Сайт о телевидении

Сайт о телевидении

» » Максимум оперативной памяти в ноутбуке. Как узнать объем оперативной памяти: понятие ОЗУ, максимальный, минимальный и используемый объем памяти, способы просмотра объема памяти и пошаговая инструкция

Максимум оперативной памяти в ноутбуке. Как узнать объем оперативной памяти: понятие ОЗУ, максимальный, минимальный и используемый объем памяти, способы просмотра объема памяти и пошаговая инструкция

Максимальный размер оперативной памяти, который поддерживают 32-разрядные системы

Зададимся вопросом: могут ли 32-разрядные системы работать с физической памятью больше 4 ГБ в принципе и если да, то каким образом.

Главное, что надо сделать в самом начале, это четко разделить между собой три понятия:

Свойства процессора;
32-битная операционная система;
32-разрядное приложение (программа)
Последние два очень часто смешивают в одну кучу, чего в данном случае, делать как раз не следует. Начнем по порядку и издалека – совершим короткий исторический экскурс.

Обратимся к таблице основных характеристик популярных процессоров от Intel:

Эта таблица нужна нам для того, чтобы наглядно показать тот факт, что разрядность адресной шины отнюдь не всегда совпадала с разрядностью архитектуры процессора.
Для начала обратим внимание на 16-разрядные процессоры. Если бы они имели 16-разрядную адресную шину, то максимальный размер доступной им физической памяти составлял бы всего 64 КБ (2 в 16-й степени равно 65536). Однако уже Intel 8086 мог работать с памятью до 1 МБ, а 80286 уже до 16 МБ благодаря 20 и, соответственно, 24 битам шины адреса.
Эпоха процессоров x86 совместимых процессоров с 32-х разряздными регистрами и 4 ГБ ОЗУ началась с Intel 80386 в далеком 1985 году. На протяжении последующих 10 лет 32-х разрядный процессоры архитектуры х86 не имели физической возможности работать с памятью более 4 ГБ.
В 1995 году был представлен процессор Intel Pentium Pro. Наряду с совершенно новой архитектурой ядра этот процессор получил 36-битную адресную шину благодаря чему, как не трудно подсчитать, максимальный размер доступной ему физической памяти увеличился до 64 ГБ (в современных 64-разрядных процессорах используются 37 разрядов, что увеличивает предел адресуемой физической памяти до 128 ГБ).
Кроме того, в процессоре был реализован «хитрый» механизм управления памятью, который отображал физическую память, расположенную за пределами 4 ГБ, в 32-разрядную виртуальную память в диапазоне 0 - 4 ГБ «обманывая» таким образом 32-разрядные приложения. Такой режим управления памятью процессором х86 получил название PAE (Physical Address Extension - расширение физических адресов).
Pentium Pro позиционировался в то время как процессор для серверов и рабочих станций. Действительно, представить себе в 1995 году настольный компьютер с объемом оперативной памяти не то что больше, а хотя бы отдаленно приближающимся к 4 ГБ, было не просто. Память измерялась тогда мегабайтами. К примеру, в 1998 году размер ОЗУ обычного настольного компьютера в 32МБ не считался маленьким. А стоила такая планка памяти от 60$. И в наше то время (2014 год) полным ходом используются компьютеры менее чем с 4 ГБ памяти. Для работы офисных приложений в связке с Windows XP такого объема памяти даже много. Кроме того, процессор Pentium Pro был очень дорогим и имел проблемы с быстродействием при выполнении популярных в то время 16-разрядных приложений.
Можно сказать, что такое решение было новым для 32-разрядных процессоров, однако, в силу того, что ранее подобная практика повсеместно применялась в 16-разрядных процессорах, революционной ее назвать сложно. Ведь еще со времен DOS широко применялся трюк с сегментной адресацией когда вся память была разбита на сегменты в 64КБ и адрес состоял из двух частей: сегмента и смещения внутри сегмента, таким образом удавалось использовать более 64КБ памяти.
Не все, но подавляющее большинство современных процессоров х86 для настольных компьютеров являются 64-разрядными и имеют поддержку PAE. Благодаря этому они не только могут работать с памятью более 4 ГБ, но и предоставляют такую возможность 32-битным операционным системам.

Проще всего определить поддержку режима PAE процессором оказалось в Linux. В Ubuntu, или в любом из ее многочисленных клонов, можно набрать в терминале:
grep -color=always -i PAE /proc/cpuinfo
В результате должно получиться что-то вроде этого:

32-разрядные операционные системы

Первой в ряду 32-разрядных ОС Microsoft стала Windows NT 3.1, выпущенная в 1993 году. Она предназначалась для корпоративного сектора, то есть для серверов и рабочих станций. Двумя годами позже в 1995 году появилась Windows 95 - операционная система для настольных компьютеров и ноутбуков. Между двумя этими событиями в 1994 году была представлена версия 1.0 ядра Linux. 32-разрядная архитектура оказалась столь удачной и «достаточной», что она повсеместно используется до сих пор на протяжении вот уже 2-х десятилетий. Последней 32-битной серверной операционной системой Microsoft стала Windows Server 2008. Однако, новейшая Windows 8 по-прежнему предлагается в двух вариантах. Для реализации дополнительных возможностей режима расширения физических адресов, помимо наличия соответствующего процессора и материнской платы с адекватным чипсетом и нужным количеством разведенных адресных линий, необходима поддержка PAE непосредственно самой операционной системой.
Если у Вас 32-разрядный Linux, то проблем с использованием памяти объемом более 4 ГБ, скорее всего, не возникнет. В операционных системах Linux поддержка PAE появилась в 1999 году в ядре 2.3.23 и используется с тех пор безо всяких ограничений.

Посмотрим таблицу максимально поддерживаемых размеров физической памяти, взятую из статьи 2005 года в msdn.microsoft.com, для Windows 2000, Windows XP и Windows Server 2003 >

Как видно из этой таблицы, режим PAE поддерживается во всех версиях ОС Microsoft начиная с Windows 2000. Вариации размеров максимальной памяти в различных версиях серверных операционных систем объясняются исключительно их позиционированием на рынке компанией Microsoft. Наверное, так проще объяснить их отличающуюся друг от друга стоимость. Для нас особый интерес представляют строки таблицы, которые прямо говорит о том, что во всех версиях Windows XP общее адресное пространство физической памяти ограничено на уровне 4 ГБ. Именно искусственно ограничено в ядре, так как поддержка PAE есть.
Режим PAE может быть включен, может быть выключен. Начиная с Windows XP SP2 PAE включается принудительно для обеспечения работы технологии безопасности DEP (Data Execution Prevention - предотвращение выполнения данных).

DEP – это технология, которая позволяет защитить операционную систему от большого класса вредоносного кода, который изначально внедряется в область памяти, отведенную под данные и маскируется под данные, а затем пытается из нее запуститься. Технология DEP такое выполнение вредоносного кода блокирует. Реализуется технология как программно, так и аппаратно. В последнем случае процессор помечает отдельные страницы памяти как не содержащие исполняемого кода измененным старшим битом в адресной таблице PTE (Page Table Entry) виртуальной памяти, а затем перехватывает и предотвращает запуск исполняемого кода с этих страниц.

32-разрядные приложения
Благодаря диспетчеру памяти процессора, осуществляющему ее распределение в режиме PAE независимо от работы приложений, и поддержке такого режима работы операционной системой, 32-разрядные приложения отделены от физической памяти и не имеют сведений о ее реальном размере. Каждому приложению, так как для них сохраняется 32-битное адресное пространство, по-прежнему доступны только 4 ГБ виртуальной памяти. В Windows под нужды самого приложения из этих 4 ГБ отдается ровно половина, в Linuх - 3 ГБ. В Windows существует возможность принудительно отдать приложению 3 ГБ, но, в большинстве случаев, это является нецелесообразным.
Необходимо иметь в виду, что включение режима PAE отнюдь не эквивалентно переходу на 64-битную систему, в которой каждому приложению выделяется несравнимо больший объем памяти. Если за счет PAE попытаться непосредственно удовлетворить непомерный аппетит некого современного приложения, например, пакета инженерного или графического моделирования, то ничего хорошего не получится. А вот если требуется одновременно запустить несколько требовательных к памяти (но не супертребовательных) приложений, то польза от PAE будет прямая. В первую очередь это касается серверов.
Например, требуется одновременная работа двух виртуальных машин, каждой из которых отведено по 2 ГБ памяти. Что будет без PAE понятно - вторая виртуальная машина, скорее всего, просто не запустится, ну или в системе начнется такой интенсивный обмен со swap-файлом, что процесс перейдет в категорию «пошаговая стратегия». С включенным PAE, при условии достаточного объема физического ОЗУ хостовой машины, обе виртуальные машины смогут благополучно работать.
К недостаткам PAE обычно относят возможное снижение производительности системы из-за уменьшения скорости доступа к памяти, связанной с дополнительными операциями на переключение отображаемых страниц памяти, и плохую работу некоторых драйверов устройств в 36-битном адресном пространстве.

Максимально поддерживаемые различными версиями Windows объемы физической памяти

Посмотрим сколько оперативной памяти поддерживают другие версии Windows, выпущенных после ХР.

В версиях Windows Vista х86 по сравнению с ХР практически ничего не изменилось.

Как видим, опять никаких изменений – абсолютный предел для x86 остался на уровне 4 ГБ. 1 ГБ в Windows Vista Starter и 2 ГБ в Windows 7 Starter только подкрепляют вывод об искусственном характере этих ограничений.

То же для Windows 8

Как видно из представленной таблицы, в плане лимитов памяти в Windows 8 тоже ничего не изменилось. Жаль, могли бы уже, наверное, ограничение снять или, по крайней мере, отодвинуть.

И тут самое время рассмотреть причины, по которым Microsoft ограничивает верхний предел доступной физической памяти в клиентских версиях Windows x86.

Одна из главных причин - Проблемы с безопасностью Windows XP.

Windows XP была выпущена осенью 2001 года и за очень короткий срок завоевала огромную популярность среди пользователей во всем мире. А, как известно, где большая популярность, там и большие проблемы. Моментально для нее было создано огромное количество вредоносного кода в виде разнообразных и многочисленных вирусов. При этом оказалось, что новая операционная система имеет ряд уязвимостей и весьма низкую стойкость ко взлому. Своего полноценного клиентского антивирусного пакета в то время у Microsoft не было. Ситуацию в значительной мере исправляли программные продукты сторонних разработчиков, однако, этого было явно недостаточно и, в целом, положение оставалось весьма напряженным.
Для того чтобы как-то повысить безопасность Windows XP, в 2004 году был выпущен второй пакет обновлений - SP2. И тут возникли проблемы. Одной из главных особенностей этого пакета, с точки зрения безопасности, было включение технологии DEP (Data Execution Prevention - предотвращение выполнения данных). Эта технология, повсеместно используемая и сегодня, позволяет отражать целый класс вредоносных атак благодаря запрету запуска исполняемого кода с непредусмотренных для этого страниц памяти. Но для работы DEP должна быть включена поддержка PAE (Physical Address Extension - расширение физических адресов). Включение режима PAE меняет механизм обращения к страницам оперативной памяти и делает возможным работу с физической памятью размером более 4 ГБ. Однако при подготовке и тестировании Windows XP со вторым пакетом обновлений обнаружились большие проблемы, приводившие к фатальным ошибкам и аварийным отказам в работе операционной системы. Очень быстро причины неприятностей были найдены. Ими оказались драйверы устройств, написанные без учета возможности их работы в режиме PAE.

Небольшое отступление.
В режиме PAE любая страница памяти 32-разрядного виртуального адресного пространства приложений на самом деле может быть расположена в любом месте доступной физической памяти. Обычные приложения это обстоятельство никак не затрагивает, им все равно. А вот для драйверов устройств все значительно хуже – им то надо работать с конкретными физическими адресами, а не с виртуальными. Условно ситуацию можно представить так:

Драйвер пытается считать или записать некую информацию по адресам, которые отведены для работы с устройством. Если драйвер “глупый”, не понимает в каком окружении он работает и не может “договориться” с операционной системой, то, как показано на рисунке, вместо портов ввода/вывода своего устройства он начнет общаться с некими ячейками физической памяти. Результат такого “общения” для работы системы непредсказуем, вплоть до полного "зависания" и перезагрузки.

Для того чтобы решить эту проблему и не блокировать установку SP2 пользователями из-за возможных проблем, Microsoft приняла командирское решение - PAE включить, но тривиально ограничить верхнюю границу доступной оперативной памяти клиентских версий своей операционной системы на уровне 4 ГБ. Адреса при этом транслируются один в один как в “классической” 32-разрядной системе и “глупые” недоделанные драйверы устройств успешно работают.
Ну что же, дешево и сердито. Дешево потому, что производителям оборудования не нужно было спешно заказывать разработку “правильных” драйверов. Сердито потому, что отложенные таким образом до поры до времени проблемы с использованием физической памяти компьютера, были переложены на конечного пользователя.
Много уже гигабайт утекло с момента выхода SP2 для XP, а Windows по-прежнему не видит оперативную память больше 4 ГБ и, как мы видели по таблице “Physical Memory Limits: Windows 8”, изменений в этом плане не предвидится.
И это не совсем понятно: для Windows Vista все равно пришлось писать новые драйвера, значит была возможность переписать их корректно для работы с PAE, но ограничение в 4 ГБ так и осталось.
Сегодня уже очень трудно представить себе 32-разрядные драйверы, которые не умеют работать с памятью более 4 ГБ. Возможно причина в том, что Microsoft таким образом хочет подтолкнуть пользователей к переходу на x64?

А как же серверные версии Windows?
Можно предположить, что для них драйверы устройств сразу разрабатывались с учетом работы в режиме PAE, то есть были “умными” и тщательно тестировались. Этому способствовало и то обстоятельство, что в серверных конфигурациях оборудования не было такого “зверинца” встроенных устройств.
До недавнего времени, например, до появления технологии виртуализации рабочих мест, которая, в том числе, предполагает возможность обработки графики самим сервером, последнему совершенно не нужна была серьезная видеокарта, так как вполне хватало видео, встроенного в материнскую плату. Кроме того, 32-разрядные серверные версии Windows закончили свою историю на Windows Server 2008.

Во второй части секреты распределения памяти в 32-х разрядной Windows и как бороться с ограничением.

Каждое приложение на компьютере занимает не только место на жестком диске, но и оперативную память при работе. Чем больше на компьютере установлено приложений, которые используются одновременно, тем больше оперативной памяти требуется для комфортной работы. Каждая вкладка в браузере, открытые документы, картинки, мессенджеры и другие программы занимают определенный объем оперативной памяти. В «Диспетчере задач» можно посмотреть, как много свободной памяти доступно на компьютере в процессе работы и выполнения тех или иных задач.

Если оперативной памяти не хватает, компьютер начнет тормозить и стараться выгрузить из памяти приложения, которые используются наименее активно. Когда речь идет о простом использовании компьютера, в большинстве случаев при нехватке памяти выгружаются вкладки браузера, что приводит к перезагрузке их в момент переключения. Это доставляет определенные неудобства пользователю, от которых можно избавиться двумя способами:

  • , что не сильно исправит положение дел;
  • Добавить оперативной памяти.

Стоимость дополнительной оперативной памяти не столь высока, и ее установка может решить возникающие проблемы. Однако перед покупкой важно не только правильно подобрать память, но и убедиться, что она будет работать на компьютере, в который планируется ее установка. Дело в том, что практически все материнские платы, а также процессоры (особенно на ноутбуках), способны поддерживать определенный объем памяти, максимум которого превышать нельзя. Поэтому перед покупкой дополнительных плашек важно узнать, сколько оперативной памяти поддерживает ноутбук. Сделать это можно несколькими способами, речь о которых пойдет ниже.

Определить сколько оперативной памяти поддерживает ноутбук программно

Существуют десятки диагностических приложений, которые позволяют узнать различную информацию об используемом компьютере: данные про установленные в нем комплектующие и их характеристики, сведения об операционной системе, информацию о DirectX и многое другое. Среди таких диагностических программ по праву одно из лидирующих мест занимает AIDA64. Данное приложение распространяется бесплатно в пробном режиме, и его можно загрузить для проверки того, сколько оперативной памяти поддерживает ноутбук.

Скачать и установить AIDA64 (рекомендуем версию Extreme) с сайта разработчиков не составляет труда. Когда это будет сделано, программу необходимо запустить и следующим образом определить максимальный объем оперативной памяти для используемого компьютера:


Обратите внимание: На некоторых компьютерах программа AIDA64 может выдавать информацию о двух северных мостах. На самом деле в данных вкладках содержится разная информация, и необходимо выбрать тот вариант, в котором имеются пункты про оперативную память.


Важно: Если пункт «Максимальный объем памяти» отсутствует рядом с информацией о поддерживаемых типах памяти, это не значит, что материнская плата выдержит любой объем оперативной памяти. В таком случае необходимо действовать по второму способу определения максимального объема оперативной памяти, описанному ниже.

Найти информацию о максимуме оперативной памяти в сети

Второй способ определить максимальный объем оперативной памяти, который поддерживается ноутбуком, более сложный, но к нему придется обратиться, если диагностические программы не укажут необходимую информацию. Данный способ заключается в поиске информации в интернете, и искать ее следует:


Обратите внимание: При малограмотном подборе комплектующих для ноутбука (что бывает довольно редко) максимальный объем памяти, с которым способны работать материнская плата и процессор, могут отличаться. Поэтому ознакомиться с данной информацией необходимо для обоих комплектующих.

Часто по модели ноутбука можно узнать о максимально поддерживаемом объеме оперативной памяти на сайтах различных интернет магазинов. К этому варианту следует прибегать в последнюю очередь, поскольку не всегда информация на страницах товаров соответствует действительности. Если вы решили определить максимальный объем поддерживаемой памяти ноутбуком подобным образом, рекомендуем сравнить найденный показатель на сайтах нескольких интернет магазинов.

Информация, с которой работает центральный процессор (ЦП) хранится в оперативном запоминающем устройстве (ОЗУ) или оперативной памяти персонального компьютера (ПК). Теоретически, чем больше этот объём, тем выше общая производительность системы.

В настоящее время ОЗУ организовано в виде отдельных модулей или планок, которые подключаются к (МП) при помощи специальных разъёмов. Каждая МП может работать только с одним видом таких модулей, имеющим сходную организацию, но разные рабочие частоты. Современные ПК используют ОЗУ стандарта DDR3 и DDR4.

Важно! Несмотря на развитие компьютерной индустрии, во многих устройствах до сих пор используются устаревший тип ОЗУ DDR3. Связано это с тем, что быстродействие даже устаревших ПК для решения большинства задач является избыточным.

Многие пользователи для ускорения работы своих ПК либо добавляют дополнительные планки ОЗУ к уже установленным, либо приобретают их на этапе сборки ПК. В этой связи часто возникает вопрос, как узнать сколько оперативной памяти поддерживает материнская плата, чтобы не ошибиться с количеством и не приобрести лишних планки, которые потом невозможно будет использовать. Не менее важно выбрать правильные микросхемы ОЗУ.

Как узнать какую оперативную память поддерживает материнская плата

Существует несколько способов, чтобы определить, тип ОЗУ, с которым работает та или иная МП:

  • прочитать инструкцию к МП;
  • визуально обследовать системную плату.
  • использовать программу системной диагностики;

Первый способ наиболее прост. В спецификации к каждой МП идёт подробное описание вида и объёма используемого ОЗУ. Если инструкция отсутствует, и Интернете можно найти информацию о материнке на сайте производителя и проверить тип памяти поддерживаемой материнкой.

Очень часто непосредственно на поверхности МП рядом с разъёмами для ОЗУ указывается, какие планки используются. Даже если этого не написано, можно при помощи обыкновенной линейки измерить расстояние от левого края разъёма до ключа-выемки. Эта длина составляет 5.4 см для DDR3 и 7.2 см для DDR4.

На работающем ПК рекомендуется воспользоваться любой программой системной диагностики, которая покажет не только тип ОЗУ, но и количество планок, быстродействие, фирму-производителя. В качестве таких программ можно использовать следующие продукты:

  1. AIDA-64;
  2. CPU-Z;
  3. HW-info.

Максимальное адресуемое пространство ОЗУ, поддерживаемое МП, либо указано в спецификации, либо может быть определено визуально по количеству установленных на ней разъёмов.

Теоретически объём одного модуля DD4 составляет 128 Гб, модуля DDR3 – 16 Гб. Соответственно, МП с 4 слотами DDR3 может обращаться к 64 Гб ОЗУ; 8-ми слотовая плата с DDR4 – к 1 Тб.

Однако, не следует слишком надеяться на то, что этот объём будет использован полностью. Существенные ограничения на него накладывает конструкция ЦП, поскольку в современных процессорах устройство прямого доступа к ОЗУ находится внутри его кристалла.

То есть, нельзя говорить о максимальном объёме ОЗУ для МП, определить его можно только для связки МП+ЦП. Так, например, процессора i5 третьего и четвертого поколений поддерживают не более 32 Гб ОЗУ.

Какую частоту оперативной памяти поддерживает материнская плата

Быстродействие системы в целом определяется не только быстротой работы ЦП или количеством ОЗУ на МП. Очень важна и синхронная работа устройств, когда все операции делаются в строгом соответствии с их правильной последовательностью. При этом не желательно, чтобы какой-то из элементов системы обладал меньшим быстродействием, чем другие.

Для этой цели введено понятие системной частоты – показателя работы ПК, определяющего, как быстро будет происходить обмен информацией внутри системы. Грубо говоря, все компоненты системы должны работать синхронно с этой скоростью. Обычно, она задаётся процессором и у каждого процессора имеет строго определённое значение.

Важно! Собственная частота процессора – это не одно и то же, что и системная. Обычно, МП поддерживают несколько её значений.

Поэтому для оптимизации работы ПК недостаточно просто найти или посмотреть максимальный объём оперативной памяти материнской платы, необходимо выбрать именно такие планки памяти, которые поддерживают нужную частоту.

Каждая планка ОЗУ в своём наименовании имеет индекс, указывающий его быстродействие и, соответственно, эффективную скорость передачи. Например, PC4-19200 означает, что максимально возможная скорость передачи данных составляет 19200 Мбит/с. Другое название такого модуля DDR4-2400, где 2400 – это т.н. эффективная скорость, выраженная в миллионах передач в секунду. Для указанного модуля частота шины должна быть 1200 МГц, что для микросхем ОЗУ соответствует 300 МГц собственной.

Обычно, говоря о типе ОЗУ, или о его быстродействии, из этих четырёх цифр указывают либо скорость передачи данных 19200 Мбит/с, либо эффективную скорость 2400. В настоящее время существует семь стандартов быстродействия: от DDR4-1600 (или РС4-12800) до DDR4-3200 (или РС4-25600). Как нетрудно заметить быстродействие последних в два раза выше быстродействия первых.

Поэтому выбирая микросхемы ОЗУ, следует убедиться, будет ли его частота соответствовать тому ряду, которые способна «выдавать» МП.

Обычно, в спецификациях на платы пишут именно эффективную скорость для упрощения выбора микросхем ОЗУ. Например, это может выглядеть так: «Поддержка DDR4-1600/2400/3200»; в некоторых редких случаях могут указать другой параметр.

Узнать эту информацию можно только из инструкции к МП или на сайте поддержки производителя, поскольку визуальная разница между модулями ОЗУ разного быстродействия и разъёмами для них отсутствует.

Так же вы можете посмотреть статьи на темы и .

Сколько памяти может использовать 32 битная операционная система

Сначала немного теории.
Простейший элемент информации – бит. Он является минимальной единицей информации и может принимать значение 0 или 1. За ним идет байт, он состоит из 8 бит. Так как бит может принимать 2 значения, то всего получается 2 8 =256 значений байта.

Теперь рассмотрим адресацию памяти. У любого компьютера имеется оперативная память (ОЗУ) — адресное пространство, необходимое для хранения данных, используемых в данный момент. Для получения информации из ОЗУ вначале процессор должен выбрать адрес нужного бита, который храниться в одной из микросхем памяти, а уже потом его прочитать. Этот процесс и называется адресацией памяти. Одним из свойств архитектуры компьютера является количество битов, используемых при адресации памяти.

32 битные ОС для адресации памяти используют 2 32 бит, что составляет 4294967296 бит или 4 Гигабайт (Гб). Это значит, что максимальный объем памяти, к которому может обращаться 32 битная операционная система, составляет 4 Гб. Однако даже этот объем использовать в полной мере нам не удасться, поскольку компоненты операционной системы и устройства требуют выделенного адресного пространства в пределах первых 32 бит (4 Гбайт) оперативной памяти. Например, видеокарта с 512 Мбайт памяти потребует синхронизации этой памяти с оперативной, что снизит доступную ёмкость на 512 Мбайт.

Таким образом, общий объем памяти, доступной в 32 – битной ОС Windows обычно составляет 3.25-3.75 Гб в зависимости от используемого железа.

Некоторые версии Windows поддерживают функцию под названием Physical Address Extension (PAE) , позволяющую использовать больше 4 Гбайт памяти благодаря специальной технологии переадресации. Данная технология позволяет процессору работать не с 32-битной, а с 36-битной адресацией, теоретически расширяя доступные ему адреса до 2 36 = 68719476736 байт (64 Гб). При этом само адресное пространство остается 32-битным, то есть равным 4 Гб, но за счет измененного отображения на него физической памяти становится возможным использование большего ее объема.

Согласно официальной информации Microsoft, режим PAE можно использовать в следующих 32-битных операционных системах:

  • Microsoft Windows Server 2000 Enterprise/Datacenter Edition
  • Microsoft Windows Server 2003 Enterprise/Datacenter Edition
  • Microsoft Windows Server 2008 Enterprise/Datacenter Edition

В Server 2008 PAE включен по умолчанию, если на сервере на хардварном уровне включена технология DEP (Data Execution Prevention), либо сервер имеет возможность горячего добавления памяти (hot-add memory). В противном случае PAE необходимо включить принудительно с помощью BCDEdit, следующей командой:

BCDEdit /set [{ID}] pae ForceEnabled

Чтобы включить PAE в Server 2000\2003, необходимо указать в файле Boot.ini ключ /PAE . Вот пример файла Boot.ini, содержащего ключ PAE:


timeout=30
default=multi(0)disk(0)rdisk(0)partition(2)\WINDOWS
multi(0)disk(0)rdisk(0)partition(2)\WINDOWS=″Windows Server 2003, Enterprise″ /fastdetect /PAE

Стоит заметить, что возможность использовать режим PAE для клиентских ОС была реализована во втором сервис-паке к Windows XP. Однако в процессе тестирования выяснилось, что при использовании этого режима происходит большое количество сбоев. Дело в том, что драйверы некоторых устройств, в основном таких как аудио- и видео, жестко запрограммированы на работу с адресами памяти в пределах 4ГБ. Они обрезают все адреса выше этого объема, что приводит к повреждению содержимого памяти со всеми сопутствующими последствиями. Поскольку, как правило, сервера не используют подобные устройства, то с серверными системами подобных проблем не возникало.

В связи с выявленными недостатками решено было убрать из 32-разрядных клиентских систем возможность работать с памятью свыше 4ГБ, хотя теоретически это возможно. Поэтому в клиентских ОС семейства Windows данная технология хотя и присутствует, однако не активирована на уровне ядра, и попытка ее использовать ни к чему не приведет.

Подводя итог скажу, что если есть необходимость в объеме памяти больше 4Гб, то наилучший вариант — это использовать 64 битную ОС, ведь в ней ограничение на размер памяти составляет до 192 Гб для настольных и 2 Тб для серверных ОС.

Оперативная память — это компонент компьютера. Важнейшая характеристика измеряется в гигабайтах: чем больше, тем лучше. Прочие характеристики важны значительно меньше — тайминги и количество планок, двухканальность… У этого устройства множество других названий:

  • «мозги»
  • память
  • оперативка
  • ОЗУ (оперативное запоминающее устройство)
  • SDRAM

Как выглядит оперативная память

В этой статье подробно объясняется предназначение оперативной памяти, способы самостоятельной установки (не сложнее, чем заменить лампочку!), тонкости выбора. Главное: после прочтения пары страниц этого текста неопытный пользователь легко разберётся в маркетинговых заклинаниях про частоты с мегагерцами и будет знать – пригодится ли ещё гигабайт памяти, или продавец впаривает ненужный товар.

Что делает оперативная память: понятное объяснение

Временно хранит операционную информацию. Не ту, которая нужна для сохранения фильмов с музыкой, а ту которая используется самой Windows, программами, играми и т.д. Такая информация храниться только во включённом состоянии ПК. Компьютер включается, стартует система – и во время старта запускаются программы и модули, которые записывают нужные данные с HDD в ОЗУ. Так, чтобы комп мог «общаться» с этими данными очень быстро – т.е., оперативно оперировать (отсюда и термин – «оперативная»).

Если говорить вкратце, то – это сверхбыстрая память, которая раз в 300 шустрее жёсткого диска. Быстрый отклик работающей программы (мгновенное появление меню при правой мышиной кнопке, скажем) – заслуга высоких скоростей «оперативки».

Аналог оперативной памяти в реальном мире – то, что хранится в мозгу человека короткое время. Эти данные готовы к мозговой обработке в любую секунду. С оперативкой в мозгу можно сравнить, например, информацию которую мы запоминаем на короткое время, во время выполнения какой-либо работы. Например, считаем, 9 + 3 = 1 и 2 в уме… Или другой пример, официант запоминает что ему заказал столик — эту информацию он скорее всего забудет через пару часов, заменив её другой. Разумеется, сравнивать память человека и память компьютера не очень правильно, потому что мозг работает по-другому и все что попало в оперативку, может запомниться и попасть в долгую память (в HDD), чего не может быть с компьютером… С HDD, можно сравнить память долгосрочную, например мы прочитали книгу и что-то запомнили. Но доступ к таким данным порой не быстрый, потому что, чтобы вспомнить, нужно взять книжку с полки и освежить память — такую память можно сравнить с памятью жесткого диска в компьютере — не быстрая но фундаментальная.

Наконец, есть ещё и совсем уж молниеносные виды памяти. В компьютере это процессорный кэш, который намертво вшит в CPU, а в человеческой голове – то, что намертво и накрепко вызубрено ещё со школьной парты: таблица умножения, «жи- ши — пиши с буквой и», «дважды два» и т.п.

Сколько нужно Гб оперативной памяти

Чем больше, тем лучше? Да, но лишь до определённого предела. Современные компьютеры (от 2012-14 года начиная) крайне редко оснащаются одним гигабайтом ОЗУ – это уже позавчерашний день и экспонат музея, а не реальный товар в 2017 году.

2 гигабайта оперативной памяти – типичная ёмкость откровенно бюджетных машинок. Пожалуй, этого достаточно – но крайне некомфортно в плане скорости и отзывчивости уже при открытом браузере, Word’е, Скайпе и антивирусе. Нет, на 2017 год двух гигабайт невероятно мало — но кое-как жить с ними можно.

4 гигабайта ОЗУ – некое «пороговое» значение ёмкости оперативной памяти. Четырьмя гигабайтами оснащаются и достаточно бюджетные модели ноутбуков, и более-менее дорогие аналоги. Достаточно? Откровенно говоря, да; но запаса при этом нет. «Прожорливость» программ и самой операционки способна загрузить все 4 гига под завязку, пусть и не всегда.

8 гигабайт DDR – зона комфорта и спокойствия. Редко, очень редко компьютер займёт хотя бы 5-6 гигабайт оперативки (это в 2016 году, а вот в 2018 аппетиты кода смогут забить и не такой громадный объём!).

16, 32 (или 128!) гигабайт ОЗУ вряд ли нужны рядовому пользователю — это уже из территории космоса. Что толку в многотонном кузове грузовика, когда автомобиль не перевозит ничего объёмнее стиральной машинки? В 2017 году вряд ли стоит покупать дополнительные гигабайты оперативной памяти для того, чтобы они просто «были».

В таблице перечислены основные «пожиратели» оперативной памяти. Числа лишь примерные – у кого-то Windows занимает больше мегабайт, у кого-то меньше. Вкладки с сайтами могут содержать коротенькую страницу без рисунков, а могут – монструозные полотнища социальных сетей со всеми контактами, моргалками и напоминаниями. Игры требуют много, но перед их запуском принято отключать ненужные браузеры и текстовые документы.

Итак, таблица: кто сколько «жрёт» оперативной памяти. Типичное потребление ОЗУ современными программами. 2016-2017 годы; дальше – только больше.

Программы и их компоненты Занимаемый объём ОЗУ, мегабайт (не гб!)
ОС Windows 7 500-1500
ОС Windows 8 (или 10) 500-1800
Браузер с 5-7 открытыми вкладками 400-800
Word 200
Скайп 100
Многочисленные служебные процессы, обновлялки, драйверы По 10-20 мб в каждой из 20-50 таких микропрограмм = 200-1000 мегабайт
Download-менеджер 20-30
Современная игра 2000-3000
Игра образца 2010-2012 г 1000-2000
Антивирус в обычном состоянии 300-500
Антивирус в режиме полной проверки 2000-2500

Так сколько нужно оперативной памяти для Windows 7, к примеру? Постарайтесь не покупать компьютеры с 2 гигабайтами на борту – этого откровенно мало. 4 гигабайта – просто хорошо, 8 – супер. Больше – не стоит, как правило. 16 гигабайт и выше нужны для:

  • продвинутых «компьютерщиков», для которых вполне стандартная задача – запустить в Винде 2-3 виртуальные системы;
  • заядлых геймеров со сверхвысокими разрешениями мониторов и дорогущими видеокартами;
  • программистов с необходимостью отлаживания-тестирования настольных программ;
  • видеодизайнеров и их фотоколлег – да и то далеко не всегда;
  • просто потому, что хочется больше, чем у других. Без прицела на практичность.

Типы оперативной памяти, частота и другие характеристики

С момента внедрения первого стандарта DDR прошло уже лет 18-20. Сменилось несколько поколений компьютеров, их производительность выросла в разы. В любой момент времени актуальны не более двух поколений памяти. В 2017 году это стремительно устаревающая DDR3, которая царствовала на рынке лет 7, и уже привычная DDR4. Если вы приобретаете новый компьютер, то, скорее всего, он будет оснащён именно четвёртым поколением ОЗУ. Если речь идёт об апгрейде старого (5-8 летней давности), то внутри работает DDR3. Поколения не совместимы между собой: плашку DDR4 физически невозможно засунуть в разъём от «тройки», и наоборот.

Оперативная память для ноутбуков отличается от обычной «десктопной» физическими размерами. Ноутбучная ОЗУ раза в два меньше в длину, чем стандартная. Частоты, объём и поколение DDR соответствуют друг другу для лэптопов и PC. Правда, память для ноутбуков подразделяется ещё на 2 подкатегории, физически несовместимыми между собой:

  • стандартная SO- DIMM (префикс SO указывает именно на ноутбучный размер оперативки) – самый распространённый вариант;
  • память с низким энергопотреблением SO- DDR3 L (или просто DDR3 L , либо новейшая DDR4 L ): чаще всего встречается в недорогих моделях ноутбуков.

Вторая после объёма важная характеристика ОЗУ: частота. Чем больше, тем, в принципе, лучше – но DDR4 на 2100 мГц совсем на копейку медленнее DDR4 на 2800 мГц. Разница едва ли не в 1-2 процентах, да и то лишь в некоторых приложениях. Переплачивать за мегагерцы не следует – разве что 2-3 доллара. Есть ещё и другие характеристики памяти: задержки, они же – тайминги. Чем меньше тайминги, тем быстрее работает память (всё верно – тайминг 10 предпочтительнее, чем 12). На эту характеристику ориентироваться уж точно не следует, хотя в эпоху DDR/DDR2 лет 15 назад тайминги значили больше, чем сегодня. Впрочем, это уже история.

Цены на ОЗУ: ориентируемся в предложениях

Примерно с 2010 года оперативная память стоит неприлично дёшево по сравнению с более старыми временами. Сколько именно? Просим прощения за цены в баксах, но… их не зря называют «вечнозелёными». Цены даны не самые дешёвые, по данным интернет-магазина Байон.ру – зато с запасом.

Таблица: стоимость оперативной памяти (для ноутбука и для ПК), 2017 год. Представлены модели DDR3 и DDR4, а также «ноутбучные» форм-факторы SO-DIMM.

Тип памяти Частота, мГц Цена, $ Примечание
DDR3, 2 Гб 1600 19,85 Самый дешёвый приличный вариант
DDR3, 4 Гб 1600 26,00
DDR3, 4 Гб 2400 32,15 Дорогая, «оверклокерская» ОЗУ
DDR3, 8 Гб 1600 38,60
SO-DIMM DDR3, 2 Гб 1600 19,85 Самая дешёвая планка ОЗУ для ноута
SO-DIMM DDR3, 4 Гб 1600 27,50 Самый популярный тип ОЗУ для ноутбука
SO-DIMM DDR3, 4 Гб 1833 29,30 Популярный объём, увеличенная частота
SO-DIMM DDR3, 8 Гб 1600 34,50 Большой объём, стандартная частота
DDR4, 4 Гб 2133 26,00 Среднестатистическая DDR3 на 4 Гб
DDR4, 8 Гб 2133 42,90 Популярная планка большого объёма
DDR4, 8 Гб 2400 55,60 Большой объём, увеличенная частота
SO-DIMM DDR4, 4 Гб 2133 27,50 Стандартная планка современного ноута
SO-DIMM DDR4, 8 Гб 2133 43,50 Объёмная планка современного ноута

Стоит ли апгредить (добавлять) оперативную память?

Однозначно да, если объём оперативки составляет менее 2-3 гигабайт: прирост производительности будет виден невооружённым взглядом. «Критическая точка» производительности находится где-то посредине между 2 и 4 Гб ОЗУ. Меньше оперативки – значительно меньше скорость. Больше – всё работает так, как надо, одним словом – «летает».

Скорее, да, чем нет, если имеющийся объём равен 4 гигабайтам. Скорость компьютера вряд ли вырастет, но будет значительно меньше подвисаний и лагов. Неплохое вложение.

Незачем, если «на борту» уже имеется 6-8 гигабайт.

Незачем, если смысл обновлений – в покупке DDR с более высокой тактовой частотой. Польза от такого апгрейда если и ненулевая, то стремится к таковой.

Как добавить ОЗУ в компьютер? А в ноутбук? Апгрейд оперативной памяти своими руками

ПК-десктопы – более габаритные «создания». Внутри корпуса можно разместить хоть 10 ноутбуков (по размеру!). Слотов и разъёмов на настольных материнских платах много, не в пример ультракомпактным лэптопам, где экономится каждый миллиметр. Типичное количество слотов в компьютере для ОЗУ – 2 или 4. Как правило, заняты лишь 1-2 из них. Добавить планку оперативной памяти к уже работающей – дело пары минут. Достаточно выключить компьютер, открыть системный блок и вставить планку DDR в соответствующий разъём. Не нужны ни инструменты, ни даже отвёртка.

Главное требование – ОЗУ должно быть соответствующего поколения. Современную DDR4 никак не вставить в разъём для DDR3: даже размеры у них разные. А вот объём дополнительной планки может быть любым. Частота – также любой, но при разных частотах нескольких планок «оперативки» компьютер работает на наименьшей из них.

В ноутбуках всё чуть сложнее. У них встречаются три типа слотов для ОЗУ:

  1. Двухслотовые конфигурации : как правило, в 2 разъёма уже вставлено по «оперативке». В этом случае следует прикупить один более ёмкий модуль, и заменить существующий на новый. Классика жанра: 4 Гб ОЗУ, 2 планки по 2 Гб в каждой. Других разъёмов нет. Придётся купить 4-гигабайтный модуль памяти (либо 8-Гб, если это нужно), и вставить его вместо старого. В итоге получим 6 Гб оперативной памяти. Старый модуль, кстати, можно продать.

Реже встречаются два слота, один из которых занят, другой – свободен. Всё идеально просто: докупаем ОЗУ любого объёма, вставляем в пустующий разъём. К примеру, было 4 Гб (одна планка), докупаем ещё 4 Гб в одной планке, вставляем… итог – 8 Гб.

  1. Однослотовые конфигурации (обычно недорогие модели ноутбуков). Разъём там лишь один, и он, разумеется, уже заполнен планкой оперативной памяти. Единственный вариант – снять старый модуль, поставить новый – большего объёма.
  2. Ноутбуки с распаянной оперативкой . Апгрейд почти невозможен: выпаивать старый модуль и вновь впаивать новый – нетривиальная и очень рискованная задача. Впрочем, оперативка намертво распаивается лишь в недорогих машинках, и бывает это не слишком часто.

Как узнать количество слотов и тип памяти в ноутбуке или компьютере

Подойдёт любая диагностическая программа, наподобие CPU-Z. Скачиваем, устанавливаем, смотрим в разделе про память (memory).

Базовая информация про оперативную память: сколько гб и прочее, находится во вкладке Memory. Сразу видны такие характеристики:

  • Тип памяти: DDR3
  • Объём ОЗУ: 6 Гб
  • Количество каналов: 2 (Dual)
  • Менее интересные показатели – тайминги и частота: 665,1 мГц (стандарт DDR подразумевает двусторонний обмен информации с памятью, потому истинная частота — 1333 мГц).

Выводы можно сделать такие: у компьютера (в данном случае – ноутбука) явно 2 слота, оба – занятые. На это указывает двухканальный режим работы, который возможен лишь при наличии чётного количества планок. Другой вывод – явно нестандартная конфигурация: 4+2 Гб ОЗУ. Обычно производители устанавливают объём оперативной памяти, кратный числу 2: 2, 4, 8, или 16 гигабайт. Значит, владелец уже делал апгрейд ОЗУ.

Гораздо более подробная информация описана на следующей вкладке утилиты CPU-Z: SPD (скорость «мозгов»). В левой верхней части окна действительно видно, что здесь 2 слота, оба – заняты. В первом разъёме примостилась плашка на 2 гига (2048 Мбайт) с частотой 667 (1333 мГц). Во втором – 4 гигабайта (4096 Мб) с той же частотой 1333.

Пара информационных бонусов: видна дата производства одной из оперативок (9 неделя 2011 года), и производители обеих планок: Nanya и PNY.

Как можно проапгрейдить оперативную память в примере выше? 6 гигабайт – вполне достаточный объём на 2016 год, но если есть сильное желание – можно купить одну планку DDR3 на 4 Гб (цена – около 26 долларов), и вставить её вместо старой 2-гиговой (кстати, можно продать её долларов за 5-8). Итогом станет 8 гигабайт ОЗУ.

Производители оперативной памяти: какой лучше. И – заключительные советы

Кто только не производит ОЗУ: и процессорный гигант AMD, и Samsung с LG, и многочисленные Kingston, Corsair и т.п. В наиболее многочисленном сегменте оперативной памяти разницы между производителями толком нет. Все они выпускают надёжную и быструю DDR, которая способна на некоторый разгон.

Задумываться о производителе следует лишь в случаях, когда требуется более серьёзный оверклокинг, особые требования к надёжности, и, пожалуй, к художественной красоте оперативной памяти. Всё верно, более дорогие модели выпускаются с необязательными, но потрясающие симпатичными радиаторами охлаждения модулей.

И ещё. Оперативная память – замечательно надёжная штука. Её вполне безопасно брать с рук, «б/у» – скорее всего, отработает она ещё много лет, с теми же характеристиками и энергопотреблением.