Сайт о телевидении

Сайт о телевидении

» » На каком физическом явлении основано действие трансформатора. Трансформаторы: назначение, классификация, номинальные данные трансформаторов

На каком физическом явлении основано действие трансформатора. Трансформаторы: назначение, классификация, номинальные данные трансформаторов

Трансформатор представляет собой статический электромагнитный аппарат с двумя (или больше) обмотками, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

При передаче электрической энергии от электростанции к потребителям сила тока в линии обуславливает потери энергии в этой линии и расход цветных металлов на ее устройство. Если при одной и той же передаваемой мощности увеличить напряжение, то сила тока в такой же мере уменьшится, а следовательно, можно будет применить провода с меньшим поперечным сечением. Это сократит расход цветных металлов при устройстве линии электропередачи и снизит потери энергии в ней.

Электрическая энергия вырабатывается на электростанциях синхронными генераторами при напряжении 11-20 кВ; в отдельных случаях применяют напряжение 30-35 кВ. Хотя такие напряжения являются слишком высокими для их непосредственного использования в производстве и для бытовых нужд, они недостаточны для экономичной передачи электроэнергии на большие расстояния. Дальнейшее повышение напряжения в линиях электропередачи (до 750 кВ и более) осуществляют повышающими трансформаторами.

Приемники электрической энергии (лампы накаливания, электродвигатели и т. д.) из соображений безопасности рассчитывают на более низкое напряжение (110-380 В). Кроме того, изготовление электрических аппаратов, приборов и машин на высокое напряжение связано со значительными конструктивными сложностями, так как токоведущие части этих устройств при высоком напряжении требуют усиленной изоляции. Поэтому высокое напряжение, при котором происходит передача энергии, не может быть непосредственно использовано для питания приемников и подводится к ним через понижающие трансформаторы.

Электрическую энергию переменного тока по пути от электростанции, где она вырабатывается, до потребителя приходится трансформировать 3-4 раза. В распределительных сетях понижающие трансформаторы нагружаются неодновременно и не на полную мощность. Поэтому полная мощность трансформаторов, используемых для передачи и распределения электроэнергии, в 7-8 раз больше мощности генераторов, устанавливаемых на электростанциях.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем с использованием магнитопровода.

Напряжения первичной и вторичной обмоток, как правило, неодинаковы. Если первичное напряжение меньше вторичного, трансформатор называется повышающим, если больше вторичного - понижающим. Любой трансформатор может быть использован и как повышающий, и как понижающий. Повышающие трансформаторы применяют для передачи электроэнергии на большие расстояния, а понижающие - для ее распределения между потребителями.

В зависимости от назначения различают силовые трансформаторы, измерительные трансформаторы напряжения и трансформаторы тока

Силовые трансформаторы преобразуют переменный ток одного напряжения в переменный ток другого напряжения для питания электроэнергией потребителей. В зависимости от назначения они могут быть повышающими или понижающими. В распределительных сетях применяют, как правило, трехфазные двухобмоточные понижающие трансформаторы, преобразующие напряжение 6 и 10 кВ в напряжение 0,4 кВ. (Основные типы трансформаторов ТМГ, ТМЗ, ТМФ, ТМБ, ТМЭ, ТМГСО, ТМ, ТМЖ, ТДТН, ТРДН, ТСЗ, ТСЗН, ТСЗГЛ и другие.)

Измерительные трансформаторы напряжения – это промежуточные трансформаторы, через которые включаются измерительные приборы при высоких напряжениях. Благодаря этому измерительные приборы оказываются изолированными от сети, что делает возможным применение стандартных приборов (с переградуированием их шкалы) и тем самым расширяет пределы измеряемых напряжений.

Трансформаторы напряжения используются как для измерения напряжения, мощности, энергии, так и для питания цепей автоматики, сигнализаций и релейной защиты линий электропередачи от замыкания на землю.

В ряде случаев трансформаторы напряжения могут быть использованы как маломощные понижающие силовые трансформаторы или как повышающие испытательные трансформаторы (для испытания изоляции электрических аппаратов).

На рынке России представлены следующие виды трансформаторов напряжения:

3НОЛ.06, ЗНОЛП, ЗНОЛПМ, ЗНОЛ.01ПМИ, 3хЗНОЛ.06, 3хЗНОЛП, 3хЗНОЛПМ, НОЛ.08, НОЛ.11-6.О5, НОЛ.12 ОМ3, ЗНОЛ.06-35 (ЗНОЛЭ-35), ЗНОЛ 35, НОЛ 35, НОЛ-35 III, НАМИТ-10 , ЗНИОЛ, ЗНИОЛ-10-1, ЗНИОЛ-10-П, ЗНИОЛ-20, ЗНИОЛ-20-П, ЗНИОЛ-35, ЗНИОЛ-35-П, ЗНИОЛ-35-1, НИОЛ -20, НИОЛ-35, НОЛ-СЭЩ -10, НОЛ-СЭЩ -10-1, НОЛ-СЭЩ-6, НОЛ-СЭЩ-6-1, НОЛ-СЭЩ-20, НОЛ-СЭЩ-35, 3хЗНОЛ-СЭЩ- 6, 3хЗНОЛ-СЭЩ -10, НАЛИ-СЭЩ-10, НАЛИ-СЭЩ-6, НТМИ 6, НТМИ 10, НАМИ 6, НАМИ 10, НАМИ 35, НАМИ 110, ЗНАМИТ-6, ЗНАМИТ-10, ЗНОМП 35, НОМ 6, НОМ 10, НОМ 35, НКФ 110, НКФ 150, НКФ 220 и другие.

У измерительных трансформаторов напряжения первичная обмотка 3000/√3, 6000/√3, 10000/√3, 13800/√3, 18000/√3, 24000/√3, 27000/√3, 35000/√3, 66000/√3, 110000/√3, 150000/√3, 220000/√3, 330000/√3, 400000/√3, 500000/√3, а вторичная 100/√3 или 110/√3.

Трансформатор тока представляет собой вспомогательный аппарат, в котором вторичный ток практически пропорционален первичному току и предназначенный для включения измерительных приборов и реле в электрические цепи переменного тока.

Поставляются с классом точности: 0,5; 0,5S; 0,2; 0,2S.

Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего их персонала от высокого напряжения.

ВАЖНО! Измерительные трансформаторы тока поставляются со следующими коэффициентами трансформации: 5/5, 10/5, 15/5, 20/5, 30/5, 40/5, 50/5, 75/5, 100/5, 150/5, 200/5, 300/5, 400/5, 500/5, 600/5, 800/5, 1000/5, 1500/5, 2000/5, 2500/5, 3000/5, 5000/5, 8000/5, 10000/5.
На рынке России трансформаторы тока представлены следующими моделями:

ТОП-0,66, ТШП-0,66, ТОП-0,66-I, ТШП-0,66-I, ТШЛ-0,66, ТНШЛ-0,66, ТНШ-0,66, ТОЛ-10, ТЛО-10, ТОЛ-10-I, ТОЛ-10-М, ТОЛ-10-8, ТОЛ-10-IM, ТОЛ-10 III, ТШЛ-10, ТЛШ-10, ТПЛ-10-М, ТПОЛ-10, ТПОЛ-10М, ТПОЛ-10 III, ТЛ-10, ТЛ-10-М, ТПЛК-10, ТОЛК-6, ТОЛК-6-1, ТОЛК-10, ТОЛК-10-2, ТОЛК-10-1, ТОЛ-20, ТШЛ-20-I, ТПЛ-20, ТПЛ-35, ТОЛ-35, ТОЛ-35-III-IV, ТОЛ-35 II-7.2, ТЛК-35, ТВ, ТЛК-10, ТПЛ-10С, ТЛМ-10, ТШЛП-10, ТПК-10, ТВЛМ-10, ТВК-10, ТВЛМ-6, ТЛК-20, ТЛК-35-1, ТЛК-35-2, ТЛК-35-3, ТОЛ-СЭЩ 10, ТОЛ-СЭЩ-20, ТОЛ-СЭЩ-35, ТШЛ-СЭЩ 0,66, трансформаторы Ritz, ТПЛ-СЭЩ 10, ТЗЛК(Р)-СЭЩ 0,66, ТВ-СЭЩ-10, ТВ-СЭЩ-20, ТВ-СЭЩ-35, ТШЛ-СЭЩ-10, ТШЛ-СЭЩ-20, ТЗЛВ-СЭЩ-10 и другие.

Классификация трансформаторов напряжения

Трансформаторы напряжения различаются:

А) по числу фаз - однофазные и трехфазные;
б) по числу обмоток - двух-обмоточные, трех-обмоточные, четырех-обмоточные.
Пример 0,5/0,5S/10Р;
в) по классу точности, т. е. по допускаемым значениям погрешностей;
г) по способу охлаждения - трансформаторы с масляным охлаждением (масляные), с естественным воздушным охлаждением (сухие и с литой изоляцией);
д) по роду установки - для внутренней установки, для наружной установки и для комплектных распределительных устройств (КРУ).

Для напряжений до 6-10 кВ трансформаторы напряжения изготовляют сухими, т. е. с естественным воздушным охлаждением. Для напряжений выше 6-10 кВ применяют масляные трансформаторы напряжения.

Трансформаторы внутренней установки предназначены для работы при температуре окружающего воздуха от -40 до + 45°С с относительной влажностью до 80 %.

В однофазных трансформаторах напряжения на 6 к 10 кВ преимущественно применяется литая изоляция. Трансформаторы с литой изоляцией полностью или частично (одни обмотки) залиты изоляционной массой (эпоксидной смолой). Такие трансформаторы, предназначенные для внутренней установки, выгодно отличаются от масляных: имеют меньшие массу и габаритные размеры и почти не требуют ухода в эксплуатации.

Трехфазные двух-обмоточные трансформаторы напряжения имеют обычные трех-стержневые магнитопроводы, а трех-обмоточные - однофазные броневые.
Трехфазный трех-обмоточный трансформатор представляет собой группу из трех однофазных однополюсных единиц, обмотки которых соединены по соответствующей схеме. Трехфазные трех-обмоточные трансформаторы напряжения старой серии (до 1968-1969 г.) имели бронестержневые магнитопроводы. Трехфазный трансформатор меньше по массе и габаритам, чем группа из трех однофазных трансформаторов. При работе трехфазного трансформатора для резерва нужно иметь другой трансформатор на полную мощность
В масляных трансформаторах основной изолирующей и охлаждающей средой является трансформаторное масло.

Масляный трансформатор состоит из магнитопровода, обмоток, бака, крышки с вводами. Магнитопровод собирают из изолированных друг от друга (для уменьшения потерь на вихревые токи) листов холоднокатаной электротехнической стали. Обмотки изготовляют из медного или алюминиевого провода. Для регулирования напряжения обмотка ВН имеет ответвления, соединяющиеся с переключателем. В трансформаторах предусмотрено два вида переключении ответвлений: под нагрузкой - РПН (регулирование под нагрузкой) и без нагрузки, после отключения трансформатора от сети - ПБВ (переключение без возбуждения). Наиболее распространен второй способ регулирования напряжения как наиболее простой.

Кроме указанных трансформаторов с масляным охлаждением (Трансформатор ТМ) выпускаются трансформаторы в герметичном исполнении (ТМГ), в которых масло не сообщается с воздухом и, следовательно, исключается его ускоренное окисление и увлажнение. Масляные трансформаторы в герметичном исполнении полностью заполнены трансформаторным маслом и не имеют расширителя, а температурные изменения его объема при нагревании и охлаждении компенсируются изменением объема гофров стенок бака. Эти трансформаторы заполняются маслом под вакуумом, вследствие чего повышается электрическая прочность их изоляции.

Сухой трансформатор , так же как и масляный, состоит из магнитопровода, обмоток ВН и НН, заключенных в защитный кожух. Основной изолирующей и охлаждающей средой является атмосферный воздух. Однако воздух является менее совершенной изолирующей и охлаждающей средой, чем трансформаторное масло. Поэтому в сухих трансформаторах все изоляционные промежутки и вентиляционные каналы делают большими, чем в масляных.

Сухие трансформаторы изготовляют с обмотками со стеклоизоляцией класса нагревостойкости В (ТСЗ), а также с изоляцией на кремнийорганических лаках класса Н (ТСЗК). Для уменьшения гигроскопичности обмотки пропитывают специальными лаками. Применение в качестве изоляции обмоток стекловолокна или асбеста позволяет значительно повысить рабочую температуру обмоток и получить практически пожаробезопасную установку. Это свойство сухих трансформаторов дает возможность применять их для установки внутри сухих помещений в тех случаях, когда обеспечение пожарной безопасности установки является решающим фактором. Иногда сухие трансформаторы заменяют более дорогими и сложными в изготовлении совтоловыми.

Сухие трансформаторы имеют несколько большие габаритные размеры и массу (трансформатор ТСЗ) и меньшую перегрузочную способность, чем масляные, и используются для работы в закрытых помещениях с относительной влажностью не более 80%. К преимуществам сухих трансформаторов относят их пожаробезопасность (отсутствие масла), сравнительную простоту конструкции и относительно малые затраты на эксплуатацию.

Классификация трансформаторов тока

Трансформаторы тока классифицируются по различным признакам:

1. По назначению трансформаторы тока можно разделить на измерительные (ТОЛ-СЭЩ-10, ТЛМ-10), защитные, промежуточные (для включения измерительных приборов в токовые цепи релейной защиты, для выравнивания токов в схемах дифференциальных защит и т. д.) и лабораторные (высокой точности, а так же со многими коэффициентами трансформации).

2. По роду установки различают трансформаторы тока:
а) для наружной установки, устанавливаются в открытых распределительных устройствах (ТЛК-35-2.1 УХЛ1);
б) для внутренней установки;
в) встроенные в электрические аппараты и машины: выключатели, трансформаторы, генераторы и т. д.;
г) накладные - одевающиеся сверху на проходной изолятор (например, на высоковольтный ввод силового трансформатора);
д) переносные (для контрольных измерений и лабораторных испытаний).

3. По конструкции первичной обмотки трансформаторы тока делятся:
а) многовитковые (катушечные, с петлевой обмоткой и с восьмерочной обмоткой);
б) одновитковые (стержневые);
в) шинные (ТШ-0,66).

4. По способу установки трансформаторы тока для внутренней и наружной установки разделяются:
а) проходные (ТПК-10, ТПЛ-СЭЩ-10);
б) опорные (ТЛК-10, ТЛМ-10).

5. По выполнению изоляции трансформаторы тока можно разбить на группы:
а) с сухой изоляцией (фарфор, бакелит, литая эпоксидная изоляция и т. д.);
б) с бумажно-масляной изоляцией и с конденсаторной бумажно-масляной изоляцией;
в) с заливкой компаундом.

6. По числу ступеней трансформации имеются трансформаторы тока:
а) одноступенчатые;
б) двухступенчатые (каскадные).

7. По рабочему напряжению различают трансформаторы:
а) на номинальное напряжение выше 1000 В;
б) на номинальное напряжение до 1000 В.

Сочетание различных классификационных признаков вводится в обозначение типа трансформаторов тока, состоящее из буквенной и цифровой частей.

Трансформаторы тока характеризуются номинальным током, напряжением, классом точности и конструктивным исполнением. На напряжении 6-10 кВ их изготовляют опорными и проходными с одной и двумя вторичными обмотками классов точности 0,2; 0,5; 1 и 3. Класс точности указывает предельную погрешность, вносимую трансформатором тока в результаты измерений. Трансформаторы классов точности 0,2, имеющие минимальную погрешность, используют для лабораторных измерений, 0,5 - для питания счетчиков, 1 и 3 - для питания токовых обмоток реле и приборов технических измерений. Для безопасной эксплуатации вторичные обмотки должны быть заземлены и не должны быть разомкнуты.
При монтаже распределительных устройств напряжением 6-10 кВ применяют трансформаторы тока с литой и фарфоровой изоляцией, а при напряжении до 1000 В - с литой, хлопчатобумажной и фарфоровой.

Примером может служить ТОЛ-СЭЩ-10 опорный 2-х обмоточный трансформатор тока с литой изоляцией на номинальное напряжение 10 кВ конструктивного варианта исполнения 11, c вторичными обмотками:

Для подключения цепей измерения, с классом точности 0,5 и нагрузкой 10 ВА;
- для подключения цепей защиты, с классом точности 10Р и нагрузкой 15 ВА;

На номинальный первичный ток 150 Ампер, номинальный вторичный ток 5 Ампер, климатического исполнения «У» категории размещения 2 по ГОСТ 15150-69 при размещении заказа на производство у ЗАО «ВолгаЭнергоКомплект:

ТОЛ-СЭЩ-10-11-0,5/10Р-10/15-150/5 У2 - с номинальным первичным током - 150А, вторичным - 5А.

Действие трансформатора основано на явлении взаимной индукции. Если первичную обмотку трансформатора включить в сеть источника переменного тока, то по ней будет протекать переменный ток, который создаст в сердечнике трансформатора переменный магнитный поток. Этот магнитный поток, пронизывая витки вторичной обмотки, будет индуктировать в ней электродвижущую силу (ЭДС). Если вторичную обмотку замкнуть на какой-либо приемник энергии, то под действием индуктируемой ЭДС по этой обмотке и через приемник энергии начнет протекать ток.

Одновременно в первичной обмотке также появится нагрузочный ток. Таким образом, электрическая энергия, трансформируясь, передается из первичной сети во вторичную при напряжении, на которое рассчитан приемник энергии, включенный во вторичную сеть.

В целях улучшения магнитной связи между первичной и вторичной обмотками их помещают на стальной магнитопровод. Обмотки изолируют как друг от друга, так и от магнитопровода. Обмотка более высокого напряжения называется обмоткой высшего напряжения (ВН), а обмотка более низкого напряжения - обмоткой низшего напряжения (НН). Обмотка, включенная в сеть источника электрической энергии, называется первичной; обмотка, от которой энергия подается к приемнику, - вторичной.

Обычно напряжения первичной и вторичной обмоток неодинаковы. Если первичное напряжение меньше вторичного, трансформатор называется повышающим, если больше вторичного - понижающим. Любой трансформатор может быть использован и как повышающий, и как понижающий. Повышающие трансформаторы применяют для передачи электроэнергии на большие расстояния, а понижающие - для ее распределения между потребителями.

В трех-обмоточных трансформаторах на магнитопровод помещают три изолированные друг от друга обмотки. Такой трансформатор, питаемый со стороны одной из обмоток, дает возможность получать два различных напряжения и снабжать электрической энергией две различные группы приемников. Кроме обмоток высшего и низшего напряжения трех-обмоточный трансформатор имеет обмотку среднего напряжения (СН).

Обмоткам трансформатора придают преимущественно цилиндрическую форму, выполняя их при малых токах из круглого медного изолированного провода, а при больших токах - из медных шин прямоугольного сечения.

Ближе к магнитопроводу располагают обмотку низшего напряжения, так как ее легче изолировать от него, чем обмотку высшего напряжения.

Обмотку низшего напряжения изолируют от стержня прослойкой из какого-либо изолировочного материала. Такую же изолирующую прокладку помещают между обмотками высшего и низшего напряжения.

При цилиндрических обмотках поперечному сечению стержня магнитопровода желательно придать круглую форму, чтобы в площади, охватываемой обмотками, не оставалось немагнитных промежутков. Чем меньше немагнитные промежутки, тем меньше длина витков обмоток, а следовательно, и масса меди при заданной площади сечения стального стержня.

Однако стержни круглого сечения изготовлять сложно. Магнитопровод набирают из тонких стальных листов, и для получения стержня круглого сечения понадобилось бы большое число стальных листов различной ширины, а это потребовало бы изготовления множества штампов. Поэтому в трансформаторах большой мощности стержень имеет ступенчатое поперечное сечение с числом ступеней не более 15-17. Количество ступеней сечения стержня определяется числом углов в одной четверти круга. Ярмо магнитопровода, т. е. та его часть, которая соединяет стержни, имеет также ступенчатое сечение.

Для лучшего охлаждения в магнитопроводах, а также в обмотках мощных трансформаторов устраивают вентиляционные каналы в плоскостях, параллельных и перпендикулярных плоскости стальных листов.
В трансформаторах малой мощности площадь сечения провода мала и выполнение обмоток упрощается. Магнитопроводы таких трансформаторов имеют прямоугольное сечение.

Номинальные данные трансформатора

Полезная мощность, на которую рассчитан трансформатор по условиям нагревания, т. е. мощность его вторичной обмотки при полной (номинальной) нагрузке называется номинальной мощностью трансформатора. Эта мощность выражается в единицах полной мощности - в вольтамперах (ВА) или киловольт-амперах (кВА). В ваттах или киловаттах выражается активная мощность трансформатора, т. е. та мощность, которая может быть преобразована из электрической в механическую, тепловую, химическую, световую и т. д. Сечения проводов обмоток и всех частей трансформатора, так же как и любого электротехнического аппарата или электрической машины, определяются не активной составляющей тока или активной мощностью, а полным током, протекающим по проводнику и, следовательно, полной мощностью. Все прочие величины, характеризующие работу трансформатора в условиях, на которые он рассчитан, также называются номинальными.

Каждый трансформатор снабжен щитком из материала, не подверженного атмосферным влияниям. Щиток прикреплен к баку трансформатора на видном месте и содержит его номинальные данные, которые нанесены травлением, гравировкой, выбиванием или другим способом, обеспечивающим долговечность знаков. На щитке трансформатора указаны следующие данные:

1. Марка завода-изготовителя.
2. Год выпуска.
3. Заводской номер.
4. Обозначение типа.
5. Номер стандарта, которому соответствует изготовленный трансформатор.
6. Номинальная мощность (кВА). (Для трехобмоточных указывают мощность каждой обмотки.)
7. Номинальные напряжения и напряжения ответвлений обмоток (В или кВ).
8. Номинальные токи каждой обмотки (А).
9. Число фаз.
10. Частота тока (Гц).
11. Схема и группа соединения обмоток трансформатора.
12. Напряжение короткого замыкания (%).
13. Род установки (внутренняя или наружная).
14. Способ охлаждения.
15. Полная масса трансформатора (кг или т).
16. Масса масла (кг или т).
17. Масса активной части (кг или т).
18. Положения переключателя, обозначенные на его приводе.

Для трансформатора с искусственным воздушным охлаждением дополнительно указана мощность его при отключенном охлаждении. Заводской номер трансформатора выбит также на баке под щитком, на крышке около ввода ВН фазы А и на левом конце верхней полки ярмовой балки магнитопровода. Условное обозначение трансформатора состоит из буквенной и цифровой частей. Буквы означают следующее:

Т - трехфазный,
О - однофазный,
М - естественное масляное охлаждение,
Д - масляное охлаждение с дутьем (искусственное воздушное и с естественной циркуляцией масла),
Ц - масляное охлаждение с принудительной циркуляцией масла через водяной охладитель,
ДЦ - масляное с дутьем и принудительной циркуляцией масла,
Г - грозоупорный трансформатор,
Н в конце обозначения - трансформатор с регулированием напряжения под нагрузкой,
Н на втором месте - заполненный негорючим жидким диэлектриком,
Т на третьем месте - трехобмоточный трансформатор.

Первое число, стоящее после буквенного обозначения трансформатора, показывает номинальную мощность (кВА), второе число - номинальное напряжение обмотки ВН (кВ). Так, тип ТМ 6300/35 означает трехфазный двухобмоточный трансформатор с естественным масляным охлаждением мощностью 6300 кВА и напряжением обмотки ВН 35 кВ. Буква А в обозначении типа трансформатора означает автотрансформатор. В обозначении трехобмоточных автотрансформаторов букву А ставят либо первой, либо последней. Если автотрансформаторная схема является основной (обмотки ВН и СН образуют автотрансформатор, а обмотка НН дополнительная), букву А ставят первой, если автотрансформаторная схема является дополнительной, букву А ставят последней.

Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора .

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции .

Если на первичную обмотку подать переменное напряжение U1 , то по виткам обмотки потечет переменный ток Io , который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле . Магнитное поле образует магнитный поток Фo , который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2 . И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2 , которое будет приблизительно равно наведенной ЭДС е2 .

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1 , образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1 . Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2 , создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2 , стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1 , т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2 , под воздействием которой во вторичной цепи течет ток I2 . Именно благодаря наличию магнитного потока Фo и существует ток I2 , который будет тем больше, чем больше Фo . Но и в то же время чем больше ток I2 , тем больше противодействующий поток Ф2 и, следовательно, меньше Фo .

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2 , тока I2 и потока Ф2 , обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo , а без него не мог бы существовать поток Ф2 и ток I2 . Следовательно, магнитный поток Ф1 , создаваемый первичным током I1 , всегда больше магнитного потока Ф2 , создаваемого вторичным током I2 .

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках . При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным .

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим .

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим .

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2 . Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока . Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы , используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями .
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали , имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы , которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые , броневые и тороидальные . При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые .

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые .

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные .

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во .
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

ТРАНСФОРМАТОРЫ

НАЗНАЧЕНИЕ ТРАНСФОРМАТОРОВ И ИХ ПРИМЕНЕНИЕ

Трансформатор предназначен для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Увеличение напряжения осуществляется с помощью повышающих трансформаторов, уменьшение — понижающих.

Трансформаторы применяют в линиях электропередачи, в технике связи, в автоматике, измерительной технике и других областях.

В соответствии с назначением различают:

Силовые трансформаторы для питания электрических двигателей и осветительных сетей;

Специальные трансформаторы для питания сварочных аппаратов, электропечей и других потребителей особого назначения;

Измерительные трансформаторы для подключения измерительных приборов.

По числу фаз трансформаторы делятся на одно- и трехфазные. Трансформаторы, используемые в технике связи, подразделяют на низко- и высокочастотные.

Расчетные мощности трансформаторов различны — от долей вольт-ампер до десятков тысяч киловольт-ампер; рабочие частоты — от единиц герц до сотен килогерц.

Трансформатор — простой, надежный и экономичный электрический аппарат. Он не имеет движущихся частей и скользящих контактных соединений, его КПД достигает 99%. КПД трансформатора η, определяемый как отношение мощности на выходе Р 2 к мощности на входе Р 1 , зависит от нагрузки.

УСТРОЙСТВО ТРАНСФОРМАТОРА

Трансформатор представляет собой замкнутый магнитопровод, на котором расположены две или несколько обмоток. В маломощных высокочастотных трансформаторах, используемых в радиотехнических схемах, магнитопроводом может являться воздушная среда.

Для уменьшения потерь на гистерезис магнитопровод изготовляют из магнитомягкого материала — трансформаторной стали, имеющей узкую петлю намагничивания. Для уменьшения потерь на вихревые токи в материал магнитопровода вводят примесь кремния, повышающую его электрическое сопротивление, а сам магнитопровод собирают из отдельных листов электротехнической стали толщиной 0,35—0,5 мм, изолированных друг от друга теплостойким лаком или специальной бумагой.

Различают трансформаторы стержневого (рис. 7.1, а) и броневого (рис. 7.1, б) типов.

Рис. 7.1. Конструкция однофазного маломощного трансформатора стержневого (а) и броневого (б) типов

Последний хорошо защищает обмотки катушек от механических повреждений. Верхнюю часть магнитопровода, называемую ярмом, крепят после насадки на стержень катушек (обмоток). Стержни и ярмо соединяют очень плотно, чтобы исключить воздушные зазоры на стыках. В маломощных трансформаторах находят широкое применение кольцевые магнитопроводы, которые собирают из штампованных колец или навивают из длинной ленты. В этих магнитопроводах отсутствует воздушный зазор, поэтому магнитный поток рассеяния мал. В трансформаторах, рассчитанных на повышенные частоты, кольцевые магнитопроводы часто прессуют из ферромагнитного порошка, смешанного с изоляционным лаком.

Обмотки трансформаторов изготовляют из медного провода и располагают на одном и том же или на разных стержнях, рядом или одну под другой. В последнем случае непосредственно к стержню примыкает обмотка низшего напряжения, а поверх нее размещается обмотка высшего напряжения.

Обмотку трансформатора, к которой подводится напряжение питающей сети, называют первичной , а обмотку, к которой подсоединяется нагрузка,— вторичной . На сердечнике может быть размещено несколько вторичных обмоток с разным числом витков, что позволяет получить различные по значению вторичные напряжения.

При работе трансформатора за счет токов в обмотках, а также вследствие перемагничивания магнитопровода и вихревых токов выделяется теплота. Трансформаторы небольшой мощности (до 10 кВ-А), для которых достаточно воздушного охлаждения, называют сухими.

Рис. 7.2. Трехфазный силовой трансформатор Рис. 7.3. Общий вид автотрансформатора

I — ручка скользящего контакта; 2— скользящий контакт; 3 — обмотка

В мощных трансформаторах применяют масляное охлаждение (рис. 7.2). Магнитопровод 1 с обмотками 2, 3 размещается в баке 4, заполненном минеральным (трансформаторным) маслом. Масло не только отводит теплоту за счет конвекции или принудительной циркуляции, но и является хорошим диэлектриком (изолятором). Масляные трансформаторы надежны в работе и имеют меньшие размеры и массу по сравнению с сухими трансформаторами той же мощности. При изменении температуры объем масла меняется. При повышении температуры излишек масла поглощается расширителем 5, а при понижении температуры масло из расширителя возвращается в основной бак.

В тех случаях, когда требуется плавно изменять вторичное напряжение, применяют скользящий контакт для изменения числа витков обмотки (примерно так же, как это делается в ползунковых реостатах). Скользящий контакт широко используется в автотрансформаторах, рассчитанных на регулирование напряжения в небольших пределах (рис. 7.3).

ФОРМУЛА ТРАНСФОРМАТОРНОЙ ЭДС

Рассмотрим катушку (рис. 7.4), к зажимам которой подведено синусоидальное напряжение. Пренебрежем сопротивлением катушки и потерями на гистерезис и вихревые токи. Тогда приложенное к катушке напряжение u = U m sinωt будет уравновешиваться только ЭДС самоиндукции e = E m sin ω t .

Это очевидно, так как полностью уравновешивать друг друга могут только равные и одинаково изменяющиеся во времени величины.

В соответствии с законом электромагнитной индукции е = — w ; следовательно, Е m sin ωt= —ω.

Это дифференциальное уравнение позволяет найти зависимость между ЭДС обмотки и магнитным потоком в магнитопроводе:

d Ф= - sin ωt dt

Проинтегрируем левую и правую части этого выражения:

Ф = - ∫ sin ω t dt= cos ωt +A

Здесь постоянная интегрирования A = 0, так как синусоидальная ЭДС не может создать постоянную составляющую магнитного потока. Таким образом,

E= cos ω t = Ф m cos ω t,

где Ф m = Е m /ω w —амплитудное значение переменного магнитного потока в магнитопроводе катушки. Подставив в последнее равенство Е m = √2 E и ω = 2πf, получим

Ф m =, или Е=

т. е. Е = 4,44 fw Ф m . Это выражение, связывающее действующее значение ЭДС в обмотке с амплитудой магнитного потока в магнитопроводе, принято называть формулой трансформаторной ЭДС. Она играет важную роль в теории трансформаторов и электрических машин переменного тока.

Рис. 7.4. Схема катушки с ферромагнитным сердечником в цепи переменного тока

ПРИНЦИП ДЕЙСТВИЯ ОДНОФАЗНОГО ТРАНСФОРМАТОРА.

КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ.

Работа трансформатора основана на явлении взаимной индукции, которое является следствием закона электромагнитной индукции.

Рассмотрим более подробно сущность процесса трансформации тока и напряжения.

При подключении первичной обмотки трансформатора к сети переменного тока напряжением U 1 по обмотке начнет проходить ток I 1 (рис. 7.5), который создаст в магнитопроводе переменный магнитный поток Ф. Магнитный поток, пронизывая витки вторичной обмотки, индуцирует в ней ЭДС E 2 , которую можно использовать для питания нагрузки.

Поскольку первичная и вторичная обмотки трансформатора пронизываются одним и тем же магнитным потоком Ф, выражения индуцируемых в обмотке ЭДС можно записать в виде

Е 1 = 4,44fw 1 Ф m

Е 2 = 4,44 fw 2 Ф m

где f — частота переменного тока; w 1 , w 2 — число витков обмоток.

Е 2 /Е 1 = w 2 / w 2 = k .

Отношение чисел витков обмоток трансформатора называют коэффициентом трансформации k .

Таким образом, коэффициент трансформации показывает, как относятся действующие значения ЭДС вторичной и первичной обмоток.

На основании закона электромагнитной индукции можно написать

e 1 = — w 1 , e 2 = — w 2

Поделив одно равенство на другое, получим e 2 / e 1 = w 2 / w 1 = k

Следовательно, в любой момент времени отношение мгновенных значений ЭДС вторичной и первичной обмоток равно коэффициенту трансформации. Нетрудно понять, что это возможно только при полном совпадении по фазе ЭДС е 1 и е 2 .

Если цепь вторичной обмотки трансформатора разомкнута (режим холостого хода), то напряжение на зажимах обмотки равно ее ЭДС: U 2 = E 2 , а напряжение источника питания почти полностью уравновешивается ЭДС первичной обмотки U ≈ E 1 . Следовательно, можно написать, что k = E 2 / E 1 ≈U 2 /U 1 .

Рис. 7.5. Принципиальная схема однофазного трансформатора

Таким образом, коэффициент трансформации может быть определен на основании измерений напряжения на входе и выходе ненагруженного трансформатора. Отношение напряжений на обмотках ненагруженного трансформатора указывается в его паспорте.

Учитывая высокий КПД трансформатора, можно полагать, что S t ≈ S 2 , где S 1 = U 1 I 1 — мощность, потребляемая из сети; S 2 = U 2 I 2 — мощность, отдаваемая в нагрузку.

Таким образом, U 1 I 1 ≈ U 2 I 2 , откуда I 1 / I 2 ≈ U 2 / U 1 = k .

Отношение токов первичной и вторичной обмоток приближенно равно коэффициенту трансформации, поэтому ток I 2 во столько раз увеличивается (уменьшается), во сколько раз уменьшается (увеличивается) U 2 .

ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ

В линиях электропередачи используют в основном трехфазные силовые трансформаторы. Внешний вид, конструктивные особенности и компоновка основных элементов этого трансформатора представлены на рис. 7.2. Магнитопровод трехфазного трансформатора имеет три стержня, на каждом из которых размещаются две обмотки одной фазы (рис. 7.6).

Рис. 7.6. Размещение обмоток на сердечнике трехфазного трансформатора

Для подключения трансформатора к линиям электропередачи на крышке бака имеются вводы, представляющие собой фарфоровые изоляторы, внутри которых проходят медные стержни. Вводы высшего напряжения обозначают буквами А, В, С, вводы низшего напряжения — буквами а, b , с. Ввод нулевого провода располагают слева от ввода а и обозначают О (рис. 7.7).

Принцип работы и электромагнитные процессы в трехфазном трансформаторе аналогичны рассмотренным ранее. Особенностью трехфазного трансформатора является зависимость коэффициента трансформации линейных напряжений от способа соединения обмоток.

Применяются главным образом три способа соединения обмоток трехфазного трансформатора: 1) соединение первичных и вторичных обмоток звездой (рис. 7.8, а); 2) соединение первичных обмоток звездой, вторичных — треугольником (рис. 7.8, б); 3) соединение первичных обмоток треугольником, вторичных—звездой (рис. 7.8, в).

Рис. 7.8. Способы соединения обмоток трехфазного трансформатора

Обозначим отношение чисел витков обмоток одной фазы буквой k , что соответствует коэффициенту трансформации однофазного трансформатора и может быть выражено через отношение фазных напряжений: k = w 2 / w 1 ≈ U 2ф / U 1ф

Обозначим коэффициент трансформации линейных напряжений буквой с.

При соединении обмоток по схеме звезда — звезда

При соединении обмоток по схеме звезда — треугольник

с =.

При соединении обмоток по схеме треугольник— звезда

Таким образом, при одном и том же числе витков обмоток трансформатора можно в √3 раза увеличить или уменьшить его коэффициент трансформации, выбирая соответствующую схему соединения обмоток.

АВТОТРАНСФОРМАТОРЫ И ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

Принципиальная схема автотрансформатора изображена на рис. 7.9.

У автотрансформатора часть витков первичной обмотки используется в качестве вторичной обмотки, поэтому помимо магнитной связи имеется электрическая связь между первичной и вторичной цепями. В соответствии с этим энергия из первичной цепи во вторичную передается как с помощью магнитного потока, замыкающегося по магнитопроводу, так и непосредственно по проводам. Поскольку формула трансформаторной ЭДС применима к обмоткам автотрансформатора так же, как и к обмоткам трансформатора, коэффициент трансформации автотрансформатора выражается известными отношениями

k = w 2 /w l =E 2 /E l ≈ U 2 /U 1 ≈I 1 /I 2

Вследствие электрического соединения обмоток через часть витков, принадлежащую одновременно первичной и вторичной цепям, проходят токи I 1 и I 2 , которые направлены встречно и при небольшом коэффициенте трансформации мало отличаются друг от друга по значению. Поэтому их разность оказывается небольшой и обмотку w 2 можно выполнить из тонкого провода. Таким образом, при k = 0,5 - 2 экономится значительное количество меди. При больших или меньших коэффициентах трансформации это преимущество автотрансформатора исчезает, так как та часть обмотки, по которой проходят встречные токи I 1 и I 2 , уменьшается до нескольких витков, а сама разность токов увеличивается.

Электрическое соединение первичной и вторичной цепей повышает опасность при эксплуатации аппарата, так как при пробое изоляции в понижающем автотрансформаторе оператор может оказаться под высоким напряжением первичной цепи.

Автотрансформаторы применяют для пуска мощных двигателей переменного тока, регулирования напряжения в осветительных сетях, а также в других случаях, когда необходимо регулировать напряжение в небольших пределах.

Измерительные трансформаторы напряжения и тока используют для включения измерительных приборов, аппаратуры автоматического регулирования и защиты в высоковольтные цепи. Они позволяют уменьшить размеры и массу измерительных устройств, повысить безопасность обслуживающего персонала, расширить пределы измерения приборов переменного тока.

Измерительные трансформаторы напряжения служат для включения вольтметров и обмоток напряжения измерительных приборов (рис. 7.10). Поскольку эти обмотки имеют большое сопротивление и потребляют маленькую мощность, можно считать, что трансформаторы напряжения работают в режиме холостого хода.

Измерительные трансформаторы тока используют для включения амперметров и токовых катушек измерительных приборов (рис. 7.11). Эти катушки имеют очень маленькое сопротивление, поэтому трансформаторы тока практически работают в режиме короткого замыкания.

Рис. 7.10. Схема включения и Рис. 7.11. Схема включения и

условное обозначение измери- условное обозначение изме-

тельного трансформатора напря- рительного трансформатора тока
жения

Результирующий магнитный поток в магнитопроводе трансформатора равен разности магнитных потоков, создаваемых первичной и вторичной обмотками. В нормальных условиях работы трансформатора тока он невелик. Однако при размыкании цепи вторичной обмотки в сердечнике будет существовать только магнитный поток первичной обмотки, который значительно превышает разностный магнитный поток. Потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя. Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включать в линию без подсоединенного к нему измерительного прибора. Для повышения безопасности обслуживающего персонала кожух измерительного трансформатора должен быть тщательно заземлен.

СВАРОЧНЫЕ ТРАНСФОРМАТОРЫ

К источникам питания сварочных аппаратов предъявляются специфические требования: при заданной мощности они должны создавать большие токи в нагрузке, причем резкое изменение сопротивления нагрузки не должно существенно сказываться на значении сварочного тока.

Относительно невысокие напряжения при больших токах обеспечивают не только эффективное тепловыделение в сварочном контакте, но и безопасность сварщика, работающего обычно среди металлических конструкций с высокой электропроводностью.

В соответствии с рассмотренными требованиями сварочные трансформаторы обеспечивают понижение напряжения от 220 или 380 В до 60—70 В. Такое напряжение на зажимах вторичной обмотки устанавливается при холостом ходе сварочного трансформатора. В процессе сварки оно колеблется от максимального значения 60—70 В до значений, близких к нулю. Сопротивление электрической дуги, возникающей при сварке, изменяется при перемещениях руки сварщика. Если бы напряжение на зажимах вторичной обмотки трансформатора поддерживалось постоянным, возникали бы резкие колебания тока в цепи и регулировать тепловыделение было бы невозможно. Поэтому сварочный трансформатор устроен так, что при резком уменьшении сопротивления дуги ток в цепи увеличивается незначительно, а произведение I 2 R , определяющее количество теплоты, сохраняется на требуемом уровне.

В соответствии с законом Ома при резком уменьшении сопротивления и незначительном увеличении тока напряжение на дуге снижается. Сварочный трансформатор имеет крутопадающую внешнюю характеристику.

Сварочный трансформатор выдерживает короткие замыкания, возникающие в случае прикосновения электрода к сварочному шву. Ток короткого замыкания, как показывает внешняя характеристика, ограничен. Вторичная обмотка трансформатора рассчитана на достаточно длительное протекание этого тока.

При постоянном напряжении питающей сети быстрое снижение выходного напряжения трансформатора при незначительном возрастании тока может быть достигнуто только за счет увеличения внутреннего падения напряжения в обмотках трансформатора. Для этого нужно увеличить сопротивление обмоток.

Сварочные трансформаторы изготовляют с большим регулируемым индуктивным сопротивлением обмоток. При этом увеличивают не активное сопротивление проводов, а индуктивное сопротивление рассеяния обмоток, так как увеличение активного сопротивления привело бы к возрастанию потерь энергии и перегреву трансформатора.

Для увеличения индуктивного сопротивления рассеяния обмоток увеличивают поток рассеяния, вводя в магнитопровод трансформатора шунтирующий магнитопроводящий стержень, через который замыкается часть основного магнитного потока. Изменяя значение воздушного зазора в шунтирующем стержне, можно изменять магнитный поток рассеяния. Средний подвижный стержень, выполняющий функции магнитного шунта, предусмотрен, например, в конструкции отечественного сварочного трансформатора СТАН-1.

Применяют и другие способы изменения индуктивного сопротивления рассеяния обмоток. Так, в трансформаторе СТЭ в цепь вторичной обмотки включают специальный дроссель с регулируемым воздушным зазором, а в трансформаторе ТС-500 изменяют расстояние между первичной и вторичной обмотками.