерные объекты. В OpenGL предусмотрены только возможности по выводу изображений, организация ввода целиком отдана на откуп конкретной оконной системе, что позволяет достигать дополнительной аппаратной независимости приложений.

По причине минимального использования сложных структур для представления трехмерных объектов возможно применение OpenGL в качестве основы для построения библиотек управления структурированными объектами. Примерами таких библиотек могут быть объектно-ориентированные инструментальные пакеты, используемые для визуализации и моделирования сложных графических структур

Размещено на Allbest.ru

Подобные документы

    Программный код OpenGL. Синтаксис команд OpenGL. OpenGL как конечный автомат. Конвейер визуализации OpenGL. Библиотеки, относящиеся к OpenGL. Библиотека OpenGL. Подключаемые файлы. GLUT, инструментарий утилит библиотеки OpenGL.

    курсовая работа , добавлен 01.06.2004

    Программирование приложения с использованием библиотеки OpenGL и функции для рисования геометрических объектов. Разработка процедуры визуализации трехмерной сцены и интерфейса пользователя. Логическая структура и функциональная декомпозиция проекта.

    курсовая работа , добавлен 23.06.2011

    Ознакомление с интерфейсом, основными возможностями и преимуществами использования программы OpenGL - популярной библиотекой для работы с 2D и 3D графикой. Рассмотрение назначения, базовых компонент и правил инициализации программного движка DirectX.

    презентация , добавлен 14.08.2013

    Создание программы на языке C++ с использованием графических библиотек OpenGL в среде Microsoft Visual Studio. Построение динамического изображения трехмерной модели объекта "Нефтяная платформа". Логическая структура и функциональная декомпозиция проекта.

    курсовая работа , добавлен 23.06.2011

    Суть программирования с использованием библиотеки OpenGL, его назначение, архитектура, преимущества и базовые возможности. Разработка приложения для построения динамического изображения трехмерной модели объекта "Компьютер", руководство пользователя.

    курсовая работа , добавлен 22.06.2011

    Работа с цветом с помощью графической библиотеки OpenGL. Программа, отображающая квадрат, с меняющимся цветом, в зависимости от изменения градиентов (R,G,B), треугольник, вершины которого имеют различные цвета, прямоугольную полосу в виде спектра.

    контрольная работа , добавлен 21.01.2011

    Назначение и стандарты реализации OpenGL для Windows, порядок подключения графической библиотеки. Основные функции и синтаксис команд. Рисование примитивов, видовые и аффинные преобразования. Моделирование двумерных графических объектов и анимации.

    лабораторная работа , добавлен 04.07.2009

    Основы программирования с использованием библиотеки OpenGL. Приложение для построения динамического изображения модели объекта "Батискаф": разработка процедуры визуализации трехмерной схемы, интерфейса пользователя и подсистемы управления событиями.

    курсовая работа , добавлен 26.06.2011

    Поняття та сфери використання тривимірної графіки. Описання та характеристика можливостей бібліотеки OpenGL. Загальний опис інтерфейсу мови програмування Borland C++, лістинг програми, що демонструє її можливості. Розрахунок витрат на виконання проекту.

    дипломная работа , добавлен 24.06.2015

    Разработка компоненты для математических вычислений (операций над матрицами) с использованием технологии OpenGL (сложение, вычитание, умножение, транспонирование, определитель, обратная матрица). Базовые навыки по работе с технологией в среде.Net.

В этой главе рассмотрим рендеринг трехмерной графики с помощью библиотеки OpenGL, изучим библиотеки GLU и GLUT (вместо последней иод Linux используется библиотека FreeGLUT), разберем процесс загрузки текстур с помощью библиотек SOIL и DevIL.

Как уже отмечалось в гл. 9, программисты графики обычно не работают напрямую с GPU. Это связано как с тем, что существует много различных GPU, так и с тем, что низкоуровневая работа с GPU довольно сложна и обычно ею занимаются разработчики драйверов. Вместо этого используют различные API, предоставляющие некоторый интерфейс более высокого уровня для работы с GPU. Этот интерфейс абстрагируется от конкретного GPU (вся работа с которым идет через драйвер, обычно поставляемый производителем GPU), что позволяет писать переносимый код, который будет работать с различными GPU. Также подобный API скрывает от программиста ряд низкоуровневых деталей работы с GPU.

Основными API для программирования трехмерной графики на данный момент являются OpenGL и Dircct3D. Последний ориентирован только на платформу Microsoft Windows. В этой книге рассмотрены основы работы с OpenGL. Это кроссплатформен- ный API, поддерживающий все основные операционные системы (Windows, Linux, Mac OS X) и позволяющий работать с большим количеством различных GPU.

Существует версия API - OpenGL ES, предназначенная для работы на мобильных устройствах. С ее помощью можно делать трехмерную графику для платформ iOS и Android. Кроме того, существует WebGL - библиотека, позволяющая использовать OpenGL ES прямо в окне браузера, применяя для этого javascript. Также существуют привязки для OpenGL, позволяющие работать со всеми основными языками программирования, благодаря чему можно легко использовать OpenGL практически из любого языка программирования.

Основная задача OpenGL - рендеринг двух- и трехмерной графики. При этом данный API вообще не занимается созданием окон для рендеринга, чтением ввода от пользователя и другой подобной и сильно зависящей от конкретной операционной системы работы, поэтому мы будем для этих целей использовать кроссплатформен- ную библиотеку GLUT. Данная библиотека предоставляет простой и удобный способ для создания окон, рендеринга в них посредством OpenGL и получения сообщений от мыши и клавиатуры.

С точки зрения архитектуры OpenGL построен на модели клиент-сервер. При этом сама программа, использующая OpenGL, выступает в роли клиента, a GPU и его драйвер - в роли сервера. Обычно программа выполняется на том же компьютере, где установлен GPU, но это не обязательно.

На практике все выполняемые команды OpenGL буферизуются и уже потом поступают в очередь для передачи на GPU. Таким образом, выполнение CPU команды говорит только о том, что данная команда попала в буфер или была добавлена в очередь; вполне возможно, что GPU ее еще не начал выполнять. В то же время OpenGL можно рассматривать как конечный автомат - у него есть свое состояние. Единственный способ изменить это состояние - использовать команды OpenGL. Между командами состояние OpenGL не изменяется.

Важным понятием в OpenGL являются буферы (рис. 10.1). Для того чтобы осуществлять рендеринг, должны быть созданы необходимые буферы. Буфер цвета используется всегда и для каждого пиксела хранит его цвет как 24-битовое число в формате RGB (по 8 бит на каждый из базовых цветов - красный, зеленый и синий) или как 32-битовое в формате RGBA (к стандартным трем компонентам добавляется четвертая компонента - альфа, задающая непрозрачность).

При использовании метода г-буфера для удаления невидимых поверхностей нужно для каждого пиксела хранить соответствующее ему значение глубины (обычно значение глубины хранится как 16-, 24- и 32-битовое целое число). Соответственно, все значения глубины, взятые вместе, образуют буфер глубины. Также можно использовать буфер трафарета , буфер накопления.

При создании окна, куда будет производиться рендеринг, необходимо создать контекст OpenGL и соответствующие буферы. Сам контекст обычно привязан к текущей нити, поэтому если в приложении используются несколько нитей, то созданный контекст в действительности можно использовать только из той нити, где он был создан.

Обработка данных в OpenGL основана на конвейере рендеринга (см. рис. 9.1). Конвейер определяет основные стадии обработки поступающих данных. Как именно данные будут обрабатываться, зависит от параметров состояния OpenGL, но сами эти стадии и порядок их прохождения строго зафиксированы.

Рис. 10.1.

Для современных GPU две части этого конвейера представлены с помощью программ, выполняющихся на GPU, - шейдеров. Далее будем рассматривать OpenGL версии 2, в которой эти программы необязательно задавать явно: существуют шейдеры, которые работают по умолчанию (г.е. в случае, когда программист явно не задал соответствующие шейдеры). Начиная с версии 3, OpenGL требует обязательного задания шейдеров и частично нарушает совместимость с предыдущими версиями, именно поэтому мы будем рассматривать версию OpenGL 2.

Геометрия задается как набор вершин, образующих различные примитивы (точки, отрезки, треугольники). В каждой вершине помимо ее координат можно задать также ряд дополнительных атрибутов, таких как цвет, нормаль, текстурные координаты. Данные в каждой вершине поступают на вход вершинного шейдера: для каждой вершины выполняется вершинный шейдер и генерирует некоторые выходные значения. Обязательным выходным значением являются однородные координаты вершины после выполнения всех преобразований.

OpenGL использует матрицы 4x4 для преобразования вершин - модельно-видовую матрицу проектирования (рис. 10.2). Если вершинный шейдер не задан явно, то используется вершинный шейдер по умолчанию, который умножает координаты вершины (в виде вектора в однородных координатах) сначала на модельновидовую матрицу, а затем - на матрицу проектирования.

После этого происходит сборка примитивов и их отсечение: все части каждого примитива, выходящие за пределы видимой области {viewing frustum) автоматически обрезаются так, что на следующую стадию конвейера переходят примитивы, полностью содержащиеся внутри области видимости. Далее фиксированная часть конвейера выполняет перспективное деление - вектор в однородных координатах делится на свою четвертую компоненту.


Рис. 10.2.

Если изначально координаты были заданы в своей системе координат, то умножение на модельно-видовую матрицу переводит их в систему координат камеры. Далее умножение на матрицу проектирования приводит координаты в пространство отсечения (clip space). После выполнения перспективного деления получаем нормализованные координаты устройства (normalized device coordinates).

Заключительный шаг - перевод нормализованных координат в координаты в окне, выражаемые в пикселах.

Перед перспективным делением происходит сборка примитивов и последующее отсечение: все, что не попадает в область видимости, отсекается. Далее каждый примитив растеризуется, т.е. переводится в набор фрагментов. Ряд значений, заданных в вершинах, интерполируется, и каждый фрагмент получает соответствующее ему значение. После этого для каждого фрагмента выполняется фрагментный шейдер, задачей которого является вычисление цвета для каждого фрагмента. При этом используются интерполированные значения, возможно обращение к текстурам - заранее подготовленным изображениям, которые накладываются на выводимые примитивы. Отметим, что у каждого фрагмента есть свои координаты на экране и полученное путем интерполяции значение глубины г. Также фрагментный шейдер вместо вычисления цвета фрагмента может явно отбросить весь фрагмент.

На следующем шаге конвейера для каждого фрагмента выполняется группа проверок, каждая из которых может отбросить данный фрагмент. Первая из этих проверок изучает, соответствует ли данный пиксел видимой части окна. Если нет, то этот фрагмент сразу же отбрасывается. Следующий тест проверяет, содержится ли фрагмент внутри заданного прямоугольника (в координатах окна). Также есть тесты трафарета и глубины. Тест трафарета извлекает из буфера трафарета группу битов, соответствующих данному фрагменту, и проверяет выполнение условия для этих битов. Тест глубины выполняет сравнение глубины фрагмента с соответствующим значением из буфера глубины. Каждый из этих тестов может привести к отбрасыванию соответствующего фрагмента. Кроме того, имеется альфа-тест, позволяющий отбрасывать фрагменты, исходя из значения альфа-компоненты ее цвета.

После этого выполняется шаг смешивания цвета фрагмента с цветом, соответствующим данному фрагменту в буфере цвета. Данная операция нужна для поддержки полупрозрачное™.

Вычисление значения цвета может быть проведено с гораздо большей точностью, чем можно сохранить в буфере цвета. Обычно в этом случае происходит просто округление цвета. Использование растрирования (dithering) предоставляет другой вариант: цвет изменяют таким образом, чтобы средний показатель по рядом стоящим пикселам дал нужное значение.

Заключительный шаг - выполнение заданной побитовой логической операции между содержимым буфера цвета и полученным значением цвета. Обратите внимание, что многие из этих тестов и операций могут быть выключены, если в них нет необходимости, - обычно это повышает быстродействие.

Если вы пишете программу, использующую OpenGL на С (или C++), то прежде всего необходимо включить следующий заголовочный файл:

Для обеспечения совместимости и переносимости кода OpenGL вводит ряд своих типов данных, имя каждого из этих типов начинается с префикса GL. GLint соответствует стандартному типу целых чисел, тип GLuint - стандартному типу беззнаковых целых чисел, a GLfloat - типу float. Также OpenGL использует несколько специальных типов, таких как GLsizei, обозначающий тип, используемый для задания размера, и GLclampf, используемый для задания значений с плавающей точкой, лежащих на отрезке .

Также вводится специальный тип GLenum для обозначения типа значений, соответствующих различным константам.

В библиотеке OpenGL (а также в идущих с ней в комплекте библиотеках GLU и GLUT) принято использовать довольно простое соглашение об именовании констант и функций. Имена всех команд (функций) OpenGL начинаются с префикса gl (для функций из библиотек GLU и GLUT - с glu и glut соответственно).

Имена всех констант начинаются с GL_ (соответственно с GLU_ и GLUTJ.

Многие команды OpenGL имеют несколько различных вариантов, отличающихся числом передаваемых аргументов и их типами. В этом случае в имя команды также входит специальный суффикс, содержащий число параметров, и суффикс, задающий их тин. Таким образом, имя команды в OpenGL обычно имеет следующий вид:

glCommand{1 2 3 4}{b s i f d ub us ui}{v}

Необязательная цифра служит для задания количества передаваемых аргументов (в том случае, когда есть версии этой команды с различным числом аргументов). Далее идет необязательный суффикс из одной или двух букв, задающий тип передаваемых аргументов (в том случае, когда существуют версии этой команды, принимающие входные значения различных типов). Суффикс v сообщает о том, что ряд параметров (обычно набор последних параметров) передан в виде массива, - в действительности функция вместо этих параметров получает указатель на этот массив.

Так, в команде glVertex2i два целочисленных аргумента, в команде glColor3f - три аргумента типа float, а в команде glColor4ubv - четыре аргумента типа unsigned byte, переданных в виде массива (т.е. функция при вызове получает всего один аргумент - адрес массива).