Сайт о телевидении

Сайт о телевидении

» » На что влияет количество ядер процессора? Многоядерный процессор. В чем преимущество двухъядерных процессоров

На что влияет количество ядер процессора? Многоядерный процессор. В чем преимущество двухъядерных процессоров

Нельзя разобраться с этим вопросом, не зная, что собой представляет 4-х ядерный процессор. С одно-, двух- и трехъядерными процессорами все просто: они имеют одно, два или три ядра соответственно. А что касается 4-х ядерного, то тут не все так, как кажется на первый взгляд.

2-х или 4-х ядерный процессор?

Большинство людей ошибаются, думая, что частота каждого ядра складывается. Раз 2.5 Ггц частота ядер, а ядра 4, то значит 2.5*4= 10Ггц. Но это не так: частота всегда одна — 2.5 Ггц. Почему же частота не складывается? Потому, что с этой частотой параллельно работает каждый процессор.

Порция — это часть времени, на вычисление которой процессор выделяет ресурсы всем потокам, попавшим в процессор. Это как 4-ре магистрали с предельной скоростью 60 км/час (2.5 Ггц): у нас есть грузовики, которые должны доставить нам товары (это наши кусочки программы или порции программы), и чтобы нам повысить скорость доставки (повысить работоспособность системы), нам нужно использовать все 4-ре магистрали или повысить предельную скорость (3.0 Ггц). Но для большинства программ невозможно работать в несколько потоков, так как они работают в один поток и способны использовать лишь одну магистраль (а значит нашей программе будет выделено лишь 25% общей мощности процессора) потому, что в программе логика должна выполняться последовательно (поточно), и если нарушить последовательность, нарушится логика, а это приведет к сбоям. Новые программы стараются использовать мультипрограммирование — возможность работать в несколько потоков (наших магистралей), а не в одну, как большинство программ сейчас. Игры, по большей части тоже оптимизированы под многопоточность, но основной поток обычно работает в один. Хоть сейчас и пытаются разделить его на несколько, чтобы облегчить и ускорить. Поэтому для игр или приложений, которые обычно работают в один или два потока, лучше взять 2-ух ядерный процессор.

Если частота у двухъядерного такая же, как у четырехъядерного, то лучше конечно взять четырехъядерный, ведь у нас же одновременно работает огромное количество программ, пускай и слабых по нагрузке. Мы выиграем производительность системы за счет того, что все другие процессы могут быть вытеснены на другое ядро при полной загрузке одного из них. Но обычно частота у новых двухъядерных выше, чем у новых четырехъядерных. Именно поэтому при тестах в играх побеждают 2-ух ядерные с большей частотой, чем 4-ех ядерные с меньшей.

Теперь об очередях:

Теперь поймем, что при переходе от одноядерного к двуядерному, скорость возрастает быстрее не только за счет одновременной обработки ядрами, но и за счет ожидания и очереди на процессоре.

Частота у одноядерного процессора и двухъядерного одна и та же, но работает компьютер быстрее с 2-я ядрами. Дело в мультипрограммировании, когда осуществляется переход с одноядерного на двухъядерный, то скорость возрастает в разы. А мультипрограммирование — это работа с потоками. Представим себе 2 потока, например, работа Windows и запущенная компьютерная игра. Если у нас имеется одно ядро, то обрабатывается последовательно то игра (порция), то работа Windows (порция). Процессам приходиться ждать очереди, т. е. когда «кусочек» игры обрабатывается, то Windows приходится ждать конца обработки игры (порции игры). Когда мы перешли на 2 ядра, то даже с той же частотой, как у одноядерного, компьютер начинает более быструю обработку, так как очередь уменьшается в 2 раза.

Объясню подробнее на примере 100 приложений, если у нас 1 ядро, то 1 приложение обрабатывается, остальные 99 ждут своей очереди. И чем длиннее очередь, тем дольше идет обновления, и тогда мы чувствуем, что у нас тормозит система. А когда у нас 2 ядра, то очередь делится наполовину, т. е. 50 приложений на одном и 50 на другом, следовательно, их проще и быстрее обновлять. Важно знать, что очередь становится меньше и наши приложения быстрее обновляются.

Для теста потока запустите winrar, чтобы сжимать большой файл, и посмотрите в диспетчере (он сжимает в один поток), сколько ресурсов процессора он будет использовать (25%- на 4-ех ядерном и 50% на 2-ух). Из этого следует, что нашей игре, если она работает в один поток в четырехъядерном процессоре, будет выделено 25 % мощности процессора, 50%, если в двухъядерном. В играх у нас многопоточность присутствует, но главный поток в игре все равно будет обрабатываться на четверть процессора (в четырехъядерном).

Все рассматривалось упрощенно, 2-х ядерный с большей частотой подходит лучше для игр, так как больше частоты выделяется одному потоку, а 4-х ядерный подходит для много-поточных данных, например, множество запущенных одновременно приложений.

У 2-ух ядерного процессора i5 есть технология позволяющая имитировать работу системы, как с 4-х ядерным процессором. Фактически есть только 2 ядра, но для Windows имитируется работа 4-х ядер. 4 очереди (потока) по 2 очереди (потока) на ядро обрабатываются по очереди. Каждое ядро берет по порции каждого из потоков, то есть он способен быть четырехъядерным.

В наше время принято считать, что двухъядерный процессор – это удел бюджетных компьютеров. «Настоящий» CPU начинается с 4-х ядер. Долгое время этого действительно было достаточно, и многочисленное ПО с успехом использовало все предоставляемые ресурсы. Сейчас же вполне обычными стали 6-ядерные процессоры и далее более «ядреные». Насколько актуально увеличение многопоточности в играх? Ресурс uk.hardware.info провел тестирование с целью определить, сколько ядер нужно для игр, где предел разумности наращивания этих вычислительных блоков при выборе процессора и, соответственно, трат на отнюдь не дешевые «камни». Предлагаю вольный перевод этого тестирования.

Цель проверки и участники

Цель – определить, сколько денег готовить для покупки процессора, о котором можно будет не беспокоиться, что он станет узким местом в собираемой игровой системе. Естественно, это тестирование интересно для того, чей бюджет, выделенный для приобретения комплектующих, небезграничен, и хочется наиболее эффективно вложить каждый рубль в гигагерцы (гигабайты и т. п.).

Попутно попытаемся решить, во что инвестировать лучше всего, в дополнительные ядра процессора, или в более быстродействующую видеокарту, или же купить . Важно понять, насколько та или иная игра способна работать с несколькими ядрами и насколько увеличивается быстродействие (если увеличивается вообще) c ростом их количества.

Для тестирования был собран следующий стенд:

  • Процессор — Intel Core i9 7900X Skylake-X 10-core CPU @ 4.5 ГГц.
  • Материнская плата — ASUS Strix X299-XE Gaming.

Также проверки проводились с использованием процессора AMD, для чего был собран следующий стенд:

  • Процессор – AMD Ryzen 7 2700X на штатных частотах и с использованием всех доступных ядер.
  • Материнская плата — Asus Crosshair VII Hero WiFi.
  • Память — G.Skill Trident Z 32 ГБ DDR4-3200 CL14.
  • Видеокарта — NVidia GeForce GTX 1080 Ti.
  • Накопитель — 2x SSD Samsung 840 Evo 1ТБ.
  • ОС — Windows 10 64-bit (1803 Update).

Выбранный процессор Intel позволяет отключать ядра и потоки для имитации CPU с разной конфигурацией вычислительных блоков.

Тестирование осуществлялось в нескольких разрешениях экрана: FullHD, WQHD и Ultra HD при средних и ультра настройках графики. Забегая немного вперед, в высоких разрешениях «бутылочным» горлышком становилась видеокарта, что снижает ценность проверки процессоров, но все же кое-какую информацию к размышлению дает.

Результаты тестирования

Assassin’s Creed Origins (DX11)

Игра хорошо масштабируется, но только до определенного предела.

Двухъядерный процессор явно уже не годится, т. к. существенно снижает быстродействие, а оптимальным оказывается наличие 4-х ядер, причем в конфигурации с 8-ю потоками, либо же процессор с 6-ю ядрами без HyperThreading. Дальнейшее увеличение ядер если и приносит результат, то уже не столь существенный.

Call of Duty: WW2 (DX11)

Игра, мягко говоря, не очень в курсе с тем, что делать с увеличением количества ядер.

Разница, хотя и весьма небольшая, наблюдается разве что при разрешении FullHD при средних настройках. С увеличением качества картинки минимальный разброс результатов вполне можно списать на погрешности измерения.

Destiny 2 (DX11)

Этой игре нужен процессор с 4-мя ядрами, как минимум. Впрочем, большее их количество оказывается невостребованным. Справедливости ради надо сказать, что это верно для невысоких разрешений (не более FullHD) и для средне-высоких настроек графики.

С возрастанием нагрузки на видеокарту роль процессора в быстродействии снижается, и разницы между самым «хилым» двухъядерником и топовым CPU сводится к нулю.

F1 2017 (DX11)

Здесь похожее поведение, что и в прошлой игре.

Двухъядерник заметно снижает производительность, но, опять-таки, при не самых высоких разрешениях. Начиная с ультра настроек в 1440p разница между «камнями» минимальна. Впрочем, несколько выделяется 10-ядерник в некоторых режимах. Да и Ryzen очень хорошо себя чувствует именно при высокой нагрузке.

Far Cry 5 (DX11)

Еще одна игра, которая равнодушна к количеству ядер у процессора.

При высоких разрешениях чуть выделяются CPU в конфигурации 6C/12T и 10C/20T, но, право, увеличение FPS настолько незначительно, что это не оправдывает переплату за эти ядра.

Final Fantasy XV (DX11)

Можно сказать с уверенностью, что двухъядерный процессор — «тормоз» для этой игры в разрешениях FullHD и 1440p.

Впрочем, и к варианту с 4-мя ядрами и без HyperThreading могут быть претензии. Все что выше – показывает очень близкие результаты. AMD Ryzen хорош во всех режимах.

Fortnite (DX11)

Единственное заметное различие – при разрешении FullHD и средних настройках качества изображения. Отстали двухъядерный Intel и, как ни странно, у AMD результаты ниже примерно на 15%. Остальная группа «товарищей» держится очень сплоченно. При увеличении нагрузки на графический процессор разница между CPU нивелируется.

Ghost Recon: Wildlands (DX11)

Еще одно подтверждение, что два ядра по нашим временам уже мало.

В условиях, когда видеокарта еще не загружена «под завязку», недостаток вычислительных блоков проявляется заметно.

Можно заметить, что во всех режимах 6-ядерники уступают 4-ядерникам, причем наличие двух дополнительных «железных» ядер уступает четырем потокам HyperThreading. Справедливости ради, речь идет о разнице в 1-2 FPS, и этим вполне можно пренебречь.

Middle Earth: Shadow of War (DX11)

Опять привычная уже картина – при невысокой нагрузке на видеокарту, двухъядерник отстает.

Начиная с конфигурации 4С/4Т разницы между процессорами практически никакой.

Need for Speed: Payback (DX11)

Движок Frostbite, на котором построена эта игра, знает, как распоряжаться предоставляемыми ресурсами.

Правда, наиболее заметный прирост происходит при переходе с 2-х на 4 ядра, причем, желательно, чтобы был еще и HyperThreading. Либо 6 ядер в любой конфигурации.

PlayerUnknown’s Battlegrounds (DX11)

Хорошо чувствуют себя процессоры с 4-мя ядрами и выше.

Двухъядерник уступает в большинстве вариантов. Причем, наибольший эффект достигается при наличии 6-ти ядер.

Prey (DX11)

Игра плохо масштабируется по ядрам.

Разве что на максимальных настройках в FullHD процессоры выстраиваются в соответствии с иерархией. А в 4K двухъядерник позволяет получить то же количество FPS, что и десятиядерник. Причем, заметно явное благоволение к наличию HyperThreading, хотя эффект от его использования исчисляется несколькими FPS.

В низких разрешениях хуже всего проявляет себя AMD, уступая всем и заметно. Правда, чем выше разрешение и настройки графики, тем оправданнее использование именно этого «камня».

Total War: Warhammer (DX11)

Игра хорошо относится к наличию у процессора 6 ядер.

В большинстве случаев это оказывается оптимальным вариантом.

The Witcher 3 (DX11)

«Ведьмак» слабо реагирует на многоядерность.

Практически все преимущество дает переход с 2-х на 4 ядра. Да и то, проявляется это при FullHD и средних настройках графики.

Battlefield 1 (DX12)

Движок Frostbite хорошо масштабируется вплоть до 6 ядер и 12 потоков.

Дальнейшее увеличение «крутизны» процессора уже никак не сказывается. Оптимальным выбором оказываются именно шестиядерники, или, в крайнем случае, четырехъядерник, но обязательно с HyperThreading «на борту».

Неплохо выглядит AMD Ryzen, хотя и проигрывая в разрешении FullHD, но в 1440p показывает практически те же результаты, в то время как Intel «опускается» до уровня AMD.

Forza Motorsport 7 (DX12)

Игра также хорошо масштабируется, и наличие 8 потоков или 6 ядер – оптимальная конфигурация для Forza Motorsport 7. Все, что ниже – будет являться «узким местом» в системе.

The Division (DX12)

Двух ядер для этой игры мало.

Нужно хотя бы вдвое больше, и желательно с HyperThreading. Дальнейшее увеличение многоядерности прибавления FPS не приносит. И опять, наличие 8 потоков или 6 «железных» ядер – самый оптимальный вариант.

Wolfenstein 2: The New Colossus (Vulkan)

Игра, использующая собственный движок и собственное же APi, больше всего нагружает видеокарту, а какой используется процессор – это уже не столь важно. Небольшое увеличение FPS при наличии 6 ядер наблюдается, но разница укладывается в несколько процентов.

Заключение. Многоядерность – так сколько ядер нужно для игр?

Как показало тестирование, наиболее «ядерозависимыми» являются игры Forza Motorsport 7, Assassin’s Creed: Origins, Battlefield 1 и Need For Speed Payback. Естественно, речь идет, за редким исключением, о разрешениях FullHD и не самых высоких настройках графики.

Разница в производительности между двухъядерником и 10-ядерником может доходить до двукратной. Использование 4-х ядер снижает этот гандикап вдвое, доводя до 50%, а наличие HyperThreading сводит притягательность топовых «камней» почти на нет. В ряде случаев заметна разница при наличии удвоенного числа потоков по отношению к ядрам.

С ростом разрешения экрана в подавляющем большинстве случаев разницы между CPU нет, т. к. в данном случае основная нагрузка ложится на видеопроцессор.

Если говорить о привлекательности с точки зрения показываемой процессорами производительности, то ситуация во многом зависит от того, в каком разрешении запускаются игры.

  • 1080p (FullHD). При средних настройках графики оптимальным выбором являются процессоры начиная с 4C/8T до 6C/12T. Невысокая загрузка видеокарты, особенно топовой, выявляет недостаток производительности двухъядерного процессора. При переходе же на ультра настройки, разница между CPU сокращается. AMD Ryzen показывает результаты на уровне интеловского 4C/8T.
  • 1440p. Здесь больше сказывается производительность видеокарты, нежели процессора, что отражается в небольшой разнице между процессорами. Даже двухъядерник уступает от силы 7-8%, и то при средних настройках графики переход к «ультре» снижает процессорозависимость. Очень привлекательным становится AMD.
  • 2160p. Все зависит от возможностей видеокарты. Преимущества того или иного CPU исчисляются долями процента, максимум – 1-2%, чем вполне можно пренебречь. Преимуществ у мощного, и дорогого, 10-ядерного CPU перед более доступным 4-ядерным практически нет.

Если переходить к выбору CPU, то, строго говоря, даже такие бюджетные решения, как Intel Pentium G4560, Pentium G5400 и сходные с ними вполне справляются со своей задачей. И все же не стоит обольщаться. Более мощные процессоры позволят получить больше кадров в минуту, обеспечить отсутствие или сведение к минимуму «проседания» FPS за счет более высоких вычислительных возможностей. Время двухъядерников уходит.

Сложно представить ситуацию, когда к топовой видеокарте (а, скорее всего, и к не самой дешевой материнке, памяти и т. п.) в компанию приобретается бюджетный CPU. Раскрыть возможности видеокарты не удастся. Разве что на высоких разрешениях.

А вот вариант с 4C/12T или 6C/6T выглядит уже гораздо более привлекательным. Причем, вариант 6C/12T более-менее заметных преимуществ не дает. Наличие же 10 и более ядер для игр никакого значения не имеет.

При переходе к высоким разрешениям внимание должно переключаться не столько на процессор, сколько на возможности и класс видеокарты. Именно она становится ограничителем в достижении больших значений FPS и высоких настроек графики.

Что же касается многоядерности, то тут возникает несколько другая ситуация. Если все же FullHD для вас мало, то, учитывая невысокое масштабирование игр по ядрам, лучше отдать предпочтение более высокой частоте их работы, нежели количеству, но с меньшим количеством МГц. А если еще и будет возможность разогнать такой процессор, то тогда совсем все хорошо.

Если рассматривать вопрос, что лучше, процессор с HyperThreading или без, то, если судить по результатам тестирования, CPU c 4С/8Т практически соответствует 6С/6Т, хотя последний чуть лучше в низких разрешениях. Ну а если брать комбинацию 6С/12Т, то получаем практически идеальный вариант, который позволит получить максимальное количество FPS, и при этом можно не бояться появления каких-либо «провалов» при большой нагрузке.

Это все ситуация на сегодняшний день. А что будет завтра, с выходом новых игр или новых их версий? Было бы неплохо знать, насколько разработчики уделяют времени масштабированию игровых движков, но сие знание тайное, и как-то не особо афишируемое. На данный момент это явно не в главных приоритетах у создателей игр.

С одной стороны, использование 4-х ядер/потоков в подавляющем большинстве случаев гарантирует максимальную или близкую к таковой производительность в разрешениях не более FullHD. Посему и заниматься распараллеливанием вычислений надобности нет.

Что же касается перехода на 2К, 4К и выше, тут понадобятся уже более серьезные вычислительные мощности, но возникает другая проблема – существующие видеопроцессоры пока что с трудом «переваривают» такую нагрузку, а посему, и заниматься масштабированием на несколько ядер необходимости нет, т. к. 4-6 вполне справляются с тем, чтобы загрузить видеокарту «по ватерлинию».

Вот выйдет новое поколение графических чипов (ожидаемое в скором времени NVidia 11-го поколения), тогда и посмотрим.

И все это приводит к следующему. Даже для топовой, или предтоповой, игровой системы лучшим выбором является процессор минимум с 4-мя ядрами и 8-ю потоками, или же вариант с 6-ю ядрами. Идеальный вариант, если у них еще будет разгонный потенциал.

Это, кстати, оптимально и по цене, ибо такие «камни» вполне доступны. Например,6-ядерный Intel Core i5 8600K обойдется примерно в 18000 руб., вариант с HyperThreading в виде Intel Core i7 8700K уже тысяч на 6 дороже. Кстати, 4-ядерный 8-поточный i7 7700K идет примерно в ту же цену. Чуть дешевле, примерно на 1000 руб., AMD Ryzen 7 2700X.

Для примера, самый дешевый 10-ядерный Intel Core i9 7900X, который может дать дополнительные несколько FPS, обойдется минимум вдвое дороже, чем i7 8700K. Не забудем, что это уже совсем другой уровень, и материнская плата понадобится уже совсем другая, с сокетом 2066.

Так что, многоядерность – это неплохо, но и про мегагерцы забывать не стоит, игры их любят. Хороших и быстрых процессоров, высоких FPS и победы над врагами!

Но с покорением новых вершин показателей частоты, наращивать её стало тяжелее, так как это сказывалось на увеличении TDP процессоров. Поэтому разработчики стали растить процессоры в ширину, а именно добавлять ядра, так и возникло понятие многоядерности.

Ещё буквально 6-7 лет назад, о многоядерности процессоров практически не было слышно. Нет, многоядерные процессоры от той же компании IBM существовали и ранее, но появление первого двухъядерного процессора для настольных компьютеров , состоялось лишь в 2005 году, и назывался данный процессор Pentium D. Также, в 2005 году был выпущен двухъядерник Opteron от AMD, но для серверных систем.

В данной статье, мы не будем подробно вникать в исторические факты, а будем обсуждать современные многоядерные процессоры как одну из характеристик CPU. А главное – нам нужно разобраться с тем, что же даёт эта многоядерность в плане производительности для процессора и для нас с вами.

Увеличение производительности за счёт многоядерности

Принцип увеличения производительности процессора за счёт нескольких ядер, заключается в разбиении выполнения потоков (различных задач) на несколько ядер. Обобщая, можно сказать, что практически каждый процесс, запущенный у вас в системе, имеет несколько потоков.

Сразу оговорюсь, что операционная система может виртуально создать для себя множество потоков и выполнять это все как бы одновременно, пусть даже физически процессор и одноядерный. Этот принцип реализует ту самую многозадачность Windows (к примеру, одновременное прослушивание музыки и набор текста).


Возьмём для примера антивирусную программу. Один поток у нас будет сканирование компьютера, другой – обновление антивирусной базы (мы всё очень упростили, дабы понять общую концепцию).

И рассмотрим, что же будет в двух разных случаях:

а) Процессор одноядерный. Так как два потока выполняются у нас одновременно, то нужно создать для пользователя (визуально) эту самую одновременность выполнения. Операционная система, делает хитро: происходит переключение между выполнением этих двух потоков (эти переключения мгновенны и время идет в миллисекундах). То есть, система немного «повыполняла» обновление, потом резко переключилась на сканирование, потом назад на обновление. Таким образом, для нас с вами создается впечатление одновременного выполнения этих двух задач. Но что же теряется? Конечно же, производительность. Поэтому давайте рассмотрим второй вариант.

б) Процессор многоядерный. В данном случае этого переключения не будет. Система четко будет посылать каждый поток на отдельное ядро, что в результате позволит нам избавиться от губительного для производительности переключения с потока на поток (идеализируем ситуацию). Два потока выполняются одновременно, в этом и заключается принцип многоядерности и многопоточности. В конечном итоге, мы намного быстрее выполним сканирование и обновление на многоядерном процессоре, нежели на одноядерном. Но тут есть загвоздочка – не все программы поддерживают многоядерность. Не каждая программа может быть оптимизирована таким образом. И все происходит далеко не так идеально, насколько мы описали. Но с каждым днём разработчики создают всё больше и больше программ, у которых прекрасно оптимизирован код, под выполнение на многоядерных процессорах.

Нужны ли многоядерные процессоры? Повседневная резонность

При выборе процессора для компьютера (а именно при размышлении о количестве ядер), следует определить основные виды задач, которые он будет выполнять.

Для улучшения знаний в сфере компьютерного железа, можете ознакомится с материалом про сокеты процессоров .

Точкой старта можно назвать двухъядерные процессоры, так как нет смысла возвращаться к одноядерным решениям. Но и двухъядерные процессоры бывают разные. Это может быть не «самый» свежий Celeron, а может быть Core i3 на Ivy Bridge, точно так же и у АМД – Sempron или Phenom II. Естественно, за счёт других показателей производительность у них будет очень отличаться, поэтому нужно смотреть на всё комплексно и сопоставлять многоядерность с другими характеристиками процессоров .

К примеру, у Core i3 на Ivy Bridge, в наличии имеется технология Hyper-Treading, что позволяет обрабатывать 4 потока одновременно (операционная система видит 4 логических ядра, вместо 2-ух физических). А тот же Celeron таким не похвастается.

Но вернемся непосредственно к размышлениям относительно требуемых задач. Если компьютер необходим для офисной работы и серфинга в интернете, то ему с головой хватит двухъядерного процессора.

Когда речь заходит об игровой производительности, то здесь, чтобы комфортно чувствовать себя в большинстве игр необходимо 4 ядра и более. Но тут всплывает та самая загвоздочка: далеко не все игры обладают оптимизированным кодом под 4-ех ядерные процессоры, а если и оптимизированы, то не так эффективно, как бы этого хотелось. Но, в принципе, для игр сейчас оптимальным решением является именно 4-ых ядерный процессор.


На сегодняшний день, те же 8-ми ядерные процессоры AMD , для игр избыточны, избыточно именно количество ядер, а вот производительность не дотягивает, но у них есть другие преимущества. Эти самые 8 ядер, очень сильно помогут в задачах, где необходима мощная работа с качественной многопоточной нагрузкой. К таковой можно отнести, например рендеринг (просчёт) видео, или же серверные вычисления. Поэтому для таких задач необходимы 6, 8 и более ядер. Да и в скором времени игры смогут качественно грузить 8 и больше ядер, так что в перспективе, всё очень радужно.

Не стоит забывать о том, что остается масса задач, создающих однопоточную нагрузку. И стоит задать себе вопрос: нужен мне этот 8-ми ядерник или нет?

Подводя небольшие итоги, еще раз отмечу, что преимущества многоядерности проявляются при «увесистой» вычислительной многопоточной работе. И если вы не играете в игры с заоблачными требованиями и не занимаетесь специфическими видами работ требующих хорошей вычислительной мощи, то тратиться на дорогие многоядерные процессоры, просто нет смысла (

Что такое процессор и зачем он нужен в компьютере? Процессор — один из важнейших компонентов вашего компьютера. Именно с этого компонента необходимо начинать сборку вашего ПК.

Сейчас форумы буквально напичканы различными сравнениями мощности самых популярных моделей. В основном, это сравнение производительности процессоров от Intel и AMD. Процессор занимается обработкой всех задач, выполняемых на компьютере.

При выборе процессора обычно опираются на основные критерии, которые могут помочь вычислить его производительность, основные критерии это:

  • Частота каждого ядра.
  • Кеш (1,2,3 уровня).
  • Частота шины.
  • Кол-во физических ядер.

Частота работы каждого ядра - это частота, с которой процессор обрабатывает задачи за одну единицу времени. Что такое ядро процессора? — это, как вы уже поняли, самый важный вычислительный элемент.

От частоты очень сильно зависит производительность всего компьютера. Именно поэтому, частоту ядра процессора, чаще всего, разгоняют через биос . Сейчас технологии позволяют добиться при разгоне высоких результатов, при минимальном риске. Подробней об этом я писал в статье — .



Важно понимать, что необходимо выбирать процессор не с максимальной частотой, а с высоким разгонным потенциалом. То есть, например - при выборе между 2-мя моделями с одинаковыми характеристиками, которые отличаются лишь частотой, один 2.5 Ггц а второй 3.2Ггц.

Можно сразу понять, что у модели с частотой 2.5 высокий разгонный потенциал. Поэтому несложно догадаться, что лучше конечно же сэкономить и взять тот у которого частота 2.5 Ггц + куллер помощнее и после этого разогнать его до 3.2 Ггц или выше.

Хотя при этом имейте ввиду, что гарантии вы автоматически лишаетесь и то, что ваш частота гарантировано поднимется до 3.2Ггц на 100% уверенным быть нельзя!!! Если вы хоть раз имели дело с разгоном процессора, то вы понимаете о чём я говорю.

Другими словами правильная последовательность действий и немного везения повышают шансы увеличить частоту процессора и сэкономить средства вложенные в него.

В следующих статьях я расскажу вам, как разгонять компьютер и другие комплектующие правильно. , чтобы не пропустить.

1 Кэш (1,2,3 уровня)

Кэш - это промежуточный буфер между и ЦП (Центральный процессор), в котором храниться информация с наибольшей вероятностью обращения к ней в определённый момент (Проще говоря, данные, с которыми работает кристалл в данный момент).

Кэш намного быстрее оперативной памяти. Это приводит к тому, что кристалл меньше времени простаивает в ожидании данных для обработки и затем в оперативную память быстрее поступают уже обработанные данные.

Другими словами, без кэш памяти, компьютер не работал бы на полную мощность и долго простаивал, а мы бы в это время долго ждали выполнения несложных задач. Поэтому объём кэш памяти, не менее важен, чем частота кристалла. Существует 3 уровня кэш памяти, с которыми вам стоит познакомиться:

  1. Самая быстродействующая , а поэтому и самая малая по объёму кэш память. Для мощных моделей желательно не менее 128кб.
  2. Промежуточный уровень по скорости медленнее 1-го, но гораздо быстрее 3-го уровня. При выборе, желательно брать ту модель у которой кеш не менее 1 мб на каждое ядро.
  3. Самая медленная кэш память процессора , но гораздо быстрее скорости ОЗУ. Эта кэш память встречается в наибольших объёмах: 6-12 мб — оптимальный вариант. Этот уровень кеш памяти, сейчас эффективно используется для многоядерных процессоров (от 3-х и выше ядер).

По цене они не слишком сильно отличаются от моделей с двумя уровнями, так что если хотите наибольшей производительности, лучше не экономить.

Имейте ввиду, что кэш память, обозначается для всего кристалла, а не для каждого ядра в отдельности. То есть, если вы покупаете 6-ти ядерный процессор, а кэш память 2-го уровня меньше 3-6 мб, то это повод задуматься — стоит ли его приобретать!

2 Частота шины

Частота шины - это тактовая частота, с которой происходит обмен данными между процессором и системной шиной компьютера. Проще говоря, частота, на которой взаимодействует кристалл с материнской платой. Чем выше частота шины, тем быстрее идёт взаимодействие. Оптимальный вариант от 1600Mhz.

3 Кол-во физических ядер

Что такое ядро мы разобрались, а вот сколько их должно быть пока нет! Сейчас уже сложно встретить одноядерные модели, т.к практически все сегменты рынка уже заняли многоядерные модели процессоров. И цена при увеличении кол-ва ядер стремительно растёт.

Но вот выгодней ли гнаться за моделью с наибольшим кол-во ядер или стоит остановиться на производительной двух ядерной модели, которой должно хватить для всех ресурсоёмких задач? Давайте выясним.

Когда впервые начали появляться двух-ядерные кристаллы, то при тестировании мнения специалистов раздваивалось. Ведь на удивление прирост производительности был скажем «маловат», по сравнению с производительными одноядерными моделями. Это было связано с тем, что слишком мало приложений поддерживали обработку двух-ядерными процессорами.

Необходимо было время, чтобы переписать программы под двух-ядерную обработку. Сейчас, когда уже достаточно времени прошло, сложно встретить приложение, которое не поддерживает многоядерную обработку, и поэтому, запуская приложения, мы видим от 80% прирост производительности по сравнению с одноядерными моделями.

Сейчас же стоит вопрос, а нужны ли четырёх-ядерные модели, ведь ни во всех приложениях, можно увидеть весомый прирост производительности? Здесь ответ прост. Если вам нужен компьютер, с запасом мощности на будущее, то конечно же 4-х ядерный кристалл оправдает ваши пожелания.

Если не хотите сильно тратиться, то вполне хватит мощной двух ядерной модели, таким образом сэкономите 40% стоимости. Вообщем решать вам, но с точностью можно сказать, что в будущем производители будут делать упор в многоядерность ещё сильнее, чем сейчас!

Кроме того, существуют еще дополнительные характеристики. Которые, возможно и не являются такими важными как выше указанные, но все же для общего развития не помешает знать и о них.

TDP — Это величина которая позволяет определить справится ли ваш куллер с температурой кристалла или оный будет греться как чайник. Величина TDP указывается в Вт, то есть к примеру если у вашего камня TDP 95 Вт, то куллер который вы на него установите должен отводить от него 95 Вт тепловой мощности.

Обычно TDP определяется для одного кристалла, в который может входит семейство процессоров различной мощности. то есть по сути это величина относительная и не точная.

Очень часто TDP путают с энергопотреблением камня. На самом деле это не правильно. Поскольку процессор с TDP 45 Вт, может потреблять гораздо меньше энергии чем процессор с TDP 95 Вт.

Что же дает нам TDP? TDP по сути нужен для того чтобы подобрать куллер необходимой мощности.

Но поскольку современные куллера без проблем справляются с самыми мощными моделями, то в этом смысле данная величина нам не особо интересна. Можете ознакомится подробней о выборе . Там все просто, мощному процессору — мощный куллер, простенькому камню — достаточно стандартного куллера.

Так что при выборе из нескольких аналогичных моделей кристалла с разными TDP берите тот, где TDP меньше.

Производитель . По поводу производителя многие очень часто спорят, и никак не могут прийти к трезвому выводу. Intel или все таки AMD. На самом деле все очень просто, при сравнительно равной мощности кристаллы разных производителей одинаковы.

Не на 100% конечно, но на 99% точно. То есть существенной разницы в производительности для вас не будет, если вы к примеру следуя вышеуказанным критериям подберете две модели камня от разных производителей.

Скажу прямо — разница в цене на одинаковые по классу кристаллы разных производителей больше, чем разница в производительности. То есть что бы вы не выбрали, вы все равно не прогадаете 🙂

5 Заключение. Как выбрать процессор правильно

Вот и основные критерии производительности одного из важнейших компонентов вашего компьютера. Важно понимать, что ссылаясь на эти критерии, можно вычислить теоретическую производительность кристалла. Реальная производительность, познаётся уже в тестировании.

Увидеть такие тестирования вы можете на специализированных сайтах, где есть также форумы, которые могут быть вам полезны. На форуме вы можете встретить отзывы людей, которые приобрели вашу модель процессора и задать человеку интересующий вас вопрос.

Капля юмора в море информации:

Встречаются два друга:
— Ты как?
— Да ничего, магазин вот в сети открыл, за первый месяц заработал двадцать тысяч виртуальных долларов.
— Виртуальных? Я даже не видел таких!
— Я тоже.

На сегодня все, надеюсь данная статья ответила на главный вопрос — как правильно выбрать компьютер с мощным процессором? Если это не так, то задавайте вопросы в комментариях. Удачи вам 🙂

Многоядерные процессоры представляют собой центральные процессоры, в которых содержится более двух вычислительных ядер. Такие ядра могут находиться как в одном корпусе, так и на одном процессорном кристалле.

Что такое многоядерный процессор?

Чаще всего под многоядерными процессорами понимают центральные процессоры, в которых несколько вычислительных ядер интегрированы в одну микросхему (то есть они расположены на одном кристалле кремния).

Обычно тактовая частота в многоядерных процессорах намеренно занижается. Это делают для того, чтобы сократить энергопотребление, сохранив при этом требуемую производительность процессора. Каждое ядро при этом представляет собой полноценный микропроцессор, для которого характерны черты всех современных процессоров - он использует многоуровневый кэш, поддерживает внеочередное исполнение кода и векторные команды.

Hyper-threading

Ядра в многоядерных процессорах могут поддерживать технологию SMT, позволяющую исполнять несколько потоков вычислений и создавать на основе каждого ядра несколько логических процессоров. На процессорах, которые выпускает компания Intel, такая технология называется «Hyper-threading». Благодаря ей можно удваивать число логических процессоров по сравнению с числом физических чипов. В микропроцессорах, поддерживающих эту технологию, каждый физический процессор способен сохранять состояние двух потоков одновременно. Для операционной системы это будет выглядеть, как наличие двух логических процессоров. Если в работе одного из них возникает пауза (например, он ждет получения данных из памяти), другой логический процессор приступает к выполнению собственного потока.

Виды многоядерных процессоров

Многоядерные процессоры подразделяются на несколько видов. Они могут поддерживать использование общей кэш-памяти, а могут не поддерживать. Связь между ядрами реализуется на принципах использования разделяемой шины, сети на каналах точка-точка, сети с коммутатором или использования общего кэша.

Принцип работы

Большинство современных многоядерных процессоров работает по следующей схеме. Если запущенное приложение поддерживает многопоточность, оно может заставлять процессор выполнять несколько заданий одновременно. Например, если в компьютере используется 4-ядерный процессор с тактовой частотой 1.8 ГГц, программа может «загрузить» работой сразу все четыре ядра, при этом суммарная частота процессора будет составлять 7.2 ГГц. Если запущено сразу несколько программ, каждая из них может использовать часть ядер процессора, что тоже приводит к росту производительности компьютера.

Многие операционные системы поддерживают многопоточность, поэтому использование многоядерных процессоров позволяет ускорить работу компьютера даже в случае приложений, которые многопоточность не поддерживают. Если рассматривать работу только одного приложения, то использование многоядерных процессоров будет оправданным лишь в том случае, если это приложение оптимизировано под многопоточность. В противном случае, скорость работы многоядерного процессора не будет отличаться от скорости работы обычного процессора, а иногда он будет работать даже медленнее.