Сайт о телевидении

Сайт о телевидении

» » MIMO антенна - что это такое и в чем ее приемущество? Что такое Mimo в wifi

MIMO антенна - что это такое и в чем ее приемущество? Что такое Mimo в wifi

Технология MIMO сыграла огромную роль в развитии WiFi. Несколько лет назад невозможно было представить и другие устройства с пропускной способностью в 300 Мбит/сек и выше. Появление новых скоростных стандартов связи, к примеру, 802.11n произошло во многом благодаря MIMO.

Вообще тут стоит упомянуть, что когда мы говорим о технологии WiFi, то на самом деле имеем в виду один из стандартов связи, а конкретно - IEEE 802.11. Брендом WiFi стал после того, как обрисовались заманчивые перспективы использования беспроводной передачи данных. Чуть подробнее о технологии вай-фай и стандарте 802.11 можно прочесть в .

Что представляет собой технология MIMO?

Если дать как можно более простое определение, то MIMO - это многопотоковая передача данных . Аббревиатуру можно перевести с английского как «несколько входов, несколько выходов» В отличие от предшественника (SingleInput/SingleOutput), в устройствах с поддержкой MIMO сигнал транслируется на одном радиоканале с помощью не одного, а нескольких приемников и передатчиков. При обозначении технических характеристик устройств WiFi рядом с аббревиатурой указывают их количество. Например, 3х2 - это 3 передатчика сигнала и 2 принимающих антенны.

Кроме того, в MIMO используется пространственное мультиплексирование . За устрашающим названием кроется технология одновременной передачи нескольких пакетов данных по одному каналу. Благодаря такому «уплотнению» канала его пропускную способность можно увеличить в два раза и более.

MIMO и WiFi

С ростом популярности беспроводной передачи данных по WiFi соединениям, конечно же, возросли требования к их скорости. И именно технология MIMO и другие разработки, взявшие ее за основу, позволили увеличить пропускную способность в несколько раз. Развитие WiFi идет по пути развития стандартов 802.11 - a, b, g, n и так далее. Мы не зря упомянули возникновение стандарта 802.11n. Multiple Input Multiple Output - его ключевой компонент, позволивший увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до более 300 Мбит/сек.

Стандарт 802.11n позволяет применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц с более высокими показателями пропускной способности. Как уже упоминалось выше, сигнал многократно отражается, тем самым используя множество потоков на одном канале связи.

Благодаря этому доступ в интернет на основе WiFi теперь позволяет не только серфинг, проверку почты и общение в аське, но и онлайн-игры, онлайн-видео, общение в скайпе и прочий «тяжелый» трафик.

Более новый стандарт - также использует технологию MIMO.

Проблемы применения MIMO в WIFI

На заре становления технологии существовало затруднение совмещения устройств, работающих с поддержкой MIMO и без нее. Однако сейчас это уже не так актуально - практически каждый уважающий себя производитель беспроводного оборудования использует ее в своих устройствах.

Также одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков являлась цена устройства. Однако здесь настоящую ценовую революцию совершила компания . Ей не только удалось наладить производство беспроводного оборудования с поддержкой MIMO, но и сделать это по очень демократичным ценам. Посмотрите, к примеру, стоимость типичного комплекта компании - (базовая станция), (на стороне клиента). И в этих устройствах не просто MIMO, а фирменная улучшенная технология airMax на ее основе.

Проблемой остается только увеличение количества антенн и передатчиков (сейчас максимум 3) для устройств с PoE. Обеспечить питанием более энергоемкую конструкцию затруднительно, но опять-таки, постоянные сдвиги в этом направлении делает Ubiquiti.

Технология AirMAX

Компания Ubiquiti Networks является признанным лидером разработки и реализации инновационных технологий WiFi, в том числе и MIMO. Именно на ее основе Ubiquiti была разработана и запатентована технология AirMAX . Суть ее в том, что прием-передача сигнала несколькими антеннами на одном канале упорядочивается и структурируется протоколом TDMA с аппаратным ускорением: пакеты данных разнесены в отдельные временные слоты, очереди передачи координируются.

Это позволяет расширить пропускную способность канала, увеличить количество подключаемых абонентов без потери качества связи. Данное решение эффективно, удобно в использовании и, что немаловажно - недорого. В отличие от аналогичного оборудования, используемого в WiMAX - сетях, оборудование от Ubiquiti Networks с технологией AirMAX приятно радует ценами.


сайт

Один из подходов к увеличению скорости передачи данных для WiFi стандарта 802.11 и для WiMAX стандарта 802.16 – это использование беспроводных систем с применением нескольких антенн, как для передатчика, так и для приемника. Такой подход называется MIMO (дословный перевод - «множественный вход множественный выход»), или «умная антенная системы» (smart antenna systems). Технология MIMO играет важную роль в реализации WiFi стандарта 802.11n.

В технологии MIMO применяются несколько антенн различного рода, настроенных на одном и том же канале. Каждая антенна передает сигнал с различными пространственными характеристиками. Таким образом, технология MIMO использует спектр радиоволн более эффективно и без ущерба для надежности работы. Каждый wi-fi приемник «прислушивается» ко всем сигналам от каждого wifi передатчика, что позволяет делать пути передачи данных более разнообразными. Таким образом, несколько путей могут быть перекомбинированы, что приведет к усилению требуемых сигналов в беспроводных сетях.

Еще один плюс технологии MIMO в том, что данная технология обеспечивает пространственное деление мультиплексирования (Spatial Division Multiplexing (SDM)). SDM пространственно уплотняет несколько независимых потоков данных одновременно (в основном, виртуальных каналов) внутри одной спектральной полосы пропускания канала. В сущности, несколько антенн передают различные потоки данных с индивидуальной кодировкой сигналов (пространственные потоки). Эти потоки, двигаясь параллельно по воздуху «пропихивают» больше данных по заданному каналу. На приемнике каждая антенна видит разные сочетания сигнальных потоков и приемник «демултиплексирует» эти потоки для их использования. MIMO SDM может значительно увеличить пропускную способность для передачи данных, если увеличить число пространственных потоков данных. Каждому пространственному потоку необходимы свои собственные передающие / принимающие (TX / RX) антенные пары на каждом конце передачи. Работа системы представлена на рис.1

Также необходимо понимать, что для реализации технологии MIMO требуется отдельная радиочастотная цепь и аналого-цифровой преобразователь (АЦП) для каждой антенны. Реализации, требующие более двух антенн в цепи должны быть тщательно спроектированы для того, чтобы не увеличивать расходы при сохранении надлежащего уровня эффективности.

Важным инструментом для повышения физической скорости передачи данных в беспроводных сетях, является расширение полосы пропускания спектральных каналов. Благодаря использованию более широкой полосы пропускания канала с ортогональным частотным разделением мультиплексирования (OFDM) передача данных осуществляется с максимальной производительностью. OFDM является цифровой модуляцией, которая отлично себя зарекомендовала в качестве инструмента для осуществления двунаправленной высокоскоростной беспроводной передачи данных в WiMAX / WiFi сетях. Метод расширения пропускной способности каналов является экономически эффективным и достаточно легко реализуемым с умеренным ростом цифровой обработки сигнала (DSP). При правильном применении, можно удвоить частоту пропускания стандарта Wi-Fi 802.11 с 20 МГц канала на 40 МГц, также можно обеспечить более чем в два раза увеличенную пропускную способность каналов, используемых в настоящее время. Благодаря объединению MIMO архитектуры с более широкой полосой пропускания канала, получается очень мощный и экономически целесообразный подход для повышения физической скорости передачи.

Применение MIMO технологии с 20 МГц каналами требует больших затрат для удовлетворения требований IEEE по WiFi стандарту 802.11n (100 Мбит / с пропускной способности на MAC SAP). Также для удовлетворения этих требований при использовании канала в 20 МГц понадобиться, по меньшей мере, по три антенны, как на передатчике, так и на приемнике. Но в то же время работа на 20 МГц канале обеспечивает надежную работу с приложениями, требующими высокую пропускную способность в реальной пользовательской среде.

Совместное применение технологий MIMO и расширения канала отвечает всем требованием пользователя и являет собой достаточно надежный тандем. Это так же верно и при использовании одновременно нескольких ресурсоемких сетевых приложений. Комбинация MIMO и 40 МГц расширения канала позволит отвечать и более сложным требованиям, таким как Закон Мура и выполнение технологии CMOS совершенствования DSP технологии.

При применении расширенного канала 40 МГц в диапазоне 2.4 ГГц, изначально возникли трудности с совместимостью с оборудованием на основе WiFi стандартов 802.11a /b/g, а также с оборудованием, использующим технологию Bluetooth для передачи данных.

Для решения этой проблемы в Wi-Fi стандарте 802.11n предусмотрен целый ряд решений. Одним из таких механизмов, специально предназначенным для защиты сетей, является так называемая невысокая пропускная способность (non-HT) дублированного режима. Перед использованием протокола передачи данных WiFi стандарта 802.11n этот механизм отправляет по одному пакету на каждую из половинок 40 МГц канала для объявления сети распределения вектора (NAV). Следуя non-HT дублированного режима NAV сообщению, протокол передачи данных стандарта 802.11n может быть использован в течении заявленного в сообщение время, без нарушения наследия (целостности) сети.

Другой механизм является своего рода сигнализацией и не дает беспроводным сетям расширять канал более чем 40 МГц. Например, в ноутбуке установлены модули 802.11n и Bluetooth, данный механизм знает о возможности возникновения потенциальных помех при работе этих двух модулей одновременно и отключает передачу по каналу 40 МГц одного из модулей.

Эти механизмы гарантируют, что WiFi 802.11n будут работать с сетями более ранних стандартов 802.11 без необходимости перевода всей сети на оборудование стандарта 802.11n.

Увидеть пример использования системы MIMO можно на рис.2

Если у Вас после прочтения возникнут какие-либо вопросы, Вы можете задать их через форму отправки сообщений в разделе

Для того, чтобы лучше понять принцип работы MIMO антенны давайте вообразим следующую ситуацию: базовая станция (БС) оператора мобильной сети и модем стали двумя географическими пунктами А и Б, между этими объектами проложен определенный путь, люди, передвигающиеся по этому пути олицетворяют информацию, А - это ваша приемная Антенна, Б - это БС сотового оператора. Люди передвигаются из одного пункта в другой с помощью поезда, вместимость которого- 100 человек. Но людей, которые хотят из пункта Б добраться в пункт А гораздо больше. Поэтому строится второй путь и запускается новый поезд, вместимость которого, тоже 100 человек. Таким образом, производительность и эффективность двух поездов в 2 раза выше.

Точно также же устроена и новейшая технология MIMO (англ. Multiple Input Multiple Output) , она позволяет принимать одновременно больше потоков. Для этого используются различные поляризации сигналов, например горизонтальная и вертикальная - 2х2. Раньше, чтобы принимать больше информации, то есть больше потоков, потребовалось бы приобретение двух простых антенн.

Сегодня же достаточно приобрести только одну антенну MIMO. Улучшенная антенна MIMO содержит в одном корпусе сразу два набора излучающих элементов, так называемых патчей, каждый из которых подключен к отдельному гнезду. Второй вариант устройства: имеется один набор патчей и запитка для двух портов, что позволяет патчу функционировать в двух направлениях: горизонтальном и вертикальном. В этом случае к двум гнездам присоединяется единственный набор патчей. Именно второй вариант (с двумя кабельными вводами) вы можете найти в ассортименте нашей компании.

А как же подключить 2 кабеля, выходящих из мимо-антенны к одному модему? Все очень просто. Сегодня не только антенны поддерживают эту функцию, но и модемы. Существуют модемы с 2 входами для подключения внешних антенн, например широко распространенный Huawei .

Преимущества технологии MIMO

К главным преимуществам относится возможность улучшения пропускной способности, не расширяя при этом полосу. Так устройство одновременно раздает несколько потоков информации по единственному каналу.

Качество передаваемого сигнала и скорость передачи данных становится лучше. Потому что технология сначала кодирует данные, а затем на приемной стороне восстанавливает их.

Более чем в два раза увеличивается скорость трансляции сигнала.

Увеличиваются и многие другие параметры скорости за счет использования двух независимых кабелей, через которые одновременно происходит раздача и получение информации в виде цифрового потока. Улучшаются качества спектра следующих систем: 3G, 4G/LTE, WiMAX, WiFi, благодаря использованию двух входов и двух выходов.

Сфера применения антенн MIMO

Чаще всего технология MIMO применяется для передачи данных такого протокола, как WiFi. Это объясняется увеличенными пропускной способностью и емкостью. Для примера возьмем протокол 802.11n, в нем при использовании описываемой технологии, можно достичь скорость до 350 Мегабит/сек. Также улучшилось качество передачи данных, даже на тех участках, где сигнал приема низкий. Примером уличной точки доступа с антенной MIMO может послужить всем известная .

Сеть WiMAX, при использовании MIMO, теперь может транслировать информацию со скоростью до 40 Мегабит/секунду.

В применяется технология MIMO до 8x8. Благодаря этому достигается высокая скорость передачи - более 35 Мегабит/секунду. Помимо этого, обеспечивается надежное и высококачественное соединение отличного качества.

Постоянно ведутся работы по улучшению и усовершенствованию конфигураций технологии. В скором времени это позволит улучшить показатели спектра, усовершенствовать емкость сетей и ускорить скорость передачи данных.

В свете выхода новых беспроводных устройств с поддержкой технологии MU-MIMO, в частности с выходом UniFi AC HD (UAP-AC-HD) , назрела необходимость в разъяснении, что это такое и почему старое железо не поддерживает данную технологию.

Что такое 802.11ac?

Стандарт 802.11ac является трансформацией беспроводной технологии, пришедшей на смену предыдущему поколению в виде стандарта 802.11n.

Появление 802.11n, как предполагалось ранее, должно было позволить бизнесу повсеместно использовать данную технологию в качестве альтернативы обычному проводному соединению для работы внутри локальной сети (LAN).

802.11ac – дальнейший этап на пути развития беспроводных технологий. Теоретически, новый стандарт может обеспечить скорость передачи данных до 6.9 Гбит/сек в диапазоне 5 ГГц. Это в 11.5 раз выше сферы передачи данных 802.11n.

Новый стандарт доступен в двух релизах: Wave 1 и Wave 2. Ниже вы можете ознакомиться со сравнительной таблицей по актуальным стандартам.

В чем отличие Wave 1 и Wave 2?

Продукты 802.11ac Wave 1 доступны на рынке примерно с середины 2013-го. Новая ревизия стандарта базируется на предыдущей версии стандарта, но с некоторыми очень существенными изменениями, а именно:

  • Повышена производительность с 1.3 Гбит до 2.34 Гбит;
  • Добавлена поддержка Multi User MIMO (MU-MIMO);
  • Допускается использование широких каналов в 160 МГц;
  • Четвертый пространственный поток (Spatial Stream) для большей производительности и стабильности;
  • Больше каналов в диапазоне 5 ГГц;

Что именно дают усовершенствования Wave 2 для реального пользователя?

Рост пропускной способности положительно сказывается на приложениях, чувствительных к пропускной способности и задержкам внутри сети. Это в первую очередь передача потокового голосового и видеоконтента, а также повышение плотности сети и рост количества клиентов.

MU-MIMO предоставляет огромные возможности для развития «интернета вещей» (Internet of Things, IoT), когда один пользователь может подключать одновременно несколько устройств.

Технология MU-MIMO допускает несколько одновременных исходящих потоков (downstreams), обеспечивая одновременное обслуживание сразу нескольких устройств, что повышает производительность сети в целом. MU-MIMO также положительно сказывается на задержках, обеспечивая более быстрое подключение и работу клиентов в целом. К тому же, особенности технологии позволяют подключать к сети еще большее количество одновременных клиентов, нежели в предыдущей версии стандарта.

Использование ширины канала в 160 МГц требует соблюдения некоторых условий (низкая мощность, низкий показатель шума и т.д), при этом канал сможет обеспечить колоссальный прирост производительности при передачи больших объемов данных. Для сравнения 802.11n может обеспечить канальную скорость до 450 Мбит, более новый 802.11ac Wave 1 – до 1.3 Гбит, в то время как 802.11ac Wave 2 с каналом на 160 МГц может обеспечить канальную скорость порядка 2.3 Гбит/сек.

В предыдущем поколении стандарта допускалось использование 3-х приемо-передающих антенн, новая ревизия добавляет 4-й поток. Данное изменение повышает дальность и стабильность соединения.

Существует 37 каналов в диапазоне 5 ГГц, используемых во всем мире. В некоторых странах количество каналов ограничено, в некоторых нет. 802.11ac Wave 2 допускает использование большего количества каналов, что позволит повысить количество одновременно работающих устройств в одном месте. К тому же, большее количество каналов необходимо для широких каналов в 160 МГц.

Есть ли новые канальные скорости в 802.11ac Wave 2?

Новый стандарт наследует стандарты, введенные с появлением первого релиза. Как и ранее, скорость зависит от количества потоков и ширины канала. Максимальная модуляция осталась без изменений – 256 QAM.

Если ранее для канальной скорости 866.6 Мбит требовалось 2 потока и ширина канала в 80 МГц, то теперь этой канальной скорости можно достичь при использовании всего одного потока, двое увеличив при этом скорость канала – с 80 до 160 МГц.

Как видите, кардинальных изменений не произошло. В связи с поддержкой каналов на 160 МГц, увеличились и максимальные канальные скорости – до 2600 Мбит.

На практике, реальная скорость составляет примерно 65% от канальной (PHY Rate).

Используя 1 поток, модуляцию 256 QAM и канал на 160 МГц, можно достичь реальной скорости порядка 560 Мбит/сек. Соответственно 2 потока обеспечат скорость обмена на уровне ~1100 Мбит/сек, 3 потока – 1.1-1.6 Гбит/сек.

Какие диапазоны и каналы использует 802.11ac Wave2?

На практике, Waves 1 и Waves 2 работают исключительно в диапазоне 5 ГГц. Диапазон частот зависит от региональных ограничений, как правило, используется диапазон 5,15-5,35 ГГц и 5,47-5,85 ГГц.

В США под беспроводные сети 5 ГГц выделено полосу в 580 МГц.

802.11ac, как и ранее, может использовать канала на 20 и 40 МГц, в то же время хорошей производительности можно достичь используя только 80 МГц либо 160 МГц.

Поскольку на практике далеко не всегда возможно использовать непрерывную полосу в 160 МГц, стандартом предусмотрен режим 80+80 МГц, который поделит полосу в 160 МГц на 2 разные диапазона. Всё это добавляет большей гибкости.

Обратите внимание, стандартными каналами для 802.11ac являются 20/40/80 МГц.

Почему существует две волны стандарта 802.11ac?

IEEE внедряет стандарты волнами, по мере развития технологий. Такой подход позволяет промышленности сразу выпускать новые продукты, не дожидаясь пока будет доработана та или иная возможность.

Первая волна стандарта 802.11ac обеспечила значительный шаг вперед по отношению к 802.11n и заложила основу для дальнейшего развития.

Когда стоит ожидать продукты с поддержкой 802.11ac Wave 2?

Согласно первоначальным прогнозам аналитиков, первые продукты потребительского уровня должны были поступить в продажу еще в середине 2015-го. Более высокоуровневые корпоративные и операторские решения обычно выходят с задержкой в 3-6 месяцев, точно так, как это было с первой волной стандарта.

Оба класса, потребительский и коммерческий, обычно выпускаются еще до того, как WFA (Wi-Fi Alliance) начинает проводить сертификацию (вторая половина 2016).

Состоянием на февраль 2017, количество устройств с поддержкой 802.11ac W2 не так велико как этого бы хотелось. Особенно со стороны Mikrotik и Ubiquit.

Будут ли устройства Wave 2 существенно отличаться от Wave 1?

В случае с новым стандартом сохраняется общая тенденция предыдущих лет – смартфоны и ноутбуки выпускаются с 1-2 потоками, 3 потока предназначены для более требовательных задач. Нет практического смысла в том, чтобы реализовывать полный функционал стандарта на всех устройствах.

Совместимо ли оборудование Wave 1 с Wave 2?

Первая волна допускает 3 потока и каналы до 80 МГц, по этой части клиентские устройства и точки доступа полностью совместимы.

Для реализации функций второго поколения (160 МГц, MU-MIMO, 4 потока), и клиентское устройство, и точка доступа должны поддерживать новый стандарт.

Точки доступа нового поколения совместимы с клиентскими устройствами 802.11ac Wave 1, 802.11n и 802.11a.

Таким образом, использовать дополнительные возможности адаптера второго поколения не получится с точкой первого поколения, и наоборот.

Что такое MU-MIMO и что оно даёт?

MU-MIMO является сокращением от «multiuser multiple input, multiple output». По сути, это одно из ключевых нововведений второй волны.

Для работы MU-MIMO клиент и AP должны его поддерживать.

Если кратко, точка доступа может одновременно отправлять данные сразу на несколько устройств, в то время как предыдущие стандарты позволяют отправку данных только одному клиенту в конкретный момент времени.

По сути, обычный MIMO это SU-MIMO, т.е. SingleUser, однопользовательский MIMO.

Рассмотрим пример. Есть точка с 3-мя потоками (3 Spatial Streams / 3SS) и в ней подключено 4 клиента: 1 клиент с поддержкой 3SS, 3 клиента с поддержкой 1SS.

Точка доступа распределяет время поровну между всеми клиентами. Во время работы с первым клиентом, точка задействует 100% своих возможностей, ведь клиент также поддерживает 3SS (MIMO 3x3).

Оставшиеся 75% времени точка работает с тремя клиентами, каждый из которых использует только 1 поток (1SS) из 3-х доступных. При этом точка доступа использует всего 33% своих возможностей. Чем больше таких клиентов, тем меньше эффективность.

В конкретном примере, средняя канальная скорость составит 650 Мбит:

(1300 + 433,3 + 433,3 + 433,3)/4 = 650

На практике будет означать среднюю скорость порядка 420 Мбит, из возможных 845 Мбит.

А теперь давайте рассмотрим пример с использованием MU-MIMO. У нас есть точка с поддержкой второго поколения стандарта, использующая MIMO 3x3, канальная скорость останется без изменений – 1300 Мбит для ширины канала в 80 МГц. Т.е. одновременно клиенты, как и ранее, могут использовать не более 3 каналов.

Общее количество клиентов теперь составляет 7, при этом точка доступа распределила их на 3 группы:

  1. один клиент 3SS;
  2. три клиента 1SS;
  3. один клиент 2SS + один 1SS;
  4. один клиент 3SS;

На выходе мы получаем 100%-ную реализацию возможностей AP. Клиент из первой группы использует все 3 потока, клиенты из другой группы использую по одному каналу и так далее. Средняя канальная скорость составит 1300 Мбит. Как видите, на выходе это дало двукратный прирост.

Совместима ли точка MU-MIMO с более старыми клиентами?

Увы, нет! MU-MIMO не совместим с первой версией протокола, т.е. для работы данной технологии ваши клиентские устройства должны поддерживать вторую версию.

Отличия между MU-MIMO и SU-MIMO

В SU-MIMO, точка доступа передает данные только одному клиенту в конкретный момент времени. При MU-MIMO точка доступа может передавать данные сразу нескольким клиентам.

Сколько клиентов поддерживается в MU-MIMO одновременно?

Стандарт предусматривает одновременное обслуживание до 4-х устройств. Общее максимальное количество потоков может достигать 8.

В зависимости от конфигурации оборудования возможны самые разнообразные варианты, например:

  • 1+1: два клиента, каждый с одним потоком;
  • 4+4: два клиента, каждый из которых использует по 4 потока;
  • 2+2+2+2: четыре клиента, по 2 потока у каждого;
  • 1+1+1: три клиента по одному потоку;
  • 2+1, 1+1+1+1, 1+2+3, 2+3+3 и другие комбинации.

Всё зависит от конфигурации оборудования, обычно устройства используют 3 потока, следовательно, точка сможет обслуживать до 3-х клиентов одновременно.

Возможен также вариант использования 4-х антенн в конфигурации MIMO 3x3. Четвертая антенна в данном случае дополнительная, она не реализует дополнительный поток, В таком случае, одновременно можно будет обслуживать 1+1+1, 2+1 либо 3SS, но никак не 4.

MU-MIMO поддерживается только для Downlink?

Да, стандартом предусмотрена поддержка только Downlink MU-MIMO, т.е. точка может одновременно передавать данные нескольким клиентам. А вот «слушать» одновременно точка не может.

Реализация Uplink MU-MIMO была признана невозможной в короткие сроки, поэтому данный функционал будет добавлен только в стандарте 802.11ax, выход которого запланирован на 2019-2020 годы.

Сколько потоков поддерживается в MU-MIMO?

Как уже упоминалось выше, MU-MIMO может работать с любым количеством потоков, но не более 4 на клиента.

Для качественной работы мнопользовательской передачи, стандартом рекомендуется наличие количество антенн, большее количества потоков. В идеале для MIMO 4x4 должно быть 4 антенны на прием и столько же на отправку.

Есть ли необходимость в использовании специальных антенн для нового стандарта?

Конструкция антенн осталась прежней. Как и ранее, вы можете использовать любые совместимые антенны, разработанные для использования в диапазоне 5 ГГц для 802.11a/n/ac.

Во втором релизе также добавлен Beamforming, что это?

Технология Beamforming позволяет изменять диаграмму направленности, адаптируя её под конкретного клиента. В процессе работы точка анализирует сигнал от клиента и оптимизирует свое излучение. В процессе формирования луча может использоваться дополнительная антенна.

Может ли точка доступа 802.11ac Wave 2 обрабатывать 1 Гбит трафика?

Потенциально, точки доступа нового поколения способны обработать такой поток трафика. Реальная пропускная способность зависит от целого ряда факторов , начиная с количества поддерживаемых потоков, дальности связи, наличия преград и заканчивая наличием помех, качеством точки доступа и клиентского модуля.

Какие диапазоны частот используются в 802.11ac Wave?

Выбор рабочей частоты зависит исключительно от регионального законодательства. Список каналов и частот постоянно меняется, ниже приведены данные по США (FCC) и Европе, состоянием на январь 2015.

В Европе разрешено использование ширины канала более 40 МГц, поэтому каких-либо изменений в плане нового стандарта нет, к нему применяются все те же правила, что и для предыдущего стандарта.

Онлайн курс по сетевым технологиям

Рекомендую курс Дмитрия Скоромнова « ». Курс не привязан к оборудованию какого-то производителя. В нем даются фундаментальные знания, которые должны быть у каждого системного администратора. К сожалению, у многих администраторов, даже со стажем 5 лет, зачастую нет и половины этих знаний. В курсе простым языком описываются много разных тем. Например: модель OSI, инкапсуляция, домены коллизий и широковещательные домены, петля коммутации, QoS, VPN, NAT, DNS, Wi-Fi и многие другие темы.

Отдельно отмечу тему по IP-адресации. В ней простым языком описывается как делать переводы из десятичной системы счисления в двоичную и наоборот, расчет по IP-адресу и маске: адреса сети, широковещательного адреса, количества хостов сети, разбиение на подсети и другие темы, имеющие отношение к IP-адресации.

У курса есть две версии: платная и бесплатная.

2 года назад

Как увеличить скорость передачи данных для Wi-Fi стандарта 802.11 и для WiMAX стандарта 802.16? Использовать беспроводные системы с применением нескольких антенн как для передатчика, так и для приемника. Это и есть технология MIMO, или Multiple-Input Multiple-Output.

Если дословно перевести на русский, то это означает «множественный вход множественный выход». Также ее называют «умной антенной системой» или по-английски - smart antenna systems.

Технология выполняет важную роль в реализации Wi-Fi стандарта 802.11n. Технология MIMO предусматривает применение нескольких передатчиков и приемников для того, чтобы одновременно передавать большое количество данных.

Технология MIMO использует эффект передачи радиоволн, который называют многолучевым распространением. Суть в том, что информация, которая передается, потом отражается от стен, потолков и других объектов. А принимающая антенна воспринимает сигналы под разными углами и в разное время.

Технология MIMO дает возможность использовать преимущества многолучевого распространения для того, чтобы объединить информацию из нескольких сигналов. Она повышает скорость и целостность данных.

На сегодня есть немало устройств по стандарту 802.11n. Самым простым из них может быть радиосистема с множеством раздельных путей передачи и приема. MIMO-системы используют определенное количество передатчиков и приемников. Стандарт 802.11n определяет набор возможных комбинаций от 1х1 до 4х4.

Отметим, что далеко не все Wi-Fi клиенты и Точки Доступа одинаковы с точки зрения MIMO.

Существуют клиенты 1х1, 2х1, 3х3 и т.д. Скажем, мобильные устройства типа смартфона преимущественно поддерживают MIMO 1x1, изредка 1x2. Это связано с двумя ключевыми проблемами. То есть с необходимостью обеспечить низкое потребление энергии и долгую жизнь аккумулятора, как и со сложностью в расположении в маленьком корпусе нескольких антенн с адекватным их разнесением. Это распространяется и на другие мобильные устройства, к примеру, планшетные компьютеры, КПК и т. д.

Ноутбуки высокого уровня в большинстве случаев сейчас поддерживают MIMO вплоть до 3х3. Условия множественного распространения сигнала постоянно меняются, поскольку Wi-Fi-устройства часто перемещаются. Смартфон с Wi-Fi может находиться в руках пользователя, а вокруг перемещаются самые разные объекты. Скажем, автомобили. И если сигналы прибывают в разное время и под разными углами, то возможны искажения и затухание сигнала.

Технология MIMO все чаще применяется во всех системах беспроводной передачи данных. Потенциал ее растет. Разрабатываются новые варианты конфигурации антенн, вплоть до 64х64 MIMO. Есть перспективы добиться еще больших скоростей передачи данных, емкости сети и спектральной эффективности.