Сайт о телевидении

Сайт о телевидении

» » По способу управления сети делятся на. Классификация компьютерных сетей. Методы доступа к несущей в компьютерных сетях

По способу управления сети делятся на. Классификация компьютерных сетей. Методы доступа к несущей в компьютерных сетях

Данные модели определяют взаимодействие компьютеров в локальной вычислительной сети. В одноранговой сети все компьютеры равноправны между собой. При этом вся информация в системе распределена между отдельными компьютерами. Любой пользователь может разрешить или запретить доступ к данным, которые хранятся на его компьютере.

Рабочая группа (Workgroup) - это самостоятельное решение организации компьютерной сети для небольшого количества компьютеров, которая имеет одноранговую архитектуру и процесс аутентификации в которой происходит на основе локальной базы, хранящиеся на каждом из компьютеров рабочей группы

В одноранговой сети пользователю, работающему за любым компьютером доступны ресурсы всех других компьютеров сети. Например, сидя за одним компьютером, можно редактировать файлы, расположенные на другом компьютере, печатать их на принтере, подключенном к третьему, запускать программы на четвертом.

К достоинствам такой модели организации ЛВС относится простота реализации и экономия материальных средств, так как нет необходимости приобретать дорогой сервер.

Несмотря на простоту реализации, данная модель имеет ряд недостатков:

  • 1. Низкое быстродействие при большом числе подключенных компьютеров;
  • 2. Отсутствие единой информационной базы;
  • 3. Отсутствие единой системы безопасности информации;
  • 4. Зависимость наличия в системе информации от состояния компьютера, т.е. Если компьютер выключен, то вся информация, хранящиеся на нем, будет недоступна.

Active Directory

Active Directory позволяет управлять администраторам с одного рабочего места всеми заявленными ресурсами: файлами, периферийными устройствами, базами данных, подключениями к серверам, доступом к Web, пользователями, сервисами.

В сетях с развертыванием DNS для поддержки службы каталогов Active Directory настоятельно рекомендуется использовать основные зоны, интегрированные в службу каталогов, которые предоставляют следующие преимущества:

  • 1. Обновление главным сервером и расширенные средства безопасности, базирующиеся на возможностях Active Directory.
  • 2. Репликация и синхронизация зон с новыми контроллерами домена выполняется автоматически при каждом добавлении нового контроллера в домен Active Directory.
  • 3. За счет сохранения баз данных зон DNS в Active Directory имеется возможность рационализировать репликацию баз данных в сети.
  • 4. Репликация каталогов выполняется быстрее и эффективнее, чем стандартная репликация DNS.

Поскольку репликация Active Directory выполняется на уровне отдельных свойств, распространяются только необходимые изменения. При этом для зон, интегрированных в службу каталогов, используется и отправляется меньший объем данных.

В качестве достоинств такой модели следует выделить:

  • 1. Высокое быстродействие сети;
  • 2. Наличие единой информационной базы;
  • 3. Наличие единой системы безопасности.

Однако у данной модели есть и недостатки. Главный недостаток заключается в том, что стоимость создания сети типа клиент-сервер значительной выше, за счет необходимости приобретать специальный сервер. Также к недостаткам можно отнести и наличие дополнительной потребности в обслуживающем персонале - администраторе сети.

Для данной организации была выбрана локально-вычислительная сеть на основе клиент-серверной модели. Сервер в данной организации будет представлен в виде компьютера из класса №2, к которому иметь доступ будет только управляющий персонал интернет-кафе. Сервер будет размещен в специальном компьютерном шкафу для защиты.

Классификация ЛВС

Локальные сети можно классифицировать по :

  • уровню управления;
  • назначению;
  • однородности;
  • административным отношениям между компьютерами;
  • топологии;
  • архитектуре.

По уровню управления выделяют следующие ЛВС :

  • ЛВС рабочих групп, которые состоят из нескольких ПК, работающих под одной операционной системой. В такой ЛВС, как правило, имеется несколько выделенных серверов: файл-сервер, сервер печати;
  • ЛВС структурных подразделений (отделов). Данные ЛВС содержат несколько десятков ПК и серверы типа: файл-сервер, сервер печати, сервер баз данных;
  • ЛВС предприятий (фирм). Эти ЛВС могут содержать свыше 100 компьютеров и серверы типа: файл-сервер, сервер печати, сервер баз данных, почтовый сервер и другие серверы.

По назначению сети подразделяются на :

  • вычислительные сети , предназначенные для расчетных работ;
  • информационно-вычислительные сети , которые предназначены, как для ведения расчетных работ, так и для предоставления информационных ресурсов;
  • информационно-советующие , которые на основе обработки данных вырабатывают информацию для поддержки принятия решений;
  • информационно-управляющие сети , которые предназначены для управления объектов на основе обработки информации.

По типам используемых компьютеров можно выделить:

  • однородные сети, которые содержат однотипные компьютеры и системное программное обеспечение;
  • неоднородные сети, которые содержат разнотипные компьютеры и системное программное обеспечение.

По административным отношениям между компьютерами можно выделить:

  • ЛВС с централизованным управлением (с выделенными серверами);
  • ЛВС без централизованного управления (децентрализованные) или одноранговые (одноуровневые) сети.

В локальных сетях с централизованным управлением сервер обеспечивает взаимодействия между рабочими станциями, выполняет функции хранения данных общего пользования, организует доступ к этим данным и передает данные клиенту. Клиент обрабатывает полученные данные и предоставляет результаты обработки пользователю. Необходимо отметить, что обработка данных может осуществляться и на сервере.

Локальные сети с централизованным управлением, в которых сервер предназначен только для хранения и выдачи клиентам информации по запросам, называются сетями с выделенным файл-сервером. Системы, в которых на сервере наряду с хранением осуществляется и обработка информации, называются системами «клиент-сервер».

Необходимо отметить, что в серверных локальных сетях клиенту непосредственно доступны только ресурсы серверов. Но рабочие станции, входящие в ЛВС с централизованным управлением, могут одновременно организовать между собой одноранговую локальную сеть со всеми ее возможностями.

Программное обеспечение, управляющее работой ЛВС с централизованным управлением, состоит из двух частей:

  • сетевой операционной системы, устанавливаемой на сервере;
  • программного обеспечения на рабочей станции, представляющего набор программ, работающих под управлением операционной системы, которая установлена на рабочей станции. При этом на разных рабочих станциях в одной сети могут быть установлены различные операционные системы.

В больших иерархических локальных сетях в качестве сетевых ОС используются UNIX и LINUX, которые являются более надежными. Для локальных сетей среднего масштаба наиболее популярной сетевой ОС является Windows 2008 Server.

В зависимости от способов использования сервера в иерархических сетях различают серверы следующих типов:

  • Файловый сервер . В этом случае на сервере находятся совместно обрабатываемые файлы или (и) совместно используемые программы.
  • Сервер баз данных . На сервере размещается сетевая база данных.
  • Принт-сервер . К компьютеру подключается достаточно производительный принтер, на котором может быть распечатана информация сразу с нескольких рабочих станций.
  • Почтовый сервер . На сервере хранится информация, отправляемая и получаемая как по локальной сети.

Достоинства:

  • выше скорость обработки данных;
  • обладает надежной системой защиты информации и обеспечения секретности;
  • проще в управлении по сравнению с одноранговыми сетями.

Недостатки:

  • сеть дороже из-за выделенного сервера;
  • менее гибкая по сравнению с равноправной сетью.

Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.

Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.

Все существующие конфигурации можно разделить на два основных класса: широковещательные и последовательностные.

В случае широковещательной конфигурации ЛВС сигналы, передаваемые одним устройством подключения к физической среде, воспринимаются всеми остальными. В широковещательной ЛВС в произвольный момент времени может работать только одна станция. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

Для построения широковещательной конфигурации необходимо применение сравнительно мощных приемников и передатчиков. Следовательно, появляется необходимость ограничения длины кабельных сегментов и числа подключений. В случае превышения ограничений применяется аналоговый усилитель или цифровой повторитель. Кроме того, средства подключения к физической среде выбираются такими, которые не вызывают значительного ослабления сигнала.

Основные типы широковещательных топологий «шина», «дерево» и «звезда» показаны на схемах (рисунок 3).

Рисунок 3 - Типы широковещательных топологий:

а) «шина»; б) «дерево»; в) «звезда»

В случае последовательностной конфигурации ЛВС каждое устройство подключения к физической среде передает информацию только одному устройству. При этом снижаются требования к передатчикам и приемникам, поскольку все станции активно участвуют в передаче.

Основные типы последовательных топологий: «кольцо», «цепочка», «снежинка» и «сетка» показаны на схеме (рисунок 4).

Рисунок 4 - Типы последовательностных топологий «кольцо», «цепочка», «снежинка» и «сетка»

Рассмотрим следующие физические топологии:

  • физическая «шина» (bus);
  • физическая «звезда» (star);
  • физическое «кольцо» (ring);

Шинная топология

  • легко подключить новый ПК;
  • имеется возможность централизованного управления;
  • сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

Недостатки сетей топологии «звезда »:

  • отказ хаба влияет на работу всей сети;
  • большой расход кабеля;

Топология «кольцо»

В сети с топологией кольцо все узлы соединены каналами связи в неразрывное кольцо (необязательно окружность), по которому передаются данные. Выход одного ПК соединяется со входом другого ПК. Начав движение из одной точки, данные, в конечном счете, попадают на его начало. Данные в кольце всегда движутся в одном и том же направлении.

Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо.

Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.

Как правило, в чистом виде топология «кольцо » не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

В общем ИТ-инфраструктуру различных предприятий можно различать по:

  • масштабу;
  • составу компонентов;
  • уровню оборудования и т.д.

Исходя из этого, отдельные виды ИТ-инфраструктур можно представить в виде базовых конфигураций, которые отражены на рисунках 5, 6 и 7.

Рисунок 5 - Небольшая локальная сеть.

Небольшая локальная сеть. Обычно состоит из 1-3 серверов, сетевых коммутаторов, 5-30 рабочих станций.

Рисунок 6 - Локальная сеть и телефонная сеть с МиниАТС.

Локальная сеть и телефонная сеть с МиниАТС. Включает все компоненты «небольшой локальной сети» с добавлением внутренней МиниАТС для коммутации телефонов внутри офиса

Рисунок 7 - Локальная сеть и цифровая телефонная сеть на нескольких объектах.

Локальная сеть и цифровая телефонная сеть на нескольких объектах, объединенная в виртуальную частную сеть. Локальная сеть организации используется для IP-телефонии. Возможно объединение цифровых телефонных сетей подразделений организации через Интернет с помощью виртуальных частных сетей.

Уровень подготовки специалистов, обслуживающих ИТ-инфраструктуру предприятий должен быть очень высоким, требующим ответственности за работу, от которой будет зависеть функционирование и безопасность корпоративных компьютерных сетей.

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

МЕЖДУНАРОДНЫЙ ИНСТИТУТ ДИСТАНЦИОННОГО ОБРАЗОВАНИЯ

КОНТРОЛЬНАЯ РАБОТА

ПО УЧЕБНОЙ ДИСЦИПЛИНЕ: Компьютерные сети


Виды компьютерных сетей

Компьютерные сети можно классифицировать по различным признакам.

I . По принципам управления :

1. Одноранговые - не имеющие выделенного сервера. В которой функции управления поочередно передаются от одной рабочей станции к другой;

2. Многоранговые - это сеть, в состав которой входят один или несколько выделенных серверов. Остальные компьютеры такой сети (рабочие станции) выступают в роли клиентов.

II . По способу соединения :

1. "Прямое соединение "- два персональных компьютера соединяются отрезком кабеля. Это позволяет одному компьютеров (ведущему) получить доступ к ресурсам другого (ведомого);

2. "Общая шина " - подключение компьютеров к одному кабелю;

3. "Звезда " - соединение через центральный узел;

4. "Кольцо " - последовательное соединение ПК по двум направлениям.

III . По охвату территории :

1. Локальная сеть (сеть, в которой компьютеры расположены на расстоянии до километра и обычно соединены при помощи скоростных линий связи.) - 0,1 - 1,0 км; Узлы ЛВС находятся в пределах одной комнаты, этажа, здания.

2. Корпоративная сеть (в пределах находятся в пределах одной организации, фирмы, завода). Количество узлов в КВС может достигать нескольких сотен. При этом в состав корпоративной сети обычно входят не только персональные компьютеры, но и мощные ЭВМ, а также различное технологическое оборудование (роботы, сборочные линии и т.п.).

Корпоративная сеть позволяет облегчить руководство предприятием и управление технологическим процессом, установить четкий контроль за информационными и производственными ресурсами.

3. Глобальная сеть (сеть, элементы которой удалены друг от друга на значительное расстояние) - до 1000 км.

В качестве линий связи в глобальных сетях используются как специально проложенные (например, трансатлантический оптоволоконный кабель), так и существующие линии связи (например, телефонные сети). Количество узлов в ГВС может достигать десятков миллионов. В состав глобальной сети входят отдельные локальные и корпоративные сети.

4. Всемирная сеть - объединение глобальных сетей (Internet).

ТОПОЛОГИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ

Топология сети – геометрическая форма и физическое расположение компьютеров по отношению к друг другу. Топология сети позволяет сравнивать и классифицировать различные сети. Различают три основных вида топологии:

1) Звезда;

2) Кольцо;

ШИННАЯ ТОПОЛОГИЯ

Эта топология использует один передающий канал на базе коаксиального кабеля, называемый "шиной". Все сетевые компьютеры присоединяются напрямую к шине. На концах кабеля-шины устанавливаются специальные заглушки - "терминаторы" (terminator). Они необходимы для того, чтобы погасить сигнал после прохождения по шине. К недостаткам топологии "Шина" следует отнести следующее:

Данные, предаваемые по кабелю, доступны всем подключенным компьютерам;

В случае повреждения "шины" вся сеть перестает функционировать.

ТОПОЛОГИЯ «КОЛЬЦО»

Для топологии кольцо характерно отсутствие конечных точек соединения; сеть замкнута, образуя неразрывное кольцо, по которому передаются данные. Эта топология подразумевает следующий механизм передачи: данные передаются последовательно от одного компьютера к другому, пока не достигнут компьютера-получателя. Недостатки топологии "кольцо" те же, то и у топологии "шина":

Общедоступность данных;

Неустойчивость к повреждениям кабельной системы.

ТОПОЛОГИЯ «ЗВЕЗДА»

В сети с топологией "звезда" все компьютеры соединены со специальным устройством, называемым сетевым концентратором или "хабом" (hub), который выполняет функции распределения данных. Прямые соединения двух компьютеров в сети отсутствуют. Благодаря этому, имеется возможность решения проблемы общедоступности данных, а также повышается устойчивость к повреждениям кабельной системы. Однако функциональность сети зависит от состояния сетевого концентратора.

Методы доступа к несущей в компьютерных сетях

В различных сетях существуют различные процедуры обмена данными между рабочими станциями.

Международный институт инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronics Engineers - IEEE) разработал стандарты (IEEE802.3, IEEE802.4 и IEEE802.5), которые описывают методы доступа к сетевым каналам данных.

Наибольшее распространение получили конкретные реализации методов доступа: Ethernet, ArcNet и Token Ring. Эти реализации основаны соответственно на стандартах IEEE802.3, IEEE802.4 и IEEE802.5.

Метод доступа Ethernet

Этот метод доступа, разработанный фирмой Xerox в 1975 году, пользуется наибольшей популярностью. Он обеспечивает высокую скорость передачи данных и надежность.

Для данного метода доступа используется топология "общая шина". Поэтому сообщение, отправляемое одной рабочей станцией, принимается одновременно всеми остальными станциями, подключенными к общей шине. Но сообщение предназначено только для одной станции (оно включает в себя адрес станции назначения и адрес отправителя). Та станция, которой предназначено сообщение, принимает его, остальные игнорируют.

Метод доступа Ethernet является методом множественного доступа с прослушиванием несущей и разрешением конфликтов, называемых коллизиями (CSMA/CD -Carter Sense Multiple Access with Collision Detection).

Перед началом передачи рабочая станция определяет, свободен канал или занят. Если канал свободен, станция начинает передачу.

Ethernet не исключает возможности одновременной передачи сообщений двумя или несколькими станциями. Аппаратура автоматически распознает такие конфликты. После обнаружения конфликта станции задерживают передачу на некоторое время. Это время небольшое и для каждой станции свое. После задержки передача возобновляется.

Реально конфликты приводят к уменьшению быстродействия сети только в том случае, если работает несколько десятков или сотен станций.

Метод доступа ArcNet

Этот метод разработан фирмой Datapoint Corp. Он тоже получил широкое распространение, в основном благодаря тому, что оборудование ArcNet дешевле, чем оборудование Ethernet или Token-Ring.

ArcNet используется в локальных сетях с топологией "звезда". Один из компьютеров создает специальный маркер (сообщение специального вида), который последовательно передается от одного компьютера к другому.

Если станция желает передать сообщение другой станции, она должна дождаться маркера и добавить к нему сообщение, дополненное адресами отправителя и назначения. Когда пакет дойдет до станции назначения, сообщение будет "отцеплено" от маркера и передано станции.

Метод доступа Token-Ring

Метод доступа Token-Ring был разработан фирмой IBM и рассчитан на кольцевую топологию сети.

Этот метод напоминает ArcNet, так как тоже использует маркер, передаваемый от одной станции к другой. В отличие от ArcNet при методе доступа Token-Ring имеется возможность назначать разные приоритеты разным рабочим станциям.

Среды передачи данных, их характеристики

Коаксиальный кабель

Коаксиальный кабель был первым типом кабеля, использованным для соединения компьютеров в сеть. Кабель данного типа состоит из центрального медного проводника, покрытого пластиковым изолирующим материалом, который, в свою очередь, окружен медной сеткой и/или алюминиевой фольгой. Этот внешний проводник обеспечивает заземление и защиту центрального проводника от внешней электромагнитной интерференции. При прокладке сетей используются два типа кабеля - "Толстый коаксиальный кабель" (Thicknet) и "Тонкий коаксиальный кабель" (Thinnet). Сети на основе коаксиального кабеля обеспечивают передачу со скоростью до 10 Мбит/с. Максимальная длина сегмента лежит в диапазоне от 185 до 500 м в зависимости от типа кабеля.

"Витая пара"

Кабель типа "витая пара" (twisted pair), является одним из наиболее распространенных типов кабеля в настоящее время. Он состоит из нескольких пар медных проводов, покрытых пластиковой оболочкой. Провода, составляющие каждую пару, закручены вокруг друг друга, что обеспечивает защиту от взаимных наводок. Кабели данного типа делятся на два класса - "экранированная витая пара" ("Shielded twisted pair") и "неэкранированная витая пара" ("Unshielded twisted pair"). Отличие этих классов состоит в том, что экранированная витая пара является более защищенной от внешней электромагнитной интерференции, благодаря наличию дополнительного экрана из медной сетки и/или алюминиевой фольги, окружающего провода кабеля. Сети на основе "витой пары" в зависимости от категории кабеля обеспечивают передачу со скоростью от 10 Мбит/с – 1 Гбит/с. Длина сегмента кабеля не может превышать 100 м (до 100 Мбит/с) или 30 м (1 Гбит/с).

Оптоволоконный кабель

Оптоволоконные кабели представляют собой наиболее современную кабельную технологию, обеспечивающую высокую скорость передачи данных на большие расстояния, устойчивую к интерференции и прослушиванию. Оптоволоконный кабель состоит из центрального стеклянного или пластикового проводника, окруженного слоем стеклянного или пластикового покрытия и внешней защитной оболочкой. Передача данных осуществляется с помощью лазерного или светодиодного передатчика, посылающего однонаправленные световые импульсы через центральный проводник. Сигнал на другом конце принимается фотодиодным приемником, осуществляющим преобразование световых импульсов в электрические сигналы, которые могут обрабатываться компьютером. Скорость передачи для оптоволоконных сетей находится в диапазоне от 100 Мбит/c до 2 Гбит/с. Ограничение по длине сегмента составляет 2 км.

Объединение рассмотренных выше компонент в сеть может производится различными способами и средствами. По составу своих компонент, способам их соединения, сфере использования и другим признакам сети можно разбить на классы таким образом, чтобы принадлежность описываемой сети к тому или иному классу достаточно полно могла характеризовать свойства и качественные параметры сети.

Однако такого рода классификация сетей является довольно условной. Наибольшее распространение на сегодня получило, разделение компьютерных сетей по признаку территориального размещения.

По этому признаку сети делятся на три основных класса:

­ LAN – локальные сети (Local Area Networks);

­ MAN – городские сети (Metropolitan Area Networks).

­ WAN – глобальные сети (Wide Area Networks);

Локальная сеть (ЛС) – это коммуникационная система, поддерживающая в пределах здания или некоторой другой ограниченной территории один или несколько высокоскоростных каналов передачи цифровой информации, предоставляемых подключенным устройствам для кратковременного монопольного использования. Территории, охватываемые ЛС, могут существенно различаться.

Длина линий связи для некоторых сетей может быть не более 1000 м, другие же ЛС в состоянии обслужить целый город. Обслуживаемыми территориями могут быть как заводы, суда, самолеты, так и учреждения, университеты, колледжи. В качестве передающей среды, как правило, используются коаксиальные кабели, хотя все большее распространение получают сети на витой паре и оптоволокне, а в последнее время также стремительно развивается технология беспроводных локальных сетей, в которых используется один из трех видов излучений: широкополосные радиосигналы, маломощное излучение сверхвысоких частот (СВЧ излучение) и инфракрасные лучи.

Небольшие расстояния между узлами сети, используемая передающая среда и связанная с этим малая вероятность появления ошибок в передаваемых данных позволяют поддерживать высокие скорости обмена – от 1 Мбит/с до 100 Мбит/с (в настоящее время уже есть промышленные образцы ЛС со скоростями порядка 1 Гбит/с).

Городские сети , как правило, охватывают группу зданий и реализуются на оптоволоконных или широкополосных кабелях. По своим характеристикам они являются промежуточными между локальными и глобальными сетями. В последнее время в связи с прокладкой высокоскоростных и надежных оптоволоконных кабелей на городских и междугородних участках, а новые перспективные сетевые протоколы, например, ATM (Asynchronous Transfer Mode – режим асинхронной передачи), которые в перспективе могут использоваться как в локальных, так и в глобальных сетях.



Глобальные сети , в отличие от локальных, как правило, охватывают значительно большие территории и даже большинство регионов земного шара (примером может служить сеть Internet). В настоящее время в качестве передающей среды в глобальных сетях используются аналоговые или цифровые проводные каналы, а также спутниковые каналы связи (обычно для связи между континентами). Ограничения по скорости передачи (до 28,8 Кбит/с на аналоговых каналах и до 64 Кбит/с – на пользовательских участках цифровых каналов) и относительно низкая надежность аналоговых каналов, требующая использования на нижних уровнях протоколов средств обнаружения и исправления ошибок существенно снижают скорость обмена данными в глобальных сетях по сравнению с локальными.

Существуют и другие классификационные признаки компьютерных сетей.

По сфере функционирования сети делятся на:

Банковские сети,

Сети научных учреждений,

Университетские сети;

По форме функционирования можно выделить:

Коммерческие сети;

Бесплатные сети,

Корпоративные сети

Сети общего пользования;

По характеру реализуемых функций сети разделяются на:

Вычислительные, предназначенные для решения задач управления на основе вычислительной обработки исходной информации;

Информационные, предназначенные для получения справочных данных по запросу пользователей; смешанные, в которых реализуются вычислительные и информационные функции.

По способу управления вычислительные сети делятся на:

Сети с децентрализованным управлением;

Централизованным управлением;

Смешанным управлением.

В первом случае каждая ЭВМ, входящая в состав сети, включает полный набор программных средств для координации выполняемых сетевых операций. Сети такого типа сложны и достаточно дороги, так как операционные системы отдельных ЭВМ разрабатываются с ориентацией на коллективный доступ к общему полю памяти сети.

В условиях смешанных сетей под централизованным управлением ведется решение задач, обладающих высшим приоритетом и, как правило, связанных с обработкой больших объемов информации.

По совместимости программного обеспечения бывают сети:

Однородные;

Гомогенные (состоящие из программно-совместимых компьютеров)

Неоднородные или гетерогенные (если компьютеры, входящие в сеть, программно несовместимы).

Локальные сети

Существуют два подхода к построению локальных сетей и, соответственно два типа: сети типа клиент/сервер и одноранговые сети.

Сети типа клиент/сервер

В сетях типа клиент/сервер используется выделенный компьютер (сервер), на котором сосредоточены файлы общего пользования и который предоставляет сервис печати для многих пользователей (рис. 1).


Рис. 1. Сети типа клиент/сервер

Сервер – компьютер, подключенный к сети и обеспечивающий ее пользователей определенными услугами.

Серверы могут осуществлять хранение данных, управление базами данных, удаленную обработку заданий, печать заданий и ряд других функций, потребность в которых может возникнуть у пользователей сети. Сервер – источник ресурсов сети. Серверов может быть довольно много в сети, и каждый из них может обслуживать свою группу пользователей или управлять определенными базами данных.

Рабочая станция – персональный компьютер, подключенный к сети, через который пользователь получает доступ к ее ресурсам. Рабочая станция сети функционирует как в сетевом, так и в локальном режиме. Она оснащена собственной операционной системой (MSDOS, Windows и т. д.), обеспечивает пользователя всеми необходимыми инструментами для решения прикладных задач. Рабочие станции, подключаемые к серверу, называются клиентами. В качестве клиентов могут использоваться как мощные компьютеры для ресурсоемкой обработки электронных таблиц, так и маломощные PC для простой обработки текстов. В противоположность этому в качестве серверов обычно устанавливают мощные компьютеры. В связи с необходимостью обеспечивать одновременную обработку запросов большого количества клиентов и хорошую защиту данных сети от несанкционированного доступа, сервер должен работать под управлением специализированной операционной системы.

Примеры: Novell Net Ware, Windows NT Server, IBM OS/2 Lan Server, Banyan Vines.

Одноранговые сети

В одноранговых сетях выделенные серверы не используются (рис. 2). Одновременно с обслуживанием пользователя компьютер в одноранговой сети может брать на себя функции сервера, выполняя задания на печать и отвечая на файловые запросы с других рабочих станций сети. Конечно, если компьютер не предоставляет в общее пользование свое дисковое пространство или свой принтер, то он является только клиентом по отношению к другим рабочим станциям, выполняющим функции сервера. Windows 95 имеет встроенные возможности для построения одноранговой сети. Если возникнет необходимость подключения к другим одноранговым сетям, то Windows 95 поддерживает следующие сети:

­ Net Ware Lite

­ Artisoft LANtastic.


Рис. 2. Расположение компьютеров в одноранговых сетях.

Топология сети

Под топологией понимается описание свойств сети, присущих всем ее гомоморфным преобразованиям, т.е. таким изменениям внешнего вида сети, расстояний между ее элементами, их взаимного расположения, при которых не изменяется соотношение этих элементов между собой.

Топология компьютерной сети во многом определяется способом соединения компьютеров друг с другом. Топология во многом определяет многие важные свойства сети, например такие, как надежность (живучесть), производительность и др. Существуют разные подходы к классификации топологий сетей. Согласно одному из них конфигурации локальных сетей делятся на два основных класса: широковещательные и последовательные .

В широковещательных конфигурациях каждый ПК (приемо-передатчик физических сигналов) передает сигналы, которые могут быть восприняты остальными ПК. К таким конфигурациям относятся топологии «общая шина», «дерево», «звезда с пассивным центром». Сеть типа «звезда с пассивным центром» можно рассматривать как разновидность «дерева», имеющего корень с ответвлением к каждому подключенному устройству.

В последовательных конфигурациях каждый физический подуровень передает информацию только одному ПК. Примерами последовательных конфигураций являются: произвольная (произвольное соединение компьютеров), иерархическая, «кольцо», «цепочка», «звезда с интеллектуальным центром», «снежинка» и
другие.

Наиболее оптимальной с точки зрения надежности (возможности функционирования сети при выходе строя отдельных узлов или каналов связи) является полносвязная сеть , т.е. сеть, в который каждый узел сети связан со всеми другими узлами, однако при большом числе узлов такая сеть требует большого количества каналов связи и труднореализуема из-за технических сложностей и высокой стоимости. Поэтому практически все сети являются неполносвязными .

Хотя при заданном числе узлов в неполносвязной сети может существовать большое количество вариантов соединения узлов сети, на практике обычно используется три наиболее широко распространенные (базовые) топологии ЛВС:

1. общая шина;

2. кольцо;

3. звезда.

Шинная топология (рис. 3) , когда все узлы сети подключаются к одному незамкнутому каналу, обычно называемому шиной.

Рис 3. Топология «Шина».

В данном случае, одна из машин служит в качестве системного обслуживающего устройства, обеспечивающего централизованный доступ к общим файлам и базам данных, печатающим устройствам и другим вычислительным ресурсам.

Сети данного типа приобрели большую популярность благодаря низкой стоимости, высокой гибкости и скорости передачи данных, легкости расширения сети (подключение новых абонентов к сети не сказывается на ее основных характеристиках). К недостаткам шинной топологии следует отнести необходимость использования довольно сложных протоколов и уязвимость в отношении физических повреждений кабеля.

Кольцевая топология (рис. 4), когда все узлы сети подключаются к одному замкнутому кольцевому каналу.

Рис 4. Топология «Кольцо».

Эта структура сети характеризуется тем, что информация по кольцу может передаваться только в одном направлении и все подключенные ПЭВМ могут участвовать в ее приеме и передаче. При этом абонент-получатель должен пометить полученную информацию специальным маркером, иначе могут появиться «заблудившиеся» данные, мешающие нормальной работе сети.

Как последовательная конфигурация кольцо особенно уязвимо в отношении отказов: выход из строя какого-либо сегмента кабеля приводит к прекращению обслуживания всех пользователей. Разработчики ЛВС приложили немало усилий, чтобы справиться с этой проблемой. Защита от повреждений или отказов обеспечивается либо замыканием кольца на обратный (дублирующий) путь, либо переключением на запасное кольцо. И в том, и в другом случае сохраняется общая кольцевая топология.

Звездообразная топология (рис. 5) , когда все узлы сети подключаются к одному центральному узлу, называемому хостом (host ) или хабом (hub ).

Рис 5. Топология «Звезда».

Конфигурациюможно рассматривать как дальнейшее развитие структуры «дерево с корнем» с ответвлением к каждому подключенному устройству. В центре сети обычно размещается коммутирующее устройство, обеспечивающее жизнеспособность системы. ЛВС подобной конфигурации находят наиболее частое применение в автоматизированных учрежденческих системах управления, использующих центральную базу данных. Звездообразные ЛВС, как правило, менее надежны, чем сети с общей шиной или иерархические, но эта проблема решается дублированием аппаратуры центрального узла. К недостаткам можно также отнести значительное потребление кабеля (иногда в несколько раз превышающее расход в аналогичных по возможностям ЛВС с общей шиной или иерархических).

Сети могут быть также смешанной топологии (гибридные ), когда отдельные части сети имеют разную топологию. Примером может служить локальная сеть FDDI, в которой основные (магистральные) узлы подключаются к кольцевому каналу, а к ним по иерархической топологии подключаются остальные узлы.

В зависимости от масштабируемости сети, будет зависеть, каким способом на данном предприятии, будет происходить управления сети. Существует несколько способов управления. Локальные вычислительные сети по способу управления подразделяются на две подгруппы: одноранговые и иерархичные (многоуровневые) сети.

Одноранговые сети

В одноранговой сети все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного (dedicated) сервера. Как правило, каждый компьютер функционирует и как клиент, и как сервер; иначе говоря, нет отдельного компьютера, ответственного за администрирование всей сети. Все пользователи самостоятельно решают, какие данные на своем компьютере сделать общедоступными по сети.

Одноранговые сети называют также рабочими группами. Рабочая группа это - небольшой коллектив, поэтому в одноранговых сетях чаще всего не более 30 компьютеров. Одноранговые сети относительно просты.

Поскольку каждый компьютер является одновременно и клиентом, и сервером, нет необходимости в мощном центральном сервере или в других компонентах, обязательных для более сложных сетей.

Одноранговые сети обычно дешевле сетей на основе сервера, но требуют более мощных (и более дорогих) компьютеров. В одноранговой сети требования к производительности и к уровню защиты для сетевого программного обеспечения, как правило, ниже, чем в сетях с выделенным сервером.

Рисунок 5. Одноранговая сеть

Иерархические сети

В иерархических сетях имеется один или несколько серверов, на которых хранится информация, совместно используемая различными пользователями. С целью повышения надежности хранения информации на сервере может быть установлено два работающих параллельно и дублирующих друг друга диска,

при этом в случае отказа одного из них в работу автоматически включается другой. В зависимости от способов использования сервера в иерархических сетях различают серверы следующих типов:

Файловый сервер. В этом случае на сервере находятся совместно обрабатываемые файлы или (и) совместно используемые программы. Одним из примеров применения файлового сервера является размещение на нем программ MS Office. В этом случае на рабочих станциях находится только небольшая (клиентская) часть этих программ, требующая незначительных ресурсов. Программы, допускающие такой режим работы, называются программами с возможностью инсталляции в сети.

Сервер баз данных. В этом случае на сервере размещается база данных (например, Консультант Плюс, Гарант, Счета клиентов банка и др.). База данных на сервере может пополняться с различных рабочих станций или (и) выдавать информацию по запросам с рабочей станции.

Клиенты Иерархической сети могут использовать операционные системы: Windows XP, Windows Vista,Windows 7, для серверов необходимы специальные серверные версии операционных систем.

Рисунок 6. Иерархическая сеть

В нашем сервисном центре будет использоваться иерархическая сеть. Для нашего случая это самый подходящий вариант. Чтобы наша сеть не превратилась в информационную «помойку», а также, чтоб повысить надежность хранения информации, необходимо иметь несколько серверов. В данном случае файловый сервер, интернет сервер и сервер баз данных. На сервере будут размещаться программы MS Office, 1С и другие, а на рабочих станциях, будет находиться только небольшая (клиентская) часть этих программ, требующая незначительных ресурсов. Также необходимо каждому пользователю выделить его права, в локальной сети.