Сайт о телевидении

Сайт о телевидении

» » Применение и эксплуатация кислотно-свинцовых герметичных аккумуляторов. Правильная зарядка аккумуляторов - залог успешной работы

Применение и эксплуатация кислотно-свинцовых герметичных аккумуляторов. Правильная зарядка аккумуляторов - залог успешной работы

П ри циклическом режиме работы батарею заряжают, а затем отключают от зарядного устройства. Разряд батареи производится по мере необходимости.

В большинстве UPS (не только в on-line UPS) аккумулятор работает в буферном режиме. Однако в некоторых UPS зарядное устройство отключают после полной - аккумулятор UPS в этом случае ближе к к циклическому режиму работы. Производители декларируют увеличение срока службы аккумуляторов в таких UPS. Буферный режим работы характерен также для систем бесперебойного питания постоянного тока, которые широко применяются для коммуникаций (связи), систем сигнализации, электростанций и других непрерывных производств.

Ц иклический режим работы аккумуляторных батарей используется при работе различных переносных или перевозимых устройств: электрических фонарей, средств коммуникаций, измерительных приборов.

П роизводители аккумуляторов иногда указывают в перечне технических характеристик, для какого режима работы предназначен тот или иной аккумулятор. Но в последнее время, большинство могут применяться и в буферном и в циклическом режимах.

Аккумуляторы для всех

С амые распространенные - это 5-летние аккумуляторы общего применения. Они могут использоваться для буферного и циклического режима работы, имеют расчетный ресурс 5 лет. Они могут применяться как аккумуляторы для UPS или других систем резервного питания. Другое их применение - для моделей, переносных приборов, игрушек, вроде детского мотороллера. У фирмы CSB они имеют марку GP (от англ. general purpose - общего назначения). Аккумуляторы GP неприхотливы, практически герметичны (допускается использование в любом положении, кроме клеммами вниз). Как аккумуляторы для UPS, они могут работать от 2 до 7 лет, в зависимости от условий эксплуатации (прежде всего, температуры).

HR аккумуляторы для UPS

Н екоторые аккумуляторы специально позиционируются производителем, как аккумуляторы для UPS. При той же массе (а иногда и тех же размерах) эти аккумуляторы во время коротких (10-30 минут) разрядов отдают большую , чем обычные аккумуляторы. Прирост времени работы UPS может быть больше 50% (при временах разряда около 10 минут). При длительных разрядах эти "аккумуляторы для UPS" не имеют преимуществ по сравнению с обычными.

У фирмы CSB и некоторых других производителей такие аккумуляторы имеют обозначение HR (от английского high rate - высокий темп, большая мощность). Эти аккумуляторы можно, конечно, использовать не только, как аккумуляторы для UPS. Их выгодно применять во всех случаях, когда требуется компактная система питания с небольшими временами работы от батареи.

L аккумуляторы. Для UPS и не только.

Н аиболее распространены аккумуляторы со сроком службы в буферном режиме 5 лет. Но выпускаются также аккумуляторы со сроком службы увеличенным до 10 лет. Они часто имеют те же размеры и вес, что и 5-летние батареи, но заметно дороже. В их названии часто есть буква L (от англ. Long - продолжительный). В частности у фирмы CSB есть серия 10-летних аккумуляторов GPL. Батареи UPS, составленные из таких аккумуляторов, действительно работают заметно дольше - их замедлено. Но, как любые аккумуляторы для UPS (или других систем питания) GPL любят правильную , не любят повышенные температуры и частые разряды.

Перед установкой аккумулятора в UPS.

П риобретая аккумулятор, убедитесь, что на его верхней поверхности . имеется такая наклейка. Она является свидетельством предпродажной проверки аккумулятора . Наклейка является гарантией того, что в момент продажи аккумулятор полностью исправен и при правильной эксплуатации прослужит многие годы.

Буферный режим заряда аккумуляторов, является основным в системах альтернативной энергетики. От правильной настройки и режима использования оборудования зарядной системы зависит производительность всей системы, надёжность и срок службы оборудования.

При использовании в системах альтернативного энергоснабжения в качестве накопителей электрической энергии аккумуляторов, имеются определённые сложности. Это связано с тем, что поступление электрической энергии от ветряков солнечных батарей неравномерно. Поэтому не всегда удаётся обеспечить необходимый ток заряда для аккумуляторов, чтобы через определённое заданное время отключить зарядку. Для таких систем используют буферный режим заряда аккумуляторов, когда к аккумуляторам постоянно подключено зарядное устройство, а также в любое время могут быть подключены один или несколько потребителей электрической энергии. Буферный режим заряда обычно применяют для аварийного включения резервного питания и для сглаживания пиковых нагрузок при маломощном источнике питания. В альтернативной энергетике буферный режим заряда аккумуляторов выполняет несколько иные функции, обеспечение энергоснабжения системы при прерывистом поступлении энергии для заряда аккумуляторов и обеспечение необходимого количества энергии при неравномерном потреблении энергии потребителями.

Разберём подробнее приведённую схему и работу буферного режима зарядки, его достоинства и недостатки. Важной особенностью этого режима является то, что выходное напряжение зарядного устройства задаётся примерно на 0,05В – 0,1В больше максимального напряжения для заряженного аккумулятора, а значение этого напряжения будет зависеть от конкретного типа аккумулятора. Даже кислотные аккумуляторы разных типов могут иметь различное конечное напряжение заряда, причём оптимальное напряжение несколько меняется при изменении температуры аккумулятора. При отключенной нагрузке R н, зарядка будет происходить следующим образом: ЭДС зарядного устройства Е з превышает ЭДС аккумулятора Е а и направлена встречно напряжению аккумулятора. Сумма падений напряжения в контуре заряда, равна алгебраической сумме ЭДС этого контура. Следовательно, ток заряда будет зависеть от разности ЭДС зарядного устройства и от общего сопротивления цепи, состоящей из внутреннего сопротивления зарядного устройства и аккумулятора.

Внутреннее сопротивление зарядного устройства R з и аккумулятора R а будем считать практически постоянным. Следовательно, величина тока зарядки будет зависеть от разности ЭДС. Внутренние сопротивления небольшие по величине, поэтому если аккумулятор разряжен, ток заряда может стать больше допустимого, для конкретного аккумулятора или зарядного устройства. Поэтому зарядные устройства выполняют по схеме с ограничением максимального тока и применяют для аккумуляторов определённого типа и ёмкости. По мере заряда аккумулятора разница ЭДС, а значит, и ток заряда будут уменьшаться. Поэтому процесс заряда аккумулятора будет замедляться независимо от того, какую мощность в это время способен выдавать источник альтернативной энергии и может продолжаться до нескольких суток.

Если установленное напряжение на зарядном устройстве завышено, то после окончания химического процесса заряда, электрическая энергия будет идти на нагрев аккумулятора и на разложение воды на водород и кислород. У обслуживаемых аккумуляторов это приведёт к быстрому уменьшению уровня электролита. Большинство необслуживаемых аккумуляторов изготавливаются с возможностью рекуперации водорода и кислорода в воду, но возможности этой системы ограничены. Если необслуживаемый аккумулятор периодически сбрасывает через клапан повышенное давление газа, то это приводит к высыханию электролита, быстрому старению и выходу аккумуляторов из строя.

Альтернативные источники энергии не всегда могут вырабатывать энергию достаточную для заряда аккумулятора. Если генератор ветряка выдаёт напряжение меньше, чем напряжение аккумуляторов, то заряд не происходит. Схема зарядного устройства должна защищать аккумулятор от разряда через зарядное устройство и генератор.

Рассмотрим режим разряда аккумулятора при отсутствии зарядного тока:

В этом режиме, согласно рисунку, выключатель SA1разомкнут, а выключатель SA2 замкнут. Ток разряда будет зависеть от ЭДС аккумулятора и суммы внутреннего и внешнего сопротивления и определяется по формуле:

Напряжение на выводах аккумулятора 1 и 2 будет равно ЭДС аккумулятора минус падение напряжения на внутреннем сопротивлении:

U = E a – R a I н

Ток через нагрузку и внутреннее сопротивление одинаковый. Внутреннее сопротивление аккумулятора небольшое и ток в основном зависит от величины сопротивления нагрузки. Чем меньше сопротивление нагрузки, тем больше потребляемый ток и больше величина падения на внутреннем сопротивлении и меньше напряжение на выводах аккумулятора 1 и 2.

Теперь рассмотрим режим одновременной работы зарядного устройства и нагрузки аккумулятора, когда замкнуты контакты SA1и SA2.

Если во время заряда аккумулятора, подключили нагрузку, которая потребляет небольшой по сравнению с зарядным ток, то на зарядку аккумулятора будет идти уже меньшая часть тока. При постепенном уменьшении сопротивления нагрузки и увеличении потребляемого тока, зарядный ток аккумулятора будет уменьшаться и при некотором значении прекратится. Потребляемый от зарядного устройства ток увеличится, что приведёт к некоторому падению напряжения до величины ЭДС аккумулятора. Если поступающий от зарядного устройства ток меньше или равен току, потребляемому нагрузкой, то в таком режиме потреблять энергию можно очень долго. Дальнейшее увеличение потребляемого тока приведёт к тому, что падение напряжения ещё больше увеличится и аккумулятор начнёт отдавать запасённую ранее энергию. Аккумулятор берёт на себя пиковую повышенную нагрузку. Длительная работа в таком режиме может привести к глубокому разряду аккумулятора, в результате снижается ЭДС аккумулятора. Слишком глубокий разряд аккумулятора значительно сокращает срок его службы, поэтому нагрузку лучше подключать через преобразователь или иное устройство, способное автоматически отключать нагрузку при снижении напряжения ниже допустимого уровня. Для кислотных аккумуляторов нежелательно, чтобы они долго находились в разряженном состоянии.

При использовании буферного режима заряда, необходимо следить за поступлением энергии от источника и желательно учитывать, что в то время, когда источник энергии способен выдавать большое количество энергии, но эта энергия не потребляется, то при заряженных аккумуляторах энергия не накапливается, а значит, безвозвратно теряется. При отсутствии поступления энергии от источника, например, ветряка, потребление энергии необходимо сократить или прекратить, чтобы не разрядить аккумуляторы больше допустимой нормы, а также иметь некоторый запас на случай длительных перерывов в поступлении энергии.

Буферное зарядное устройства (БЗУ) представляет собой стабилизированный источник напряжения, имеющий ограничитель выходного тока. Напряжение на выходе БЗУ соответствует напряжению на заряженном аккумуляторе. Если к такому устройству подключить требующую подзарядки аккумуляторную батарею, то зарядный ток будет определяться разностью напряжений на батарее и на выходе БЗУ, а также внутренним сопротивлением аккумулятора. В процессе зарядки зарядный ток уменьшается, пока не станет равным току саморазряда аккумулятора. В таком состоянии аккумулятор может находиться неограниченно долго - в течении всего срока эксплуатации. Если к БЗУ будет подключен сильно разряженный или неисправный (содержащий короткозамкнутые пластины) аккумулятор, то зарядный ток может существенно возрасти. Чтобы он не мог превысить безопасные значения в БЗУ имеется ограничитель выходного тока.

Буферный режим зарядки свинцовых аккумуляторных батарей широко используется в источниках бесперебойного питания. Опыт эксплуатации таких источников, а также рекомендации изготовителей аккумуляторов для них, говорят о том, что буферная зарядка весьма благотворно сказывается на сроке службы свинцовых аккумуляторов.

Буферная зарядка автомобильных аккумуляторов не получила широкого распространения по нескольким причинам. Полная зарядка от БЗУ сильно разряженного аккумулятора занимает больше времени, чем обычная зарядка. Существенные изменения зарядного тока, характерные для буферной зарядки, не соответствуют рекомендациям изготовителей аккумуляторов, которые обычно предлагают заряжать аккумулятор стабильным током, численно равным одной десятой ёмкости батареи. Главным препятствием на пути изготовления и использования БЗУ является то, что данное устройство должно работать постоянно, если автомобиль, на котором установлен заряжаемый аккумулятор, находится в гараже. Это требование накладывает на схемотехнику и конструкцию БЗУ повышенные требования по надёжности, а также электро и пожаробезопасности.

Вопросы, связанные с целесообразностью использования БЗУ с автомобильными аккумуляторами и зависимостью их срока службы от режима зарядки, выходят за рамки данной статьи. Отметим только, что режим БЗУ используется во многих фирменных зарядных устройствах для автомобильных аккумуляторов. Они автоматически переходят в режим БЗУ по окончании зарядки аккумулятора стабильным током и находятся в этом режиме пока аккумулятор не будет отключен. Также, по мнению автора, производители аккумуляторов не слишком заинтересованы в продлении сроков эксплуатации их продукции. В связи с этим рекомендуемый ими режим зарядки не следует воспринимать как единственно возможный.

У автора аккумуляторная батарея 6СТ-55 Подольского аккумуляторного завода прослужила 13 лет. Автомобиль, на котором она была установлена, эксплуатировался круглый год и хранился в неотапливаемом гараже. В течении всего срока эксплуатации батарея была подключена к БЗУ, которое отключалось только на время поездок.

Внешний вид БЗУ представлен на фотографии.

На верхней панели устройства имеется кнопка выключателя сетевого питания. Справа от кнопки под завинчивающейся крышкой находится ось переменного резистора, позволяющего регулировать выходное напряжение БЗУ. Далее, справа от переменного резистора, расположен выходной разъём. На передней панели имеется закрытое оргстеклом окно, за которым находится табло измерителя выходного тока и напряжения, а также два зелёных светодиода, сигнализирующих об исправности БЗУ. Справа от окна имеется таблица, содержащая ряд значений выходного напряжения БЗУ, которые следует устанавливать в зависимости от температуры в гараже. Свойства свинцовых аккумуляторов таковы, что при повышенных температурах напряжение на выходе БЗУ следует уменьшать, а при пониженных - увеличивать. Температурный коэффициент для свинцового аккумулятора с номинальным напряжением 12 Вольт по разным источникам составляет от - 30 до -15 мВ/°С. Таблица составлена исходя из значения -20 мВ/°С.

На следующем рисунке представлена схема электрическая принципиальная БЗУ.

Автор неоднократно убеждался в том, что надёжность работы моточных изделий - электромоторов, трансформаторов, реле и т.п., эксплуатируемых в неотапливаемых помещениях, существенно снижается. Как правило причиной отказов является образование короткозамкнутых витков. Видимо это связано с повышенной влажностью и большими перепадами температуры, способствующими разрушению лаковой изоляции обмоточного провода. В данном устройстве для повышения надёжности используются два силовых трансформатора, обмотки которых включены последовательно. При таком соединении межвитковое замыкание в любом из трансформаторов не вызывает аварийной ситуации - существенного повышения токов в обмотках, перегрева и т.п. Более того - БЗУ в этом случае не теряет работоспособность - продолжает поддерживать аккумулятор в заряженном состоянии. Светодиоды HL1 и HL2 сигнализируют об исправности трансформаторов. Если один из них перестаёт светиться, то соответствующий трансформатор нуждается в ремонте или замене. Если неисправность произойдёт в обеих трансформаторах, то может увеличиться потребляемый ток. Также может произойти перегрев обмоток трансформаторов. В этом случае сработают плавкие предохранители FU2,3 или тепловые предохранители FU1, FU4.

Стабилизацию напряжения и ограничение зарядного тока обеспечивает микросхема DA1 - LM317. Микросхемы данного типа имеют встроенную защиту от повышения выходного тока до значений свыше 2.5 А, защиту от короткого замыкания выхода, а также защиту от перегрева. Схема включения DA1 отличается от типовой только способом регулирования выходного напряжения. В данном случае выходное напряжение регулируется в диапазоне 11...17 Вольт с помощью резистора R7. В случае потери контакта в этом резисторе ток на выходе БЗУ уменьшится до нуля, а не возрастёт до уровня срабатывания токовой защиты, как это случилось бы при обычном способе регулирования выходного напряжения (переменный резистор между 1-м выводом микросхемы и общим проводом).

При эксплуатации БЗУ может произойти отключение питающей сети. В этом случае ток разряда аккумулятора через БЗУ должен быть минимальным - существенно ниже тока саморазряда. Это обеспечивается с помощью ключа VT1 и диода VD5. При отключении сетевого питания как транзистор VT1, так и диод VD5 запираются. Ключ VT1 разрывает цепь для тока разряда через делитель R5 - R8, а диод VD5 отключает от аккумулятора электролитический конденсатор C2, имеющий значительную ёмкость и, возможно, заметный ток утечки. В результате ток разряда аккумулятора на отключенное от сети БЗУ составляет около 20 мкА. Этот ток определяется главным образом входным сопротивлением вольтметра, подключенного к выходу БЗУ.

Диод VD8 защищает БЗУ в случае ошибки с полярностью подключенного аккумулятора. В этом случае сгорит предохранитель FU5, после замены которого работоспособность устройства восстановится. Если такая ошибка исключена, то данный диод можно не устанавливать.

Вспомогательный источник питания с выходным напряжением около 8 В, собранный на элементах VD3 и С3, служит для питания цифрового измерителя тока и напряжения, подключенного к выходу ЗУ. Также он формирует сигнал, открывающий ключ VT1 при наличии напряжения в питающей сети. Если сетевое напряжение отключается, то конденсатор C3 быстро разряжается до нуля благодаря резистору R4.

В качестве цифрового измерителя тока и напряжения автор использовал широко распространённое устройство, продающееся в интернет-магазинах под названием "100V 10A Voltmeter Amperemeter LED Dual Digital Volt Amp Meter". Поскольку изготовители не всегда приводят схему подключения и цветовая маркировка выводов может отличается от той, которая приводится в описании, предлагается подключить измеритель к БЗУ в соответствии с нумерацией выводов, приведенной на следующей фотографии.

При пользовании измерителем следует учитывать его особенность. Если измеряемый ток менее 50 мА, то на цифровом табло будет нулевой отсчёт "0.00 А". По мнению автора этот недостаток в значительной мере компенсируется доступностью устройства и его невысокой ценой - около 3-х USD. В продаже имеются также более точные измерители не имеющие указанного недостатка, но их стоимость заметно выше.

Внешний вид устройства со снятой крышкой приведен на следующей фотографии.

Все элементы находятся внутри металлического корпуса. Тепловые предохранители FU1 и FU4 приклеены термостойким клеем к трансформаторам Т1 и Т2 соответственно. Плавкие предохранители FU2 и FU3 размещены в сетевой вилке. Для повышения надёжности все плавкие предохранители установлены без арматуры - впаяны в разрывы соответствующих проводов с последующей изоляцией термоусадочной трубкой. Радиатором для микросхемы DA1 и диодного моста VD4 является алюминиевая пластина. Между микросхемой и пластинной следует проложить слюду или иной изолятор, обладающий низким тепловым сопротивлением. Алюминиевая пластина в свою очередь прикручена винтами к металлическому корпусу. Для дополнительного снижения теплового сопротивления использована паста КПТ-8. Резистор R7, с помощью которого регулируется выходное напряжение, должен быть защищён от случайных воздействий. Автор использовал в качестве R7 проволочный резистор типа ПП3-40.

Отладка устройства заключается в подборе резисторов R1 и R2, чтобы обеспечить одинаковую яркость светодиодов HL1 и HL2. Подбор этих резисторов может потребоваться если параметры трансформаторов Т1 и Т2 существенно отличаются. В этом случае напряжения между ними в режиме холостого хода могут распределяться неравномерно. С ростом нагрузки напряжения на трансформаторах выравниваются.

Обязательным условием безопасной эксплуатации БЗУ является надёжное заземление его корпуса.

Для подключения БЗУ к автомобильному аккумулятору удобно использовать разъём прикуривателя, если он не отключается при извлечении ключа зажигания. В противном случае потребуется установить специальный разъём для БЗУ. Конструкция разъёма должна исключать подключение с неправильной полярностью. В провод, соединяющий плюсовую клемму аккумулятора с разъёмом, следует установить плавкий предохранитель на ток 5 А.

Правильный выбор выходного напряжения, на которое настроено БЗУ, очень важен для успешной эксплуатации аккумулятора и зарядного устройства. Если напряжение ниже оптимального значения, то аккумулятор будет заряжен не полностью. Повышенное напряжение может вызвать постепенное выкипание электролита и привести к сокращению срока службы аккумулятора. Изготовители обычно не указывают оптимальное напряжение для буферного режима зарядки автомобильных аккумуляторных батарей. Можно сделать выбор на основе напряжения в автомобильной бортсети - от 13.8 В до 14.5 В. Для буферной зарядки лучше выбрать значение вблизи нижней границы этого диапазона. Также можно взять за основу параметры режима хранения (буферного режима) одного из автоматических зарядных устройств, выпускаемых промышленностью. Например в описании зарядных устройств семейства "Вымпел", фрагмент таблицы из которого приведен в приложении к данной статье, указано напряжение 13.4 - 13.8 В. В настоящее время автор использует БЗУ с необслуживаемой аккумуляторной батареей обычного типа (не AGM). При температуре 20°C напряжение выставлено на 13.7 В. Значения напряжений для других температур можно взять из таблицы, находящейся на передней панели устройства (см. 1-ю фотографию).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
T1, T2 Трансформатор ТН46 2 В блокнот
FU1, FU4 Термопредохранитель TZ D 105 2 В блокнот
FU2, FU3 Предохранитель плавкий 1 А Т 2 В блокнот
FU5 Предохранитель плавкий 1 В блокнот
SB1 Выключатель П2КА3 1 кнопка В блокнот
VD1, VD2, VD6, VD7 Выпрямительный диод

1N4007

4 В блокнот
VD3 Диодный мост

RC207

1 мост В блокнот
VD4 Выпрямительный диод

KBU6B

1 мост В блокнот
VD5, VD8 Диод

КД213А

2 В блокнот
HL1, HL2 Светодиод L1154GT 2 В блокнот
VT1 MOSFET-транзистор

BS170

1 В блокнот
DA1 Линейный регулятор

LM317

1 В блокнот
R1, R2, R8 Резистор


Все мы привыкли в благам цивилизации, и когда что то из удобств исчезает, человек ощущает сильный дискомфорт. У большинства иногда пропадает электроэнергия, так как состояние электросети в большинстве городов очень старые и аварии происходят довольно часто. После того как я в очередной раз 4 часа просидел в темноте, я решил что нужно что то делать... И решение пришло довольно быстро. Аккумулятор 12V 7Ah, такие используются в компьютерных бесперебойниках, небольшая схема, которая будет поддерживать данный аккумулятор, всегда в заряженном состоянии, кусок светодиодной ленты, и Разъем для подключения роутера (без интернета скучно), ноутбук и планшет слава богу имеет свой аккумулятор... И все, нам теперь есть чем заняться и без центральной поставки электроэнергии....
Схема зарядки держит аккумулятор в буферном режиме, то есть на аккумулятор всегда поступает напряжение определенного уровня, что поддерживает его в заряженном состоянии. Производители пишут на корпусе какое именно напряжение необходимо для вашей батареи. Обычно оно лежит в пределах 13,5 - 13,8 вольта. Под таким напряжением аккумулятор может быть подключен к сети постоянно.


Схема зарядного устройства состоит с сетевого трансформатора, стабилизатора напряжения на микросхеме LM317, и аккумуляторной батареи. Все монтируется на небольшой печатной плате, микросхему lm317 необходимо установит на радиатор.


Настройка заключается в установке напряжения на выходе зарядного устройства 13,5 - 13,8 вольта. Для питания роутера я дополнительно ставил кренку на 9 вольт. При емкости аккумулятора 7Ah. метр светодиодной белой ленты и роутер работал более 4 часов, больше не проверялось, свет обычно включают...
Скачать схему, файл печатной платы, аварийного источника бесперебойного питания

Рассмотрены вопросы применения и эксплуатации кислотно-свинцовых герметичных аккумуляторных батарей, наиболее широко используемых для резервирования аппаратуры охранно-пожарной сигнализации (ОПС)

* Все рисунки и технические характеристики, использованные в данной статье, приведены из документации для аккумуляторов фирмы «Fiamm», а также полностью соответствуют техническим характеристикам параметров аккумуляторов, производимых фирмами «Cobe» и «Yuasa».

Появившиеся на российском рынке в начале 90-х годов кислотно-свинцовые герметичные аккумуляторные батареи (далее — аккумуляторы), предназначенные для использования в качестве источников постоянного тока для электропитания или резервирования аппаратуры ОПС, связи и видеонаблюдения, в короткий срок завоевали популярность у пользователей и разработчиков. Наиболее широкое применение получили аккумуляторы, производимые фирмами: «Power Sonic», «CSB», «Fiamm», «Sonnenschein», «Cobe», «Yuasa», «Panasonic», «Vision».

Аккумуляторы такого типа имеют следующие достоинства:

Рисунок 1 — Зависимость времени разряда аккумулятора от тока разряда

  • герметичность, отсутствие вредных выбросов в атмосферу;
  • не требуются замена электролита и доливка воды;
  • возможность эксплуатации в любом положении;
  • не вызывает коррозии аппаратуры ОПС;
  • устойчивость без повреждений к глубокому разряду;
  • малый саморазряд (менее 0,1%) от номинальной ёмкости в сутки при температуре окружающей среды плюс 20 °С;
  • сохранение работоспособности при более чем 1000 циклов 30% разряда и свыше 200 циклов полного разряда;
  • возможность складирования в заряженном состоянии без подзаряда в течение двух лет при температуре окружающей среды плюс 20 °С;
  • возможность быстрого восстановления ёмкости (до 70% за два часа) при заряде полностью разряженного аккумулятора;
  • простота заряда;
  • при обращении с изделиями не требуется соблюдение каких-либо мер предосторожности (так как электролит находится в виде геля, отсутствует утечка кислоты при повреждении корпуса).


Рисунок 2 — Зависимость емкости аккумулятора от температуры окружающей среды

Одной из основных характеристик является ёмкость аккумулятора С (произведение тока разряда А на время разряда ч). Номинальная ёмкость (значение указано на батарее) равна ёмкости, которую отдает аккумулятор при 20-часовом разряде до напряжения 1,75 В на каждой ячейке. Для 12-вольтового аккумулятора, содержащего шесть ячеек, это напряжение равно 10,5 В. Например, аккумулятор с номинальной ёмкостью 7 Ач обеспечивает работу в течение 20 ч при токе разряда 0,35 А. При расчете времени работы аккумулятора при токе разряда, отличном от 20-часового, реальная ёмкость его будет отличаться от номинальной. Так, при более 20-часовом токе разряда реальная ёмкость аккумулятора будет меньше номинальной (рисунок 1 ).

Ёмкость аккумулятора также зависит от температуры окружающей среды (рисунок 2 ).
Все фирмы-производители выпускают аккумуляторы двух номиналов: 6 и 12 В с номинальной ёмкостью 1,2 … 65,0 А*ч.

ЭКСПЛУАТАЦИЯ АККУМУЛЯТОРОВ

При эксплуатации аккумуляторов необходимо соблюдать требования, предъявляемые к их разряду, заряду и хранению.

1. Разряд аккумулятора

При разряде аккумулятора температура окружающей среды должна поддерживаться в пределах от минус 20 (для некоторых типов аккумуляторов от минус 30 °С) до плюс 50 °С. Такой широкий температурный диапазон позволяет устанавливать аккумуляторы в неотапливаемых помещениях без дополнительного подогрева.
Не рекомендуется подвергать аккумулятор «глубокому» разряду, так как это может привести к его порче. В таблице 1 приведены значения допустимого напряжения разряда для различных значений тока разряда.

Таблица 1

Аккумулятор после разряда следует немедленно зарядить. Это особенно касается аккумулятора, который был подвергнут «глубокому» разряду. Если аккумулятор в течение длительного периода времени находится в разряженном состоянии, то возможна ситуация, при которой восстановить полностью его ёмкость будет невозможно.

Некоторые разработчики источников питания со встроенным аккумулятором устанавливают напряжение отключения батареи при ее разряде предельно низким (9,5…10,0 В), пытаясь увеличить время работы в резерве. На самом деле увеличение продолжительности ее работы в этом случае незначительно. Например, остаточная ёмкость батареи при ее разряде током 0,05 С до 11 В составляет 10% от номинальной, а при разряде большим током это значение уменьшается.

2. Соединение нескольких аккумуляторов

Для получения номиналов напряжений свыше 12 В (например, 24 В), используемых для резервирования приемно-контрольных приборов и извещателей для открытых площадок, допускается последовательное соединение нескольких аккумуляторов. При этом следует соблюдать следующие правила:

  • Необходимо использовать одинаковый тип аккумуляторов, производимых одной фирмой-изготовителем.
  • Не рекомендуется соединять аккумуляторы с разницей даты времени изготовления больше чем 1 месяц.
  • Необходимо поддерживать разницу температур между аккумуляторами в пределах 3 °С.
  • Рекомендуется соблюдать необходимое расстояние (10 мм) между батареями.

3. Хранение

Допускается хранить аккумуляторы при температуре окружающей среды от минус 20 до плюс 40 °С.


Рисунок 3 — Зависимость изменения емкости аккумулятора от времени хранения при различной температур

Аккумуляторы, поставляемые фирмами-изготовителями в полностью заряженном состоянии, имеют достаточно малый ток саморазряда, однако при длительном хранении или использовании циклического режима заряда возможно уменьшение их емкости (рисунок 3 ). Во время хранения аккумуляторов рекомендуется перезаряжать их не реже 1 раза в 6 месяцев.

4. Заряд аккумулятора



Рисунок 4 — Зависимость срока службы аккумулятора от температуры окружающей среды

Заряд аккумулятора можно осуществлять при температуре окружающей среды от 0 до плюс 40 °С.
При заряде аккумулятора нельзя помещать его в герметично закрытую емкость, так как возможно выделение газов (при заряде большим током).

ВЫБОР ЗАРЯДНОГО УСТРОЙСТВА

Рисунок 5 — Зависимость изменения относительной емкости аккумулятора от срока службы в буферном режиме заряда

Необходимость правильного выбора зарядного устройства продиктована тем, что чрезмерный заряд будет не только уменьшать количество электролита, а приведет к быстрому выходу из строя элементов аккумулятора. В то же время уменьшение тока заряда приводит к увеличению продолжительности заряда. Это не всегда желательно, особенно при резервировании аппаратуры ОПС на объектах, где часто происходят отключения электроэнергии,
Срок службы аккумулятора существенно зависит от методов заряда и температуры окружающей среды (рисунки 4, 5, 6 ).

Буферный режим заряда

Рисунок 6 — Зависимость количества циклов разряда аккумулятора от глубины разряда* % показывает глубину разряда на каждый цикл номинальной емкости, взятой как 100%

При буферном режиме заряда аккумулятор всегда подключен к источнику постоянного тока. В начале заряда источник работает как ограничитель тока, в конце (когда напряжение на батарее достигает необходимого значения) — начинает работать как ограничитель напряжения. С этого момента ток заряда начинает падать и достигает величины, компенсирующей саморазряд аккумулятора.

Циклический режим заряда

При циклическом режиме заряда производится заряд аккумулятора, затем он отключается от зарядного устройства. Следующий цикл заряда осуществляется только после разряда аккумулятора или через определенное время для компенсации саморазряда. Характеристики заряда аккумулятора приведены в таблице 2 .

Таблица 2

Примечание — Температурный коэффициент не следует принимать во внимание, если заряд протекает при температуре окружающей среды 10…30° С.

На рисунке 6 показано количество циклов разряда, которым можно подвергнуть аккумулятор в зависимости от глубины разряда.

Ускоренный заряд аккумулятора

Допускается проведение ускоренного заряда аккумулятора (только для циклического режима заряда). Для данного режима характерно наличие цепей температурной компенсации и встроенных температурных защитных устройств, так как при протекании большого тока заряда возможен разогрев аккумулятора. Характеристики ускоренного заряда аккумулятора приведены в таблице 3.

Таблица 3

Примечание — следует использовать таймер, чтобы предотвратить заряд аккумулятора.

Для аккумуляторов, имеющих ёмкость более чем 10 Ач, начальный ток не должен превышать 1C.
Срок службы кислотно-свинцовых герметичных аккумуляторов может составлять 4…6 лет (при соблюдении требований, предъявляемых к заряду, хранению и эксплуатации аккумуляторов). При этом в течение указанного срока их эксплуатации никакого дополнительного обслуживания не требуется.

Продолжить чтение

    Эксплуатационный ресурс герметичных свинцовых аккумуляторных батарей в составе электронного оборудования Мерунко Александр Анатольевич Технический директор ООО «Диск», г.Томск В настоящее время на потребительском рынке вторичных источников тока лидирующее положения (вследствие относительно низкой стоимости) занимают герметичные свинцовые аккумуляторные батареи. Их применяют…

    Какая емкость АБ Вам нужна? При расчете системы автономного электроснабжения очень важно правильно выбрать емкость аккумуляторной батареи. Специалисты компании "Ваш Солнечный Дом" помогут Вам правильно рассчитать необходимую емкость АБ для вашей энергосистемы. Для предварительного расчета Вы можете руководствоваться следующими простыми…