Сайт о телевидении

Сайт о телевидении

» » Когда появилась 1 лампочка. Кто на самом деле изобрел электрическую лампочку

Когда появилась 1 лампочка. Кто на самом деле изобрел электрическую лампочку

История ламп накаливания уходит своими корнями в девятнадцатый век. Рассмотрим основные моменты, связанные с этим уникальным изобретением человечества.

Особенности

Лампа накаливания это предмет, который знаком многим людям. В настоящее время трудно себе представить жизнь человечества без использования искусственного и электрического света. При этом редко кто задумывается над тем, как выглядела первая лампа, в какой исторический период она была создана.

Для начала рассмотрим устройство лампы накаливания. Этот источник электрического света представляет собой проводник с высокой температурой плавления, который находится в колбе. Из нее предварительно выкачан воздух, вместо него колба заполнена инертным газом. Проходя через лампу, электрический ток испускает поток света.

Суть функционирования

Каков принцип работы лампы накаливания? Он заключается в том, что при протекании электрического тока через тело накала, элемент нагревается, при этом разогревается сама вольфрамовая нить. Именно она испускает по закону Планка излучение теплового и электромагнитного типа. Чтобы создавать полноценное свечение, необходимо накалить вольфрамовую нить до нескольких сотен градусов. По мере уменьшения температуры спектр приобретает красный цвет.

Первые лампы накаливания имели множество недостатков. Например, сложно было регулировать температуру, в результате чего лампы быстро выходили из строя.

Технические особенности

Что собой представляет конструкция современной лампы накаливания? Так как она стала первым источником света, у нее достаточно простая конструкция. Основными элементами лампы считают:

  • тело накала;
  • колба;
  • вводы тока.

В настоящее время разработаны различные модификации, в лампу введен предохранитель, представляющий собой звено. Для производства этой детали используют железоникелевый сплав. Звено сваривают в ножку ввода тока для того, чтобы не допустить при накаливании вольфрамовой нити разрушения стеклянной колбы.

Рассматривая основные преимущества и недостатки ламп накаливания, отметим, что с момента своего появления лампы были существенно модернизированы. Например, благодаря использованию предохранителя снизилась вероятность быстрого разрушения лампы.

Основным минусом подобных осветительных элементов является их высокое потребление энергии. Именно поэтому в настоящее время они стали применяться значительно реже.

Как появились искусственные источники света

История ламп накаливания связана со многими изобретателями. До того времени, когда русский физик Александр Лодыгин стал работать над ее созданием, уже были разработаны первые модели ламп накаливания. В 1809 году английский изобретатель Деларю разработал модель, которая была оснащена платиновой спиралью. История ламп накаливания связана и с изобретателем Генрихом Гебелем. В образце, созданном немцем, обугленная бамбуковая нить помещалась в сосуд, из которого предварительно выкачивали воздух. Гебель занимался модернизацией своей модели лампы накаливания на протяжении пятнадцати лет. Ему удалось получить рабочий вариант лампочки накаливания. Лодыгин добился качественного свечения угольного стержня, помещенного в стеклянном сосуде, из которого был удален воздух.

Вариант практичной модели

Первые лампы накаливания, которые можно было производить в больших объемах, появились в Англии в конце девятнадцатого века. Джозефу Уилсону Суону даже удалось получить патент на собственную разработку.

Говоря о тех, кто придумал лампу накаливания, также необходимо остановиться на экспериментах, проводимых Томасом Эдисоном.

Он пытался использовать в качестве нитей накаливания различные материалы. Именно этот ученый предложил в качестве нити накаливания платиновую нить.

Такое изобретение лампы накаливания стало новым этапом в сфере электричества. Изначально лампы Эдисона функционировали только в течение сорока часов, но, несмотря на это, они достаточно быстро вытеснили газовое освещение.

В тот период, когда Эдисон занимался своими исследованиями, в России Александру Лодыгину удалось создать сразу несколько различных видов ламп, в которых роль нитей играли тугоплавные металлы.

История ламп накаливания свидетельствует о том, что именно русский изобретатель впервые стал применять в виде тела накаливания тугоплавкие металлы.

Помимо вольфрама Лодыгин также проводил эксперименты с молибденом, скручивая его в виде спирали.

Специфика работы лампы Лодыгина

Для современных аналогов характерен прекрасный световой поток, а также качественная цветопередача. Их коэффициент полезного действия составляет 15% при наибольшем значении температуры накала. Такие источники света для своей работы потребляют существенное количество электрической энергии, поэтому их функционирование осуществляется не больше 1000 часов. Это с лихвой окупается невысокой стоимостью ламп, поэтому, несмотря на многообразие искусственных источников освещения, представленным на современном рынке, они по-прежнему считаются популярными и востребованными среди покупателей.

Интересные факты из истории лампы накаливания

В конце девятнадцатого века Дидрихсону удалось внести существенные изменения в модель, предлагаемую русским изобретателем Лодыгиным. Он провел полную откачку из нее воздуха, использовал в лампе сразу несколько волосков.

Подобное усовершенствование позволяло использовать лампу даже в том случае, когда один из волосков перегорал.

Английскому инженеру Джозефу Уилсону Суону принадлежит патент, подтверждающий создание им лампы с угольным волокном.

Волокно располагалось в кислородной разряженной атмосфере, в результате чего свет получался более ярким и равномерным.

Во второй половине девятнадцатого века Эдисон помимо самой лампы изобретает поворотный бытовой выключатель.

Масштабное появление ламп на рынке

С конца девятнадцатого века стали появляться лампы, в которых в качестве нити накаливания использовались оксиды иттрия, циркония, тория, магния.

В начале прошлого века венгерскими исследователями Шандором Юстом и Франьо Ханаманом был получен патент на применение вольфрамовой нити в лампах накаливания. Именно в этой стране были изготовлены первые экземпляры таких ламп, которые вышли на масштабный рынок.

В США в этот же временной период были построены и запущены заводы, занимающиеся получением титана, вольфрама, хрома, путем электрохимического восстановления.

Высокая стоимость вольфрама внесла свои корректировки в скорость внедрения ламп накаливания в повседневную жизнь.

В 1910 году Кулидж разработал новую технологию изготовления тонких вольфрамовых нитей, что способствовало удешевлению производства искусственных ламп накаливания.

Проблему ее быстрого испарения удалось решить американскому ученому Ирвингу Ленгмюру. Именно им было введено в промышленное производство наполнение инертным газом стеклянных колб, что увеличило срок эксплуатации лампы, удешевило их.

Коэффициент полезного действия

Практически вся энергия, которая получается в лампу, постепенно переходит в тепловое излучение. КПД достигает 15 процентов при температурном показателе 15 процентов.

По мере повышения значения температуры происходит увеличение коэффициента полезного действия, но это вызывает существенное снижение эксплуатационного срока службы лампы.

При 2700 К срок полноценного использования искусственного источника света составляет 1000 часов, а при 3400 К - несколько часов.

Для того чтобы повысить долговечность лампы накаливания, разработчики предлагают уменьшать значение напряжения питания. Безусловно, при этом КПД также будет снижаться примерно в 4-5 раз. Такой эффект инженеры используют в тех случаях, когда требуется надежное освещение минимальной яркости. К примеру, это актуально для вечернего и ночного освещения строительных площадок, лестничных пролетов.

Для этого осуществляют последовательное подключение переменного тока лампы с диодом, что гарантирует подачу тока в лампу на протяжении половины всего периода подачи тока.

Учитывая, что цена обычной лампы накаливания существенно меньшее ее среднего срока эксплуатации, приобретение таких источников освещения можно считать достаточно выгодным мероприятием.

Заключение

История появления той модели электрической лампы, к которой мы привыкли, связана с именами многих русских и иностранных ученых и изобретателей. На протяжении двух столетий этот искусственный источник освещения подвергался преобразованиям, модернизации, целью которых было увеличение эксплуатационного срока службы прибора, снижение его стоимости.

Самый большой износ нити накала наблюдается в случае резкой подачи на лампу напряжения. Для решения этой проблемы, изобретатели стали снабжать лампы разнообразными устройствами, гарантирующими их плавный запуск.

В холодном виде вольфрамовая нить обладает удельным сопротивлением, которое всего в два раза превышает показатель алюминия. Для того чтобы избегать пиковых значений мощности, разработчики используют терморезисторы, сопротивление которых падает по мере повышения температуры.

У низковольтовых ламп при равной мощности ресурс эксплуатации и светоотдача намного выше, поскольку они имеют большее сечение тела накаливания. В светильниках, рассчитанных на множество ламп, эффективно последовательное соединение нескольких ламп меньшего напряжения. К примеру, можно вместо шести ламп мощностью 60 Вт, включенных параллельно, использовать всего три.

Безусловно, в наши дни появились различные модели электрических ламп, которые имеют гораздо более результативные характеристики, чем обычные лампочки, изобретенные во время Лодыгина и Эдисона.

Вопрос о том, кто изобрел лампочку первым, как ни странно, волнует людей и в наше время. Американцы и прозападно настроенные люди уверены, что первым был Т. Эдисон. Русские патриоты доказывают, что первый – А.Н. Лодыгин. А ведь были еще француз Деларю, бельгиец Жобар, англичанин Д.У. Суон, немец Г. Гебель, русский П.Я. Яблочков и другие ученые, внесшие свой вклад в это изобретение.

Древние предшественники электрической лампочки

История изучения древних сооружений – пирамид, подземных росписей, пещер и др. пестрит вопросами и загадками. Один из них - «При каком освещении производились росписи этих сооружений при полном отсутствии естественного света и копоти от возможных факелов внутри самих помещений?». Вопрос не дает покоя исследователям десятки лет.

На стенах самих пирамид есть ответ, в который трудно поверить историкам, – древние люди пользовались лампами, скорее всего, электрическими, питающимися от мощных аккумуляторов.

Как изобреталась современная электрическая лампочка

Появление в массовых масштабах электрических лампочек подготовлено целым рядом ученых-изобретателей. Часто они проводили свои собственные изыскания, но были и такие, кто усовершенствовал или пускал на поток изобретения предшественников. Назовем основные вехи создания электрической лампы:

  • в 1820 году Деларю опробовал лампочку, в которой нитью накала служила платиновая проволока. Платина отлично нагревалась и светилась, но изобретение француза так и осталось опытным образцом, к которому автор больше не возвращался;
  • 1838 год отметился первым применением в виде элемента накаливания угольного стержня. Исследованиями возможностей его свечения занимался бельгиец Жобар;
  • в 1854 году Гебель проводил опыты над бамбуком, который использовал вместо нити накаливания. Ему также принадлежит первое применение для лампы сосуда с откачанным воздухом. Гебель стал первым, кто изобрел электрическую лампочку, которую можно было использовать для освещения;
  • в 1860 году Д.У. Суон патентует лампу, в которой светящийся элемент находился в вакууме. Данное изобретение было невозможно использовать в массовом применении из-за сложностей получения вакуума;
  • 1874 год ознаменовался получением патента на лампу с угольной нитью накала, помещенной в вакуум, русским инженером-исследователем А.Н. Лодыгиным. Данная лампа была способна гореть полчаса и использовалась для освещения улиц. Поэтому русский инженер считается тем, кто изобрел лампочку первым в мире;
  • в 1875 году В.Ф. Дидрихсон, сотрудник А.Н. Лодыгина, усовершенствовал его лампу, установив несколько независимых друг от друга угольных волосков, продлив тем самым период свечения устройства. В этой лампе при перегорании одного волоска сразу загорался следующий;
  • русский электротехник П.Н. Яблочков в 1875 – 1876 годах создает лампу с каолиновой нитью накала, которая не требовала для продолжительного горения наличия вакуума. От предыдущих вариантов устройство Яблочкова отличалось необходимостью предварительного разогрева проводника, например, пламенем спички;
  • в 1878 году был получен патент на лампу с нитью из угольного волокна, помещенного в разреженный кислород. Лампа давала яркий свет, но очень недолго. Автором изобретения стал Д.У. Суон;
  • в 1879 году в САСШ был выдан патент на лампу с платиновой нитью Т. Эдисону;
  • в 1880 году Т. Эдисон создает лампу с угольной нитью со сроком горения 40 часов. Он же попутно изобретает выключатель для удобства работы с освещением. Кроме всего прочего, Т. Эдисону принадлежит создание цоколя лампочки и патрона для нее;
  • в 1890-х годах А.Н. Лодыгин конструирует несколько вариантов ламп с применением тугоплавких металлов для нити накаливания. Он впервые предлагает закручивать нить спиралью и приходит к выводу, что лучшими вариантами для нити накаливания являются вольфрам и молибден. Первые, массово производившиеся в Америке лампы накаливания с вольфрамовой нитью выпускались по патенту русского изобретателя;
  • наполнение колбы инертным газом для продления работоспособности нити накаливания и увеличения яркости освещения впервые было применено фирмой «General Electric» в 1909 году по инициативе И. Ленгмюра.

Из хронологии событий видно, что к изобретению лампы накаливания приложили руки многие ученые-изобретатели.

Основная заслуга Т. Эдисона заключается в том, что он, вовремя сориентировавшись, будучи исследователем и коммерсантом, запатентовал изобретенные до него приборы, усовершенствовал и начал их массовое производство. Поэтому его нельзя считать первым,кто изобрел лампу накаливания, но Т. Эдисон - тот, кто начал массовое промышленное внедрение электрической лампочки в повседневную жизнь. Первым изобретателем лампы накаливания, применявшейся для освещения, был и остается А.Н. Лодыгин.

История электрической лампочки началась в 1802 г. в Санкт-Петербурге. Именно тогда профессор физики Василий Владимирович Петров пропустил электрический ток по двум стержням из древесного угля. Между ними дугой перекинулось пламя. Обнаружились не известные ранее свойства электричества - возможность давать людям яркий свет и тепло. Как ни странно, именно эта возможность менее всего заинтересовала ученого. Он в основном обратил внимание на температуру пламени, настолько высокую, что в ней плавятся металлы. Спустя 80 лет это свойство использовал другой русский ученый Бенардос для сварки металлов.
Открытие Петрова осталось незамеченным. Спустя десять лет электрическую дугу вновь открыл англичанин Гемфри Дэви. Но до появления электрической лампы оставалось еще 60 лет.
Для того чтобы использовать электрическую дугу для освещения, было необходимо решить три задачи.
Во-первых, концы угольков, между которыми вспыхивала дуга, быстро сгорали в ее пламени. Расстояние между ними увеличивалось, и дуга гасла. Поэтому необходимо было найти способ поддерживать пламя не несколько минут, а сотни часов, т. е. создать удобный для пользования электрический светильник. Это оказалось самым трудным.
Во-вторых, нужен был надежный и экономичный источник тока. Требовалась машина, вырабатывающая дешевый электрический ток. Существовавшие в то время гальванические батареи были громоздки, и на их изготовление требовалось много дорогого цинка.
И наконец, в-третьих, нужен был способ «дробить электрическую энергию», другими словами, использовать вырабатываемый машиной ток для нескольких светильников, установленных в разных местах.
Благодаря открытию Майклом Фарадеем эффекта возникновения электрического тока в изолированном проводе при его движении в магнитном поле, были построены первые генераторы электрического тока - динамомашины.

Основной вклад в создание электрической лампочки внесли трое людей, по иронии судьбы родившихся в один и тот же 1847 год. Это были русские инженеры Павел Николаевич Яблочков, Александр Николаевич Лодыгин и американец Томас Алва Эдисон.
А. Н. Лодыгин закончил военное училище, но затем подал в отставку и поступил в Петербургский университет. Там он начал работу над проектом летательного аппарата. В России у него не было возможности построить свое изобретение, и 23-летний Лодыгин уезжает в 1870 г. во Францию. Тогда шла франко-прусская война, и молодой изобретатель хотел приспособить свое детище для военных нужд. Французское правительство приняло его предложение, и началась постройка аппарата, напоминавшего современный вертолет. Но Франция проиграла войну, и работы были остановлены. Сам Лодыгин, работая над своим изобретением, столкнулся с проблемой его освещения ночью. Эта проблема настолько его увлекла, что после возвращения в Россию Лодыгин полностью переключился на ее решение.

Лодыгин начал опыты с электрической дугой, но очень быстро от них отказался, так как увидел, что раскаленные концы угольных стержней светят ярче, чем сама дуга. Изобретатель пришел к выводу, что дуга не нужна, и начал опыты с различными материалами, накаляя их током. Эксперименты с проволокой из различных металлов ничего не дали - проволока светились лишь несколько минут, затем перегорала. Тогда Лодыгин вернулся к углю, которым пользовались для получения электрической дуги. Но он брал не толстые угольные стержни, а тонкие. Угольный стерженек помещался между двумя медными держателями в стеклянный шар, по нему пропускался электрический ток. Уголь давал свет довольно яркий, хотя и желтоватый. Угольный стержень выдерживал примерно полчаса.

Для того чтобы стержень не сгорал, Лодыгин поставил в лампу два стержня. Сперва накалялся только один и быстро сгорал, поглощая весь кислород в лампе, после этого начинал светиться второй. Поскольку кислорода оставалось очень мало, он светил примерно два часа. Теперь нужно было выкачать воздух из лампочки и исключить его просачивание внутрь. Для этого нижний конец лампы погружался в масляную ванну, через которую от источника тока к лампе шли провода. Вскоре и от этого способа пришлось отказаться, была сделана лампочка, в которой можно было менять угольные стержни после сгорания. Но неудобства возникали из-за необходимости откачивать воздух.

Лодыгин создал «Товарищество электрического освещения Лодыгин и компания». Весной 1873 г. в отдаленном районе Петербурга Пески состоялась демонстрация ламп накаливания системы Лодыгина. В двух уличных фонарях керосиновые лампы были заменены электрическими. Многие принесли с собой газеты для сравнения расстояния, на котором их можно было читать при керосиновом и электрическом освещении. Позже лампами Лодыгина освещалась витрина бельевого магазина Флорана.
Летом 1873 г. «Товариществом Лодыгин и компания» был организован вечер, где были показаны фонарь для освещения комнаты, сигнальный фонарь для железных дорог, подводный фонарь, уличный фонарь. Каждый фонарь мог зажигаться и гаситься отдельно от остальных.
Академия наук присвоила Лодыгину Ломоносовскую премию за то, что его изобретение приводит к «полезным, важным и новым практическим применениям».

Признание важности его труда вдохновило Лодыгина. Он совершенствовал свою лампочку, а его мастерская выпускала все новые ее разновидности. Но «Товарищество» для изготовления и продажи лампочек Лодыгина было основано прежде, чем удалось сделать новую лампочку, которая бы выдержала конкуренцию со старыми способами освещения. Мастерскую закрыли, «Товарищество» распалось, о лампочках Лодыгина на некоторое время забыли. А. сам изобретатель поступил слесарем на завод.
В это же время собственную конструкцию лампы разрабатывал Яблочков. Работая на Курской железной дороге, Павел Николаевич предложил поставить на паровозе поезда Александра II электрический фонарь для освещения пути. Он представлял собой два угольных стержня, между которыми вспыхивала электрическая дуга. По мере сгорания стержней их сближал механический регулятор. Ток давала гальваническая батарея. Молодому изобретателю пришлось две ночи напролет провести на паровозе, беспрестанно подправляя регулятор.

Яблочков ушел со службы и открыл в Москве мастерскую физических приборов. Но мастерская несла убытки, и ему пришлось уехать за границу, в Париж. Там он поступил на работу в мастерскую Бреге и возобновил работу над созданием электрического светильника. Его занимала одна проблема: как построить лампу, не нуждающуюся в регуляторе. Решение оказалось простым: вместо того, чтобы располагать стержни один против другого, их надо было поставить параллельно, разделив прослойкой тугоплавкого вещества, не проводящего электрический ток. Тогда угли будут сгорать равномерно, а прокладка будет играть ту же роль, что и воск в свече. Для прослойки между электродами Яблочков выбрал каолин - белую глину, из которой делают фарфор.

Спустя месяц после появления этой блестящей идеи лампа была сконструирована, и Яблочков получил на нее патент. Это было в 1876 году. Свою электрическую свечу он поместил в стеклянный шар. Для ее зажигания использовалось простое устройство: стержни сверху соединялись тонкой угольной нитью. Когда в лампу пускали ток, нить раскалялась, быстро сгорала и между стержнями вспыхивала дуга.
Изобретение имело огромный успех. Магазины, театры, улицы Парижа были освещены «свечами Яблочкова». В Лондоне ими осветили набережную Темзы и корабельные доки. Яблочков стал одним из самых популярных в Париже людей. Газеты называли его изобретение «русским светом».

«Русский свет» не имел успеха только на родине изобретателя в России. Французские изобретатели предложили Яблочкову купить у него право на изготовление его свечи для всех стран. Прежде чем дать согласие, Яблочков предложил бесплатно свой патент русскому военному министерству. Ответа не последовало. И тогда изобретатель согласился взять миллион франков у французов. После грандиозного успеха свечи Яблочкова на Парижской выставке 1878 г., которую посетило много русских, ею заинтересовались и в России. Один из великих князей, побывав на выставке, обещал Яблочкову помощь в организации производства его ламп в России. Ради возможности работать на родине изобретатель, возвратив миллион франков, выкупил право на производство своих свечей и уехал в Петербург.
Там образовалось общество «Яблочков и компания», которое построило завод электрических аппаратов и при нем лабораторию для изобретателя. Для широкого распространения электрического освещения Яблочкову было необходимо решить все три задачи, о которых было сказано выше.
Для этого уже были все предпосылки. Изобретатели предлагали много конструкций машин, вырабатывавших электрический ток. Свой генератор создал и Яблочков. Кроме того, он нашел способ питать током много ламп, поэтому его завод предлагал не только «свечи», но и брал на себя устройство электрического освещения полностью. Яблочков осветил в Петербурге Литейный мост, площадь перед театром и некоторые заводы.

Между Яблочковым и Лодыгиным долго шел творческий спор о путях развития электрического освещения. Яблочков считал, что отказ от дуги - ошибка Лодыгина и лампочки накаливания не смогут быть прочными и экономичными. Лодыгин, в свою очередь, упорно совершенствовал лампочку накаливания.
Недостатком свечи Яблочкова был слишком сильный свет, который она давала - не менее 300 свечей. При этом она излучала столько тепла, что в небольшой комнате было невозможно дышать.
Поэтому свечами Яблочкова пользовались для освещения улиц и больших помещений: театров, заводских цехов, морских портов.
В свою очередь, лампочки накаливания не нагревали сколь-нибудь заметно помещение. Их можно было делать любой силы. Несмотря на различия во взглядах, Яблочков и Лодыгин относились друг к другу с уважением, вместе работали в научном обществе, организовывали журнал «Электричество». На заводе Яблочкова изготавливали и лампочки Лодыгина, который к тому времени внес усовершенствования в свое изобретение: вместо угольных стержней стал использовать угольные нити. Новая лампочка потребляла меньше тока и служила несколько сот часов.

Около двух лет завод Яблочкова был завален заказами, во многих русских городах появилось электрическое освещение. Затем количество заказов сократилось, и завод начал хиреть. Изобретатель разорился, был вынужден снова уехать в Париж. Там он поступил на работу в то самое общество, которое основал и которому вернул миллион франков.
На парижской выставке 1881 г. свеча Яблочкова была признана лучшим способом электрического освещения. Но их стали использовать все реже, и вскоре сам изобретатель потерял к ним интерес.
После того как закрылся завод Яблочкова, Лодыгину не удалось наладить в России широкое производство своих ламп. Он уехал сначала в Париж, затем в Америку. Он узнал, что там изобретенная им лампочка носит имя Эдисона. Но русский инженер не стал доказывать свой приоритет, а продолжал работу над усовершенствованием своего изобретения.

Говоря о вкладе Эдисоне в развитие электрической лампочки, следует отметить, что перед созданием своей лампочки в его руках побывала лампочка Лодыгина. Поскольку электрический свет должен был выдержать конкуренцию с газовым рожком, Эдисон до тонкостей изучил газовую промышленность. Он разработал план центральной электростанции и схему линий подвода тока домам и фабрикам. Затем, подсчитав стоимость материалов и электроэнергии, определил цену лампы в 40 центов. После этого Эдисон начал работу над лампой с угольной нитью накаливания, помещенной в стеклянный шар, из которого выкачан воздух. Он нашел способ выкачивать воздух из баллона лучше, чем это удавалось другим изобретателям. Но главное было найти материал для угольной нити, который бы обеспечил долгий срок службы. Для этого он перепробовал около шести тысяч растений из разных стран мира. В конце концов он остановился на одном из видов бамбука.

После этого в ход пошла реклама. Газеты сообщили, что усадьба Эдисона, Менло-парк, будет иллюминирована электрическими лампочками. Семьсот лампочек произвели на многочисленных посетителей ошеломляющее впечатление. Эдисону пришлось много поработать над дополнительными изобретениями - генераторами, кабелями. Он работал также над снижением цены лампочки и остановился лишь, когда она стала стоить 22 цента. Несмотря на все это, Эдисон получил патент не на изобретение лампочки, а лишь на усовершенствование, поскольку приоритет оставался за Лодыгиным.
Сам Лодыгин в Америке вернулся к опытам с нитью из тугоплавких металлов. Он и нашел самый подходящий материал для нити, использующийся до сих пор - вольфрам. Вольфрамовая нить дает яркий белый свет, требует гораздо меньше тока, чем угольная, и может служить тысячи часов.

Не были забыты и дуговые лампы. Их используют там, где необходим источник света во много тысяч свечей: в прожекторах, маяках, на съемочных площадках. Причем изготавливают их не по методу Яблочкова, а по отвергнутой им схеме - с регулятором, сближающим угольные стержни.
В XX веке у лампочек накаливания появился конкурент - газосветные лампы, или лампы дневного света. Они наполнены газом и дают свет, не нагреваясь. Сначала появились цветные газосветные лампы. В стеклянную трубку с обоих концов вплавлялись металлические пластины - электроды, к которым подводился ток. Трубка наполнялась газом или парами металла. Под воздействием тока газ начинал светиться. Аргон дает синий цвет, неон - красный, ртуть - фиолетовый, а пары натрия - желтый. Эти лампы нашли применение в рекламе.
Позже были созданы лампы, свет которых приближается к солнечному. Их основа - ультрафиолетовые лучи. Их преимуществом является меньшее, по сравнению с лампами накаливания, потребление тока.

Пристинский В.Л.

Resize

Какими были первые источники освещения?

Вопросом: «кто изобрел первую электрическую лампочку?» — задаются многие, но мало кто знает правильный ответ на него. Множество людей присваивают это изобретение ученым своей страны, но, в действительности, мало кому известен истинный творец этого прибора.

Ещё в далекие времена античности были попытки осветить помещения разными способами. Египтяне для своих домов использовали оливковое масло в качестве освещения.

Масло заливали в глиняные сосуды, которые имели фитили из специальных хлопчатобумажных нитей.

Такой простой прибор делал их помещение светлее.

Для освещения они использовали светильники с нефтью.

Последнюю заливали в светильники и поджигали.

Если оставить вопрос кто придумал лампочку на втором плане, то возникает второй вопрос: когда появилась первая свеча?

Уже в средневековье свечи делались из, всем известного, пчелиного воска.

Но на свечах дело не остановилось, и ученые пытались придумать более универсальное средство освещения. Даже Леонардо да Винчи работал над тем, чтобы изобрести керосиновую лампу.

О первом осветительном приборе с максимальной безопасностью можно говорить лишь с начала 19 века. Но лампочка в таком виде, как мы её привыкли видеть сегодня, была изобретена лишь через три десятилетия.

Кто изобрел первую электрическую свечу?

Одним из ответов на вопрос кто придумал лампочку, будет — Яблочков Павел Николаевич, российский изобретатель, электротехник. Почему одним из ответов? А все потому, что Яблочков не изобрел первую электрическую лампочку, как таковую, а лишь ее прототип. Заслугам этого изобретателя принадлежит изобретение первой электрической свечи. Срок горения свечи такой был всего час-полтора.

После свечей в ход пошли изобретения фонарей с автоматической заменой свечи в нужное время. Хотя изобретение Яблочкова заслуживает уважения, но оно было не очень неудобно в эксплуатации. Свечи могли прослужить лишь короткий период времени, а потом требовалась их замена. Хотя, это не помешало их активному использованию при освещении театров, торговых центров и проч.

Кто придумал лампочку?

Начиная с 1840 года, в течение 30 лет многие ученые искали идеальный вариант для освещения, но это им не удавалось. Сегодня уже все знают, кто изобрел в мире первую электрическую лампочку. Это звание принадлежит российскому ученому, инженеру и изобретателю Лодыгину Александру Николаевичу.

Современная лампочка, работающая от электричества, придумана именно им. Все предыдущие попытки других изобретателей не смогли пройти необходимые испытания. Чего нельзя сказать об изобретении Лодыгина. Его лампочка спокойно горела полчаса. Уже позже другие ученые додумались выкачивать из неё воздух, что существенно увеличило время эксплуатации лампочки.

Когда появилась первая лампочка с угольной нитью накала?

В то время, когда Лодыгин активно разрабатывал свою лампочку, за его работой тщательно следил американский ученый Томас Эдисон.

Уже через 9 лет, а именно в 1879 году он начал применять для лампочек угольную нить, которая производилась из букового волоска большой плотности. Для его изобретения понадобились тысячи видов бамбука. Известно, что Эдисон провел около 6 тысяч испытаний и только после сумел достичь желаемого результата. Его лампочка могла гореть очень долго.

Добавить сайт в закладки

Когда появилась первая лампа накаливания?

В 1809 году англичанин Деларю строит первую лампу накаливания (с платиновой спиралью). В 1838 году бельгиец Жобар изобретает угольную лампу накаливания. В 1854 году немец Генрих Гёбель разработал первую «современную» лампу - обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой. В 1860 год английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.

11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.

В 1875 году В. Ф. Дидрихсон усовершенствовал лампу Лодыгина, осуществив откачку воздуха из неё и применив в лампе несколько волосков (в случае перегорания одного из них следующий включался автоматически).

Английский изобретатель Джозеф Уилсон Суон получил в 1878 году британский патент на лампу с угольным волокном. В его лампах волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.

Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл бытовой поворотный выключатель. Несмотря на столь непродолжительное время жизни, его лампы вытесняют использовавшееся до тех пор газовое освещение.

В 1890-х годах А. Н. Лодыгин изобретает несколько типов ламп с нитями накала из тугоплавких металлов. Лодыгин предложил применять в лампах нити из вольфрама (именно такие применяются во всех современных лампах) и молибдена и закручивать нить накаливания в форме спирали. Он предпринял первые попытки откачивать из ламп воздух, что сохраняло нить от окисления и увеличивало их срок службы во много раз. Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина. Также им были изготовлены и газонаполненные лампы (с угольной нитью и заполнением азотом).

С конца 1890-х годов появились лампы с нитью накаливания из окиси магния, тория, циркония и иттрия (лампа Нернста) или нить из металлического осмия (лампа Ауэра) и тантала (лампа Больтона и Фейерлейна). В 1904 году венгры д-р Шандор Юст и Франьо Ханаман получили патент за № 34541 на использование в лампах вольфрамовой нити. В Венгрии же были произведены первые такие лампы, вышедшие на рынок через венгерскую фирму Tungsram в 1905 году.В 1906 году Лодыгин продаёт патент на вольфрамовую нить компании General Electric.

В том же 1906 году в США он построил и пустил в ход завод по электрохимическому получению вольфрама, хрома, титана. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.

Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным, известным специалистом в области вакуумной техники Ирвингом Ленгмюром, который, работая с 1909 года в фирме «General Electric», ввёл в производство наполнение колбы ламп инертными, точнее тяжёлыми благородными, газами (в частности, аргоном), что существенно увеличило время их работы и повысило светоотдачу.

КПД и долговечность

Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла.

Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K (обычная лампа на 60 Вт) КПД составляет 5 %.

С возрастанием температуры КПД лампы накаливания увеличивается, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов, при увеличении напряжения на 20 % яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95 %.

Уменьшение напряжения питания хотя и понижает КПД, но зато увеличивает долговечность. Так, понижение напряжения в два раза (при последовательном включении) уменьшает КПД примерно в 4-5 раз, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда необходимо обеспечить надёжное дежурное освещение без особых требований к яркости, например на лестничных площадках. Часто для этого при питании переменным током лампу подключают последовательно с диодом, благодаря чему ток в лампу идет только в течение половины периода.

Так как стоимость потребленной лампой накаливания за время службы электроэнергии в десятки раз превышает стоимость самой лампы, существует оптимальное напряжение, при котором стоимость светового потока минимальна. Оптимальное напряжение несколько выше номинального, поэтому способы повышения долговечности путем понижения напряжения питания с экономической точки зрения абсолютно убыточны.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.

Наибольший износ нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно, используя разного рода устройства плавного запуска.

Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная - более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной.

Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности, диммеры (автоматические или ручные). Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.

Низковольтные лампы накаливания при той же мощности имеют больший ресурс и светоотдачу благодаря большему сечению тела накаливания. Поэтому в многоламповых светильниках (люстрах) целесообразно применение последовательного включения ламп на меньшее напряжение вместо параллельного включения ламп на напряжение сети. Например, вместо параллельно включенных шести ламп 220В 60Вт применить шесть последовательно включенных ламп 36 В 60Вт, то есть заменить шесть тонких спиралей одной толстой.

Разновидности ламп

Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

  • вакуумные (самые простые);
  • аргоновые (азот-аргоновые);
  • криптоновые (примерно +10% яркости от аргоновых);
  • ксеноновые (в 2 раза ярче аргоновых);
  • галогенные (наполнитель I или Br, в 2,5 раза ярче аргоновых, большой срок службы, не любят недокала, так как не работает галогенный цикл);
  • галогенные с двумя колбами (более эффективный галогенный цикл за счет лучшего нагрева внутренней колбы);
  • ксенон-галогенные (наполнитель Xe + I или Br, наиболее эффективный наполнитель, до 3х раз ярче аргоновых);
  • ксенон-галогенные с отражателем ИК излучения (так как большая часть излучения лампы приходится на ИК диапазон, то отражение ИК излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей);
  • накаливания с покрытием, преобразующим ИК излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.