Сайт о телевидении

Сайт о телевидении

» » Как работает эхолот и как им пользоваться? Количество лучей и способ крепления. Варианты использования сонаров

Как работает эхолот и как им пользоваться? Количество лучей и способ крепления. Варианты использования сонаров

Эхолот состоит из четырех основных элементов: передатчика (излучателя), приемника (датчика), преобразователя (тран-дюсера) и экрана (дисплея).

Передатчик вырабатывает следующие через определенные интервалы времени высокочастотные импульсы. В современных эхолотах применяются частоты 50 и 200 кГц, иногда встречается частота 192 кГц. Излучаемые преобразователем звуковые сигналы распространяются в воде со скоростью около 1500 м/сек. и отражаются от дна, рыб, водорослей, камней и пр. предметов (Рис . 1 ). Достигшие до приемника эхо-сигналы возбуждают в нем электрические импульсы, которые затем усиливаются в преобразователе и поступают в дисплей.

Преобразованные результаты зондирования отображаются на экране прибора в удобной для восприятия графической или алфавитно-цифровой форме.

Рис. 1. Принцип работы эхолота

Дисплей отображает результаты ультразвукового зондирования и управляет работой прибора. Для этого на нем имеется жидкокристаллический монохромный или цветной экран и клавиатура (рис . 2 ).

Изображение на экране подводного пространства под судном получается в результате использования так называемых разверток (иногда используется другое название - прокрутка). Основная рабочая развертка (быстрая) - вертикальная развертка . Каждый принятый приемником эхолота отраженный сигнал отображается на экране в виде темной точки или вертикальной полосы, отстоящей от линии поверхности на расстоянии, пропорциональной глубине отражающего объекта. Быстрая вертикальная развертка на правой стороне экрана дает текущую (мгновенную) картину под судном.

Отображение подводного пространства под судном в координатах «глубина - время» осуществляется посредством вспомогательной (медленной) горизонтальной развертки , передвигающей текущее изображение влево по экрану. Таким образом, на левой стороне экрана создается картина того, что происходило под водой во время зондирования за некий предыдущий отрезок времени.

Если судно неподвижно, то дно будет отображаться в виде горизонтальных полос, а попадающие в луч излучателя рыбы в виде отметок (о них речь пойдет позже), перемещающихся влево вместе с разверткой.

При движении судна изображение дна будет изменяться соответственно изменениям глубины. При этом для наглядности картины, скорость развертки должна соответствовать скорости движения судна - для этого в большинстве эхолотов имеется возможность ее регулировки.

В связи с таким способом получения изображения необходимо понимать, что находящаяся на экране картина - это прошлое событие. Так, находящаяся на экране отметка рыбы означает не то, что она в данный момент находится под судном в луче излучателя, а то, что она какое-то время назад была там. Для того чтобы видеть, что происходит непосредственно под судном в момент наблюдения, во многих моделях эхолотов вдоль правого края экрана создается дополнительное окно, в котором отображение производится без горизонтальной развертки.

Рис. 2. Внешний вид дисплея эхолота

Преобразователь (тран-дюсер) эхолота

Преобразователь является важнейшим элементом эхолота, во многом определяющим его характеристики. Он преобразует энергию электрических высокочастотных импульсов в ультразвуковые колебания и, в то же время, производит обратное преобразование отраженных ультразвуковых сигналов в электрические сигналы.

По способу преобразования электрической энергии в звуковую существуют несколько видов преобразователей, но на малых судах в силу их малых размеров прижились только пьезоэлектрические.

Основным элементом пьезоэлектрического преобразователя является кристалл титаната бария (встречаются кристаллы и из других материалов) цилиндрической формы с нанесенными на его поверхности металлическими покрытиями. Такой кристалл помещается в металлический или пластиковый корпус и заливается хорошо проводящим звук материалом.

Рис. 3. Диаграмма излучения преобразователя

Под воздействием приложенного к рабочим поверхностям кристалла переменного электрического поля в нем возникают упругие колебания, в результате чего кристалл начинает сокращаться и расширяться, вызывая возникновение волн в воде.

Отраженные от дна или каких-либо других подводных объектов волны, воздействуя на кристалл, вызывают появление на его рабочих поверхностях переменного напряжения, поступающего на приемник эхолота.

Принято считать, что преобразователь излучает и принимает звуковую энергию в пределах конуса. На самом деле «конус» - это лишь удобное для пользователей представление характеристики излучения. Реальная диаграмма излучения имеет многолепестковую структуру - главный лепесток, излучающий основную часть энергии, и ряд боковых лепестков (рис . 3 ).

Виды преобразователей

Используемые в рыбопоисковых эхолотах преобразователи различаются по следующим признакам:

По составу данных , которые может поставлять преобразователь

По материалу , из которого сделан корпус преобразователя;

По количеству лучей ;

По месту установки преобразователя на судне.

Состав данных

Основное назначение преобразователя - получение сигналов о глубине объектов. Однако существуют преобразователи, в корпусах которых устанавливаются дополнительные датчики, позволяющие измерять и передавать в дисплей температуру воды и скорость судна.

Материал

Преобразователи изготавливаются из пластмасс или из металла - латуни или бронзы.

Пластмассовые корпуса обычно используются на судах с корпусами из металла или из стеклопластика. Пластмассовый преобразователь, установленный в деревянный корпус, может быть раздавлен при набухании дерева после спуска судна на воду.

Металлические преобразователи предназначены для установки на суда со стеклопластиковыми или деревянными корпусами. При установке бронзового преобразователя на металлический корпус может возникать электрохимическая реакция, разрушающая корпуса судна и преобразователя в месте их контакта. В преобразователях с металлическими корпусами могут устанавливаться датчики температуры воды и скорости.

Количество лучей

Какое-то время назад эхолоты в основном были однолучевыми. Сейчас они постепенно вытесняются из номенклатуры фирм-производителей двухлучевыми, причем их цена становится сопоставима с ценам однолучевых эхолотов. Два луча получаются за счет наличия двух частот - 50 и 200 кГц, поэтому эхолоты называют двухчастотными. Такие приборы могут работать как на одной из двух частот, так и одновременно на двух.

Существуют так же и экзотические модели производства фирмы Humminberd, в которых формируются три и шесть лучей - для расширения зоны просмотра в первом случае и для создания псевдотрехмерной картины во втором.

Место установки

Существуют три основных способа установки преобразователя - с внутренней стороны корпуса («in-hull»), на транце и на днище («Thru-hull»).

Рабочая частота эхолота

Глубина обнаружения подводных объектов и точность их различения при одинаковой мощности излучения зависит от частоты.

В выпускаемых ранее эхолотах использовались либо высокие (192 кГц - в эхолотах Lowrance и Eagle, 200 кГц - в эхолотах Garmin, Raymarine и др.) либо низкие - 50 кГц. В настоящее время, в связи с широким распространением двухчастотных эхолотов, остались лишь две частоты - 50 и 200 кГц, позволяющие использовать один кристалл для работы на двух частотах одновременно и порознь.

Ширина диаграммы излучения обратно пропорциональна частоте излучения - чем выше частота излучения, тем уже конус, и тем самым выше плотность заключенной в нем звуковой энергии, а отсюда - большая глубина и лучшая способность обнаружения мелких объектов, более подробное отображение на экране.

При работе на низких частотах ширина конуса намного шире и, соответственно, плотность энергии в конусе меньше со всеми вытекающими отсюда последствиями. Но, с другой стороны, более широкая диаграмма излучения позволяет обнаруживать рыбу в более широкой зоне, чем при работе на высокой частоте.

Появление двухчастотных эхолотов позволило объединить достоинства каждой из частот в одном приборе и избавило покупателя от необходимости разрешать проблему выбора эхолота с широким или узким лучом. Современные двухчастотные (двухлучевые) эхолоты позволяют работать с одним из двух имеющихся лучей, а также с обоими сразу.

Фирмы-производители рыбопоисковых эхолотов обычно выпускают большое количество моделей преобразователей с различными углами излучения. Так, компания Garmin предлагает преобразователи на частоте 200 кГц с углами конуса от 8 до 20 градусов, на частоте 50 кГц - с углом 45 градусов. Двухлучевые эхолоты этого производителя имеют ширину луча 15 и 45 градусов. Примерно такие же показатели имеют преобразователи и других фирм. Следует отметить, что преобразователи производят и поставляют всем изготовителям эхолотов несколько специализированных фирм.

Влияние среды распространения ультразвуковых волн

Вода, являясь средой распространения созданных преобразователем ультразвуковых волн, оказывает существенное влияние на работу эхолота, поэтому знание особенностей прохождения волн в воде полезно владельцу для эффективного использования прибора.

На эффективность работы эхолота оказывают влияние следующие характеристики среды распространения:

- Затухание энергии звуковых волн в воде;

- Наличие отражений звуковых волн в воде.

Затухание энергии

Затухание звуковой энергии в воде состоит из двух составляющих - затухание свободного пространства и затухание в среде распространения.

Затухание свободного пространства - это абстрагированное от среды распространения, зависящее только от дальности, ослабление звуковой энергии.

При активной гидролокации, когда звук проходит одно и то же расстояние дважды, затухание свободного пространства пропорционально четвертой степени глубины.

Затухание энергии звуковых волн в воде объясняется ее поглощением и рассеиванием находящимися в воде минеральными и органическими частицами, микроорганизмами и пузырьками воздуха.

Наименьшее затухание вносит пресная холодная вода - из-за низкой температуры она обладает более высокой плотностью и в ней находится минимум органики. В пресной воде с одинаковым успехом можно пользоваться эхолотами как с низкой, так и с высокой частотами излучения.

Соленая морская вода, напротив, содержит большое количество солей, планктона и минеральных частиц, особенно в хорошо прогретых верхних слоях моря, поглощающих и рассеивающих энергию звуковых волн. Значительное ослабление энергии в соленой воде вносят содержащиеся в ней пузырьки воздуха, возникающие при образовании ветровых волн.

Наличие отражений

Отражения в любой среде - в воде, в воздухе - образуются неоднородностями, отличными по плотности от среды. Ими могут быть какие-либо предметы (камни, грунт, рыба, растительность, воздушные пузыри), либо слои воды с разной температурой (так называемые термоклины, речь о которых пойдет позже). В глубоких водоемах может быть несколько тер-моклинов.

Если в пресной воде затухание звуковой энергии на разных частотах практически одинаковы, то в морской воде затухание и отражение от термо-клинов с ростом частоты увеличивается. Поэтому в эхолотах, предназначенных для поиска рыбы в море, используются частоты 50 кГц, а в некоторых профессиональных эхолотах для больших глубин применяется частота 28 кГц.

Отражающие свойства дна

Дно пресноводных водоемов и морей имеет неоднородную структуру, включающую разнообразные по плотности грунты - ил, песок, глину, каменную плиту, галечные россыпи, покрытые, как правило, разнообразной растительностью. Все эти виды грунтов имеют разную способность отражать и поглощать звуковые волны. Камни и глина хорошо отражают звуковые волны, создавая на экране широкую линию. Мягкие грунты - ил и песок, а также растительность плохо отражают волны, создавая на экране тонкую линию. В то же время мягкие грунты проницаемы для ультразвука, потому на экране эхолота можно наблюдать под ними более плотные подстилающие поверхности.

Влияние расположения преобразователя

Преобразователь с установкой внутри корпуса

Преобразователи «in-hull» прикрепляются прямо к внутренней стороне корпуса судна. Они применяются только на судах с корпусом из стеклопластика. Преобразователи этого типа не подходят для судов с металлическим и деревянными корпусами, а также с многослойными стеклопластиковыми корпусами с пористым наполнителем.

Преобразователь «In-Hull» обычно крепится к стеклопластиковой обшивке с помощью эпоксидного клея. Применение пластичных герметиков для его крепления недопустимо из-за их плохой акустической проводимости. Преобразователи необходимо устанавливать так, чтобы между ними и водой была только обшивка корпуса без каких-либо усиливающих или повышающих плавучесть вставок.

При использовании преобразователя «In-hull» звуковые волны проходят через стеклопластиковую обшивку корпуса, теряя при этом часть энергии, в результате чего снижается максимальная глубина и возможность обнаружения рыбы.

Преобразователь с установкой на транец

Преобразователи этого типа (рис . 4 .) используются, как правило, на небольших тихоходных судах.

Рис. 4. Преобразователь с установкой на транец

Преобразователи этого типа устанавливаются на расположенный на транце специальный кронштейн ниже уровня воды. Конструкция кронштейна позволяет преобразователю откидываться при наезде на какое-либо препятствие, предотвращая тем самым повреждение преобразователя и транца.

Достоинства такой установки - простота монтажа, демонтажа и обслуживания.

Недостаток - нахождение рядом с гребными винтами, вращение которых приводит к возмущениям воды, снижающим эффективность преобразователя. Если на малых оборотах еще можно найти подходящее место на транце, то на больших и скоростных судах работающие на больших оборотах винты создают сильное возмущение воды, насыщают воду пузырьками воздуха, которые экранируют преобразователь, практически исключая возможность работы.

Преобразователь с установкой на корпусе («Truehull»)

Устанавливаемые на корпус преобразователи типа «True Hull» (рис . 5 ) вставляются в отверстие, вырезанное в днище судна.

Рис. 5. Преобразователь с установкой на корпусе

Этот тип преобразователя обладает наилучшими характеристиками, но и наибольшей ценой. Они предназначены для установки на большие и скоростные суда с подвесными и стационарными двигателями. Размещаются обычно на плоской части днища перед винтами в местах с плавным обтеканием водой. Если судно имеет V-образные обводы, то для горизонтального расположения преобразователя используют специальные прокладки из пластмассы, что на большой скорости приводит к появлению кавитации и, соответственно, к снижению эффективности эхолота (о кавитации - см. ниже). Для улучшения обтекаемости излучателя существуют специальные обтекатели, снижающие турбулентность и кавитацию.

Достоинством такого преобразователя - высокая эффективность и качество сигнала.

Недостаток - сложность установки и обслуживания, необходимость регулярной очистки от обрастания водорослями.

Влияние скорости движения на работу преобразователя

Перед рыбакам, профессионалами и любителями долгое время никаких проблем, связанных с использованием эхолотов на их судах, не возникало - скорости у тех и других были невелики. Но по мере роста скоростей владельцы эхолотов стали замечать нарушения в работе эхолотов - пропадания отражений, появление шумовых помех на экране, ослабление отраженных сигналов.

Главным источником таких помех является кавитация - нарушение непрерывности текущей жидкости. При движении правильно сконструированного судна в воде его подводная часть обтекается плавно. Если на корпусе имеются какие-либо выступающие части - фланец заборной или сливной трубы, заклепки, головки болтов и пр., вокруг них при движении начнут образовываться завихрения, т. е. поток станет турбулентным, а при достижении какой-то критической скорости начнут возникать наполненные паровоздушной смесью кавитационные пузырьки, переходящие в каверны. Воздушные пузырьки, вследствие малой плотности заполняющего их газа, отражают звуковые волны и частично или полностью маскируют пространство под судном.

Наиболее подвержены помехам преобразователи, устанавливаемые на транце: мало того, что они сами являются источником кавитации, они еще получают все пузырьки, образовавшиеся на корпусе судна. Но основным источником помех для транцевого преобразователя является высокооборотный гребной винт.

В наилучшем положении находятся преобразователи «In Hull» и «True Hull» при их правильном расположении в местах с плавным обтеканием. При установке преобразователя «True Hull» на скоростных судах его рабочая поверхность, во избежание образования на нем кавитации, не должна выступать из корпуса, но и не должна располагаться в углублении.

Чувствительность эхолота

Понятие «чувствительность» характеризует способность эхолота выделять слабые отраженные сигналы на фоне акустических помех и шумов приемника. Величина чувствительности определяет возможность обнаружения мелких предметов на больших глубинах.

Приемник эхолота работает в очень широком диапазоне напряжений - ведь мощность принимаемых отраженных сигналов пропорциональна четвертой степени глубины. Поэтому он должен хорошо принимать слабые сигналы от мелких предметов как на максимальных глубинах, так и на предельно малых.

Необходимость работы в столь широком диапазоне уровней сигналов приводит к определенному противоречию в выборе чувствительности. С одной стороны, высокая чувствительность позволяет получать большое количество информации о различных объектах на предельно больших глубинах, но, вместе с тем, на малых глубинах такой эхолот будет принимать сигналы вне главного луча боковыми лепестками диаграммы направленности преобразователя.

Для устранения этого противоречия в эхолотах имеется регулировка чувствительности, которая в недалеком прошлом осуществлялась вручную. В современных эхолотах в дополнение к ручной регулировке имеется автоматическая.

Автоматическая регулировка устанавливает чувствительность по уровню отражений от дна так, чтобы на экране были отметки от рыбы и дна. Изменение чувствительности осуществляется автоматически в соответствии с изменениями глубины и состояния воды. Автоматический режим обеспечивает нормальную работу эхолота практически во всех ситуациях, поэтому он, в основном, и используется. При необходимости, этот режим может быть отключен, и регулировка будет осуществляться вручную.

Установка эхолота

После того как мы познакомились с принципом работы, устройством и характеристиками рыбопоисковых эхолотов, можно перейти к самой интересной части - знакомству с основами их эксплуатации. Поскольку изделия различных производителей незначительно отличаются друг от друга, за основу возьмем какую-либо распространенную модель, например, из серии эхолотов Garmin.

В данном разделе мы рассмотрим способы установки преобразователей и методы общения с эхолотом в процессе работы.

Установка излучателя

Правильная установка преобразователя является ключевой по важности операцией для обеспечения эффективной работы эхолота. Не следует устанавливать преобразователь позади заклепок, ребер, отверстий для забора воды или других неровностей на днище, которые могут создавать облака воздушных пузырьков и образовывать завихрения воды. Очень важно, чтобы преобразователь работал в спокойном потоке воды, иначе его возможности будут серьезно ухудшены.

Установка преобразователя на транец

Транцевый преобразователь поставляется со специальным кронштейном для крепления к транцу. Кронштейн обычно имеет подпружиненный элемент, позволяющий преобразователю откидываться назад при наезде на какое-либо препятствие.

Основные принципы установки преобразователя показаны на рис. 6.

Рис. 6. Принцип установки преобразователя на транец

Установка преобразователя «In Hull» в корпусе

На стеклопластиковых судах для удобства эксплуатации можно устанавливать преобразователь в корпусе. Некоторые фирмы выпускают для этого специальные приборы, но с таким же успехом внутри корпуса можно установить обычный транцевый преобразователь. На многих пластиковых малых судах имеются специально приготовленные места для установки преобразователя.

Часто пластиковые корпуса имеют в своей структуре усиливающие элементы или пористые наполнители, препятствующие распространению ультразвука, поэтому прежде чем приклеивать преобразователь, проверьте это место следующим образом. Налейте в трюм, в место предполагаемой установки, некоторое количество воды, опустите в нее рабочую поверхность преобразователя и проверьте наличие на экране изображения подводного пространства. Сравните полученные значения глубины с реальными. Если разницы нет, то смело можете приклеивать преобразователь в это место.

Установка преобразователя «True Hull» в корпус Преобразователи «True Hull» устанавливают в высверленное в днище судна отверстие. Наружные и внутренние поверхности корпуса около отверстия покрываются слоем герметика, преобразователь с кабелем вставляется в отверстие и крепится через шайбу гайкой.

Преобразователи должны крепиться горизонтально перед винтом, килем и любыми выступами, которые могут быть причиной образования пузырьков воздуха. Если поверхность днища наклонная, преобразователь ставят с помощью горизонтирующих прокладок. Для больших бронзовых преобразователей выпускаются специальные обтекатели (рис . 7 ).

Рис. 7. Обтекатель для бронзового преобразователя

Эксплуатация эхолота

Отображаемая информация

Современный рыбопоисковый эхолот может получать и отображать самую разнообразную информацию о состоянии водной толщи и находящихся в ней объектах. Ниже перечислено то, что можно увидеть на экране дисплея (рис . 8 ).

Рис. 8. Изображение на экране эхолота

Управление эхолотом

Управление эхолотом осуществляется с помощью нескольких кнопок и экранных меню (рис . 9 ).

Рис. 9. Органы управления эхолота

Рис. 10. Панель управления и информация на экране

В верхнем левом углу экрана (рис. 10 ) можно видеть панель управления и различную информацию, в том числе глубину напряжение источника питания, температуру воды и скорость движения (при наличии соответствующих датчиков). В правой части экрана находится линейка шкалы глубин и функция «Луч». Символы сигнализации или системных сообщений представлены под изображением дна.

Теперь познакомимся с основным опциями экрана, с помощью которых осуществляется управление работой эхолота.

Управление эхолотом

Это меню (рис . 11 ), дающее доступ к установкам, наиболее часто используемым в работе эхолота - к шкале глубин (Depth Range), масштабирования (Zoom) и чувствительности/усиления (Gain). Для этого на панели управления кнопками-стрелками < и >»передвигают курсор (белое поле) на нужную опцию. Выбор желаемой установки осуществляется стрелками «^и V».

Шкала глубин (Range)

Шкала глубин (рис. 11 ) необходима для установки и просмотра на экране определенных участков толщи воды. Установка осуществляется курсором на раскрывающемся в левой части экрана меню глубин. Впрочем, прибор может автоматически выбирать шкалу, соответствующую глубине под судном в настоящий момент и изменять ее при движении судна - для этого достаточно установить курсор шкалы глубин на «Auto» и нажать «Enter».

Рис. 11. Меню панели управления

Масштаб (Zoom)

Функция «Масштаб» используется для выбора степени увеличения изображения отдельных интересующих участков на экране. Функция «Масштаб» позволяет увеличить все объекты в выбранном диапазоне глубин. Величина масштаба устанавливается в раскрывающемся меню. После установки экран делится на две части, на одной из которых ведется полномасштабный просмотр, а в другом - только выбранный участок в установленном масштабе (рис . 12 ).

Рис. 12.

Усиление, чувствительность (Gain)

Ранее уже говорилось о влиянии чувствительности на эффективность работы эхолота. Высокая чувствительность позволяет получать большое количество деталей, но может привести к появлению шумов в виде засветки экрана и к приему отражений от предметов, расположенных в стороне от судна боковыми лепестками, Поэтому во всех приборах имеются органы для ее регулировки. В данном приборе чувствительность устанавливается стрелками в раскрывающемся окне GAIN (рис .13 ).

Рис. 13.

По умолчанию в эхолоте устанавливается нормальный уровень чувствительности, соответствующий положению Normal Gain на шкале в левой части экрана. При необходимости получить большее количество деталей следует увеличивать чувствительность, выбирая на шкале положительные значения настроек, при необходимости уменьшения чувствительности следует выбирать отрицательные значения.

Меню установок содержит также настройки эхолота, которые не требуют частых регулировок. Сюда входят настройки «Изображение»(Chart), «Инструменты» (Tools), «Цифры» (Nambers), «Сигнализация» (Alarm), «Системные настройки» (System), «Калибровка» (Calibr), «Единицы измерения» (Units) и «Управление памятью» (Memory), «Символ рыбы» (Fish Symbols). Если эхолот двухчастотный, то в состав меню войдет еще и установка частоты. Рассмотрим некоторые из них.

Изображение (Chart)

Данная настройка устанавливает скорость прокрутки, т. е. скорость обновления информации на экране. Осуществляется это с помощью функции Scroll Speed, позволяющей выбрать одну из трех скоростей - быструю (Fast), среднюю (Medium) и медленную (Slow) в соответствии с условиями работы.

Частота (Frequency)

Эта позиция меню предназначена для выбора частоты излучения - высокой частоты 200 кГц (устанавливается по умолчанию), низкой частоты 50 кГц или обоих сразу.

Символы рыбы (FishSymbols)

Эта установка позволяет пользователю выбирать отображать подводные объекты в виде символов-рыбок, либо в виде отраженных сигналов (дуг). Выбор осуществляется в раскрывающемся меню с символами рыб и позицией «Off» - выключить. В этой позиции на экран эхолота будут выводиться все принятые отраженные сигналы. При выборе любого символа при обнаружении любого объекта на экране будут появляться только символы рыб. Если эхолот будет работать в двухчастотном режиме, то рыбы, облучаемые узким лучом, будут черными, а облучаемые только широким лучом - белыми.

Белая линия (Whiteline)

Функция Whiteline позволяет определять структуру слоев породы, составляющих дно. Если при выключенной функции дно отображается черным цветом, то при включении этой функции дно будет рисоваться в соответствии с плотностью его слоев оттенками черного и серого цветов.

Инструменты (Tools)

Функция Tools имеет четыре набора инструментов - «Линия глубины» (Depth Line), «Луч» (Flasher), «Имитатор» (Simulator) и «Шумоподавитель» (Noise Reject), помогающих распознавать подводные объекты.

Инструмент Depth Line используется для определения глубины до объекта или для его выделения. Представляет горизонтальную линию, управляемую кнопками-стрелками. Положение линии на оси глубин в цифровой форме отображается в информационном окне на экране.

Активированный инструмент «Flasher» (Луч) создает изображение на вертикальной полосе. Этот инструмент позволяет яснее представлять на экране детали водной толщи и поверхности дна.

Функция «Noise Reject» (Шумоподавление) позволяет удалять с экрана нежелательные помехи. Установка режима шумоподавления может осуществляться автоматически и вручную. Следует иметь в виду, что при высоких уровнях подавления может быть потеряна часть малых объектов.

Инструмент «Simulator» используют для изучения эхолота и отработки навыков работы с ним.

Сигнализация об обнаружении рыбы (Alarm)

Эхолот может подавать звуковые сигналы об обнаружении рыбы. Сигнализация может быть настроена на обнаружение различных по размеру рыб (маленькая, средняя, большая и в различных вариантах). Сигнализация будет работать независимо от включения функции Fish Symbols.

Помимо этого эхолот может подавать сигналы тревоги при изменении измеряемой глубины меньше заданного значения или при превышении его.

Изображение на экране эхолота

Для работы с эхолотом очень важно понимать, что мы можем реально видеть на экране и не ожидать большего, чем он может дать. Чтобы разобраться во всем этом, вспомним, с чего мы начали наше знакомство с эхолокацией - со способа излучения и приема.

Как уже кратко отмечалось в главе «Устройство и характеристика эхолотов», преобразователь эхолота излучает звуковые волны в направлении дна. Область, покрываемая излучением, условно описывается конусом с вершиной в излучателе и зависит от величины этого угла и глубины водоема. На рисунке 5 показаны сечения конусов плоскостями на разных глубинах для преобразователей с частотой 50 кГц и углом конуса 20°, и с частотой 200 кГц и углом конуса 10°. При использовании таких преобразователей поверхности покрытия на глубине 9 м будут представлять соответственно круг диаметром 6 и 1,8 м.

Для пользователя очень важно понимать, что в соответствии с принципом действия эхолот измеряет только одну координату - глубину, и поэтому не может давать пространственную картину водного пространства в конусе излучения (рис . 14 ). Прибор не может определить, где в пределах конуса находится рыба, где водоросли, а только лишь сообщает, что они находятся на одной глубине. Особенно важно помнить об этом при использовании преобразователей с широкими диаграммами направленности.

Рис. 14.

Определение типа дна эхолотом

Эхолот может распознавать тип дна под ним - твердый грунт, ил, водоросли. Твердые породы лучше отражают звуковые волны, чем мягкий ил или песок. Слой твердого дна будет показан на экране более широкой полосой, чем у мягкого дна.

Для улучшения распознавания сильных и слабых сигналов в эхолотах существует функция White Line - «Белая линия» (в ряде случаев используется термин «серая линия»). При включении этой функции дно отображается оттенками черного и серого цвета. Например, ил на дне дает слабый отраженный сигнал, который отображается на экране с тонкой серой окантовкой, а изображение твердого дна изображается с широкой серой окантовкой.

Функция «Белая линия» позволяет определить структуру слоев пород, составляющих дно. Получая сведения о сравнительной плотности этих слоев, можно точнее определить их структуру.

Определение рыбы эхолотом

При правильно установленном преобразователе и должной настройке эхолота рыба будет отображаться на экране в виде дуг. Такое изображение получается из-за изменения расстояния до рыбы при ее прохождении через конус излучения. При пересечении границы конуса расстояние от нее до преобразователя будет максимальным.

По мере подходу к оси конуса расстояние будет уменьшаться, что будет отображаться на экране. После прохождения оси расстояние до рыбы начнет увеличиваться, в результате чего на движущейся развертке экрана появится изображение дуги.

Размер и кривизна дуги зависит от ширины диаграммы направленности преобразователя. Чем шире конус излучения, тем более ярко выражена дуга.

При вхождении рыбы в конус излучения ее изображение будет тонким из-за ослабления мощности на краях диаграммы. При ее приближении к центру толщина дуги будет увеличиваться и, в центре диаграммы станет наибольшей. При выходе рыбы из зоны излучения картина будет изменяться в обратном порядке - уменьшаться.

Если рыба проходит по краю конуса, то дуги может не получиться или она будет очень небольшой. Наличие в эхолотах функции Fish Symbols позволяет отображать принятые сигналы в виде символов - «рыбок» различных размеров. Эта функция может использоваться только при работе эхолота в автоматическом режиме. При включенной функции Fish Symbols отображает только символы, не выводя на экран никакие другие отметки.

Ряд моделей рыбопоисковых эхолотов имеют возможность подключения датчиков бокового обзора. В этом случае они могут вести обнаружение рыбы не только под судном, но и по обеим сторонам от него.

Эхолот для рыболова

Эхолот ищет и находит рыбу, и это является его основным предназначением. Однако каждый мало-мальски грамотный рыбак знает, что рыба не распределяется равномерно по пространству водоемов, а собирается в определенных местах, определяемых рельефом дна, резкими изменениями глубин и даже перепадами температур между слоями воды. Интерес могут представлять коряги, камни, ямы, растительность. Иными словами, рыба не только ищет, где глубже, но и где ей лучше ночевать, охотиться, маскироваться, кормиться. Поэтому первостепенная задача эхолота - это определение глубин водоема и изучение рельефа дна.

Результаты измерения глубины на экране эхолота осуществляются двумя способами - в графической форме (отображение рельефа дна на фоне шкалы глубин) и в цифровой форме в углу экрана. Следует иметь в виду, что при работе эхолота на предельно малых глубинах могут возникнуть проблемы с измерениями, связанными, в первую очередь, с наличием у любого эхолота «мертвой зоны», а также наличием сильных отражений от находящихся вне конуса излучения предметов и участков дна, облучаемых боковыми лепестками диаграммы. Такие помехи особенно заметны в эхолотах, не имеющих автоматической регулировки усиления.

Отображение рельефа дна

При измерении глубины вдоль правой границы экрана отображается в виде точки текущее значение измеряемой глубины. Для обеспечения возможности наблюдения за рельефом эта точка сохраняется на экране и сдвигается по нему справа налево на один шаг, а ее место занимает новая точка, соответствующая очередному отсчету глубины. Затем происходит следующий сдвиг - так запоминается каждая последующая точка через промежутки времени, равные периоду следования зондирующих ультразвуковых импульсов. В результате на экране появляется линия, являющаяся отображением рельефа дна. Следует особо отметить, что полученная линия отображает рельеф на пути, уже пройденным судном, что следует учитывать при выборе позиции для ловли.

Следует также иметь в виду, что текущее значение глубины под судном отображается на шкале на правой стороне экрана. Это значение повторяется так же на экране и в цифровой форме.

Если судно неподвижно, то глубина под ним не меняется и, следовательно, линия будет прямой и горизонтальной (рис . 15 ).

При движении судна над неровным дном отметка глубины в правом углу экрана будет менять свое положение соответственно изменению глубины под датчиком эхолота. При уменьшении глубины каждая последующая точка будет располагаться выше предыдущей, при увеличении глубины - ниже предыдущей. В результате на экране появляется линия, повторяющая рельеф дна на пути следования судна.

Рис. 1 5 . Изображение на экране при неподвижном судне

Для рыбака наибольший интерес представляют самые различные неоднородности рельефа дна, так как на них чаще всего ловиться рыба. Это могут быть песчаные «косы», намываемые течением с внутренней стороны на повороте реки, и резкие переходы на подмытых течением внешних берегах. Места с такими резкими переходами должны интересовать рыбака, т. к. на них может находиться крупная рыба.

На озерах Карелии и Белом море часто встречаются подводные скалы самых разных размеров - небольшие «луды и корги», и обширные галечные либо каменистые «банки» - любимые места крупной хищной рыбы. Недаром профессиональный лов рыбы в море ведется, в основном, на банках. Автору этих строк как-то довелось на одной луде в Белом море в компании двух приятелей за каких-то 20 минут наловить на голые крючки ведро трески.

Еще один предмет поиска для рыбака - это ямы, в которых может находиться крупная хищная рыба.

Вообще, любые резкие изменения глубин привлекают рыбу и позволяют надеяться на ее обнаружение на данных участках. При ведении поиска с использованием эхолота следует искать участки, отличающиеся от преобладающего рельефа дна. На мелких участках нужно искать впадины и ямы, на глубоких участках - гребни, косы, луды, перекаты, на изрезанных участках - ровные площадки.

Еще один важный показатель, позволяющий определить перспективность того или иного участка для лова рыбы - структура дна. Структура дна говорит о том, из каких грунтов состоит дно - глина, песок, ил, скала или галька. С помощью эхолота точно распознать тип грунта невозможно, можно только различать его по плотности. На экране эхолота плотный грунт (глина, камень) отображается светлым тоном, а мягкие грунты - темным. По наличию ила и растительности можно судить о том, какая рыба может водиться на данном участке.

Большой интерес для рыбака представляют коряги или затонувшие стволы деревьев, около которых с большой степенью вероятности можно обнаружить рыбу. Они отличаются по плотности от грунта и обычно хорошо видны на экране эхолота (рис . 16 ). Такие предметы целесообразно запоминать в памяти приемника GPS, т. к. их повторное обнаружение осуществить намного сложнее, чем косу или перекат. То же самое относится и к другим относительно малоразмерным объектам - лудам, ямам и т. п.

Рис. 16 .

Отображение рыбы

Ранее уже упоминалось, что на экране эхолота рыба отображается в виде дуг. Это происходит из-за того, что при прохождении рыбы через конус излучения расстояние от нее до преобразователя меняется - сначала оно уменьшается, а затем увеличивается снова. Поскольку по мере удаления от оси диаграммы направленности преобразователя энергия излучения убывает, то при прохождении рыбы через облучаемую зону толщина дуги изменяется - сначала она увеличивается, затем снова уменьшается. Размер дуги зависит, прежде всего, от ширины конуса излучения - чем шире конус, тем длиннее дуга (рис . 17 ), а также от скорости движения рыбы относительно судна. Чем выше эта скорость, тем слабее и бледнее эта дуга. Поэтому, при поиске рыбы с катера на ходу, получив на экране слабые дуги, стоит вернуться и на малой скорости пройти это место.

На форму дуги могут влиять и характерные особенности рыбы, позволяя, при наличии опыта, с некоторой вероятностью, определять вид рыбы, хотя не все опытные рыбаки разделяют эту точку зрения. Возможно, и проводились какие-либо теоретические и экспериментальные работы по распознаванию видов рыб с использованием эхолотов в интересах промыслового рыболовства, но мне такие материалы не встречались. Да и задачи обнаружения и распознавания профессионала и рыбака-любителя совершенно разные.

Рис. 17 . Принцип образования дуги

В некоторых моделях эхолотов с цветным экраном (например, в эхолотах Garmin) отраженные сигналы окрашиваются различным цветом в зависимости от уровня их мощности. Красным цветом обозначаются самые мощные сигналы, оранжевым - сильные, желтым - средние, зеленым - слабые и синим - самые слабые. В монохромных версиях тех же эхолотов уровни принимаемых сигналов обозначаются Оттенками серого цвета - чем сильнее сигналы, тем темнее его отметка, и наоборот.

Обобщая имеющиеся в прессе материалы по распознаванию рыбы и результаты опроса среди пользователей эхолотов, можно сделать следующие предположения.

Многие представляют щуку как смещенную в один конец толстую дугу, сома - как одинокую толстую дугу. Некоторые виды рыб изображаются на экране эхолота в виде нескольких тонких дуг - например, судак или лещ. Однако, при отсутствии каких-либо экспериментальных данных достоверность этих оценок невелика.

Поскольку однозначно распознать рыбу невозможно, то для повышения достоверности оценки необходимо одновременно сопоставлять полученную дугу с рельефом и структурой дна, характерным для обитания тех или иных видов рыб. Такая работа требует большого опыта работы с эхолотом, понимания характерных особенностей, повадок и привычек различных рыб.

Для облегчения обнаружения и распознавания для рыбаков с малым опытом в большинстве любительских эхолотов имеется функция отображения обнаруженной рыбы в виде символов - «рыбок» различных размеров. Они формируются путем анализа по определенным алгоритмам мощности отраженных от подводных объектов сигналов. В большинстве эхолотов используются три градации размеров - мелкая, средняя и крупная, обозначаемые соответствующими символами.

Рис. 18 .

Однако не следует считать, что, включив режим автоматического распознавания, можно будет получить от эхолота достоверную информацию о размере рыбы - автомат, он и есть автомат, вырабатывающий по уровню мощности отраженных сигналов символы установленных размеров. Уровень мощности отраженных сигналов зависит от множества факторов - от степени загрязнения воды, от наличия в ней планктона, растительности, температурных перепадов, которые эхолот не учитывает при анализе принимаемых сигналов. Помимо этого, прибор не различает всех тонких нюансов отраженных сигналов, которые легко распознает глаз человека, поэтому он может присваивать символы рыб дрейфующим в воде топлякам, воздушным пузырям, водорослям.

Символы в монохромных эхолотах обычно окрашены в черный цвет. В двухлучевых эхолотах символы рыб, полученные узким лучом, будут закрашены, а полученные широким лучом - будут обозначены в виде контура (рис . 18 ).

Еще одна проблема автоматического распознавания заключается в невозможности определения размера рыб, обозначаемых самым крупным символом - он может быть присвоен и килограммовому окуню, и сому весом несколько десятков килограммов.

Для распознавания крупных экземпляров рыб в некоторых современных эхолотах имеется функция реального сканирования. Приборы, оснащенные такой функцией, выдают на экран изображение рыбы, пропорционально ее истинному размеру. Имея шкалу глубин, можно достаточно легко определить размер рыбы.

В заключение рассуждений на тему автоматического распознавания следует отметить, что самым лучшим устройством для этого пока еще является человеческий глаз и мозг - недаром в профессиональных эхолотах на экран выводятся только отображения реальных сигналов.

Масштабирование

Масштабирование является весьма эффективным приемом для наблюдения за рыбой. Сущность масштабирования заключается в увеличении (растягивании) отдельных выделенных по глубине участков в несколько раз обычно в два и в четыре раза. Для осуществления этой операции в эхолотах существует функция «ZOOM» (масштаб). Картину с измененным масштабом можно рассматривать на полном экране, а также в режиме с разделенным экраном, когда на одной половине экрана будет полномасштабное изображение, а на второй половине - увеличенный вдвое или в четыре раза выбранный участок изображения (рис . 19 ), что очень удобно для просмотра интересующих мест - покрытых растительностью, коряг, ям.

Рис. 19.

В эхолотах существует еще одна интересная функция, которую так же можно отнести к автоматическому распознаванию - функция «Alarm» (сигнализация), позволяющая подавать звуковые сигналы при наступлении каких-то заранее установленных событий. Такими событиями могут быть:

- Появление на экране изображения рыбы определенного размера;

- При вхождении в район со слишком малой глубиной, либо со слишком большой;

При выходе из заданного диапазона глубин («Дрейф»).

Для более внимательного изучения изображения отраженных сигналов в некоторых моделях эхолотов существует функция остановки изображений («Режим паузы»). В этом режиме активизируется стрелка-курсор, который можно перемещать по остановившейся картинке и отмечать путевые точки (если к эхолоту подключен приемник GPS), а также глубину и координаты отмеченных курсором отметок отраженных сигналов. Функция паузы облегчает поиск таких объектов, как сваи, камни, коряги, которые могут оказаться полезными при выборе места для рыбалки.

Пока дисплей находится в режиме паузы, прибор продолжает обновлять показания глубины, однако новые данные не могут быть показаны на экране до тех пор, пока не будет отключен этот режим.

Человек уже многие века занимается рыбной ловлей и если в прошлом данное занятие позволяло людям прокормить себя и свою семью. Сейчас рыбалка это в большей степени хобби и способ развлечься на природе.

Рыбалка требует от человека наличия определенных умений и специфических знаний, которые помогают получить хороший улов.

Также для удачной рыбной ловли в современных условиях нужно иметь и специальное техническое снаряжение. В данной статье мы поговорим о таком интересном приборе как эхолот, который может значительно упростить задачу поиска рыбы в реке, пруду и т.д.

Принцип работы эхолотов

Этот прибор, как и многие другие изобретения, пришел к нам из военной сферы.

Эхолот был разработан в период второй мировой войны как средство, позволяющее находить подводные лодки. В мирных целях (для спортивной рыбалки) эхолот или как его еще называют сонар, стал применяться с конца 50х годов прошлого столетия.

Прибор состоит из набора компонентов вот они:

  1. Устройство для передачи импульсов . Оно преобразует сигнал в электронные импульсы и подает их на специальный датчик.
  2. Датчик для преобразования. Он перерабатывает полученные импульсы в звуковое излучение и отправляет сигнал
  3. Приемник (для чтения возвращенного сигнала). Этот прибор улавливает отражение звука от предметов в толще воды и на дне. По скорости получения отраженного сигнала приемник получает картину обстановки под водой. Таким же образом он находит рыбу. Излучение, которое вырабатывает устройство совершенно безвредно и не угрожает обитателям водоема.
  4. Монитор . На него выводится картинка показывающая рельеф дна и скопление рыбы.

Преобразователь (тран-дюссер) эхолота

Преобразователь-это важнейшая деталь эхолота. Именно от его качества зависят общие характеристики прибора.

Задача преобразователя состоит в том, чтобы превращать энергию, полученную от электрических импульсов в колебания ультразвука. Также он может работать и наоборот, превращая отраженные сигналы ультразвука в электрические показатели.

Преобразователи делятся на несколько групп, которые отличаются способом превращения электричества в звуковые сигналы. Однако в спортивной рыбалке применяются только пьезоэлектрические устройства. Они достаточно компактные и подходят для небольших плавательных средств.

В пьезоэлектрических преобразователях главным элементом является кристалл, состоящий из титаната бария (иногда применяются и другие кристаллы) покрытого металлом. Кристалл помещают в корпус из металла или пластика, после чего заливают специальными материалами, которые могут проводить звук.

В современных эхолотах используются преобразователи, которые, отличаются друг от друга по конкретным признакам.

Вот они:

  • Различный состав данных поставляемых преобразователем.
  • Разный состав материалов для корпуса эхолота.
  • Число лучей.
  • Различные варианты установки прибора на плавательном средстве.

Состав данных

Главная задача преобразователя установленного в эхолоте получать отражаемые сигналы и таким образом демонстрировать рыбаку, что происходит под водой.

Это его важнейшая функция. Однако современные приборы могут иметь внутри дополнительные датчики, которые позволяют также определять температуру воды за бортом и скорость движения лодки. Все эти данные выводятся на дисплей и позволяют рыбаку лучше ориентироваться в окружающей обстановке.

Материал

Корпус преобразователя вмэхолотах может быть изготовлен из пластмассы или металла (это может быть бронза или латунь):

  • Преобразователь в пластмассовом корпусе лучше использовать на стеклопластиковых или металлических лодках. Для деревянных судов он не подходит, так как может быть серьезно поврежден набухшей древесиной после спуска лодки на воду.
  • Преобразователь в металлическом корпусе хорошо подходит для деревянных или стеклопластиковых лодок. Что касается металлических суден, то здесь могут быть проблемы из-за электрохимической реакции, которая возникает между бронзовым корпусов прибора и металлическим корпусом лодки.

Такая реакция может привести к повреждению плавательного средства. Еще одним плюсом металлического преобразователя является устанавливаемые в него (зависит от модели) датчики благодаря которым на экран выводятся данные о скорости лодки и температуре воды.

Количество лучей

Первые эхолоты, появившиеся в продаже, были однолучевыми. Однако вскоре появились приборы с двумя лучами. Сейчас они довольно быстро вытесняют устройства с одним лучом, так как имеют ряд преимуществ. При этом цена на двулучевые эхолоты все время снижается.

Основное преимущество приборов с двумя лучами заключается в их возможности работать как на одной частоте (50 или 200 кГц), так и сразу на двух.

Сейчас производители (компания Humminberd) уже наладили выпуск эхолотов, которые способны сформировать 3 и даже 6 лучей. Такие устройства способны просматривать более широкую зону под водой. При этом на экране пользователь видит трехмерную картинку.

Место установки

Преобразователь устанавливается тремя разными способами:

  1. Во внутренней части корпуса.
  2. На транце.
  3. На днище.

Рабочая частота эхолота

Большинство современных моделей эхолотов работают на частоте 192-200 кГц. Однако есть также модели использующие частоту 50 кГц. У каждого из этих видов устройств есть свои минусы и плюсы. Рассмотрим их:

  • Приборы с частотой 192-200 кГц. Такие эхолоты могут одинаково эффективно работать как в пресной, так и соленой воде. Лучшие свои качества такие устройства показывают на маленькой глубине в момент, когда лодка плавно скользит по поверхности, не производя много шума. Также благодаря применению более высоких частот такие эхолоты способны лучше различать объекты под водой. Например, он сможет различить две рыбы, даже если они плывут рядом. На экране это отобразится как два объекта, а не один.
  • Эхолоты, работающие на низких частотах, менее точно отображают объекты, но зато они способны работать в глубокой воде. Дело в том, что вода гораздо быстрее поглощает высокие звуки, чем низкие. Кроме того модели приборов работающие на низкой частоте могут охватывать большую территорию. Поэтому многие опытные рыбаки выбирают именно такие эхолоты.

Влияние среды распространения ультразвуковых волн

Эхолот это прибор, который работает в воде, распространяя ультразвуковые волны. Поэтому владельцам прибора нужно понимать, как ультразвук проходит через толщу воды и как это влияет на его работу.

Вот перечень характеристик окружающей среды, которые влияют на эффективность работы преобразователя:

  • Затухание в воде энергетики звуковых волн.
  • Наличие в воде отражения зву3ковых волн.

Как поймать больше рыбы?

Я уже довольно давно занимаюсь активной рыбалкой и нашел много способов как улучшить клев. И вот самые эффективные:

  1. . Привлекает рыбу в холодной и теплой воде с помощью феромонов, входящих в состав и стимулирует ее аппетит. Жаль, что Росприроднадзор хочет ввести запрет на его продажу.
  2. Более чувствительные снасти. Обзоры и инструкции по другим типам снастстей вы можете найти на страницах моего сайта.
  3. Приманки с использованием феромонов.
Остальные секреты успешной рыбалки вы можете получить бесплатно, читая другие мои материалы на сайте.

Затухание энергии

Затухания энергии звука в воде происходит из-за двух составляющих. Первое – это затухание в свободном пространстве оно зависит не от окружающей среды, а только от дальности, на которой звук теряет энергию. Второе затухание волн в месте распространения в этом случае среда играет важную роль.

В процессе активной работы ультразвук проходит расстояние до объекта два раза. При этом затухание звука в такой среде составляет четвертую степень глубины.

Затухание энергетики звука в воле происходит по причине ее поглощения и рассеивания, различными частицами (минеральными и органическими), а также наличием в воде микроорганизмов.

Наименьшее влияние на энергию ультразвука оказывает холодная пресная вода. Это плотная среда, в которой сложно выжить микроорганизмам и другим частицам, которые обычно мешают распространению звука. В такой воде хорошо работают эхолоты, как с низкими частотами, так и с высокими.

Хуже всего энергия ультразвука распространяется в соленой теплой воде (морское мелководье). В такой среде находится огромное количество микроорганизмов и других частиц, которые поглощают энергию звука.

Еще хуже эхолот работает во время волнения морской воды, так как в этот момент образуется большое количество пузырьков воздуха мешающих проходить звуковым волнам.

Наличие отражений

Отражения в воде как впрочем, и в любой другой среде происходит из-за наличия неоднородностей, которые отличаются другой плотностью.

Если говорить про водоем то это может быть:

  • камень на дне;
  • наслоения грунта;
  • рыба;
  • растения;
  • пузырьки воздуха.

Также это может более плотный слой воды (с другой температурой или составом). Особенно часто такое явление встречается в водоемах с большими глубинами.

Теперь клюет только у меня!

Эту щуку поймал с помощью активатора клева. Больше никаких рыбалок без улова и поисков оправданий своему невезению! Настало время все изменить!!! Лучший активатор клева 2018 года! Сделано в Италии...

Отражающие свойства дна

Как известно дно большинства водоемов (от пруда до моря) имеет разнообразный состав включающий грунт с разными характеристиками плотности. Это может быть:

  • песок;
  • глина;
  • каменные плиты;
  • россыпь гальки.

Кроме того обычно дно в большей или меньшей степени покрыто растительностью. Каждый из перечисленных выше вариантов грунта имеет собственную способность позволяющую поглощать, а также отражать ультразвуковые волны.

Более твердые покрытия (камни, глина) отлично отражают сигнал, при этом на экране появляется широкая линия. Более мягкий грунт (песок, ил, а также растения) гораздо хуже отражает волны, демонстрируя на мониторе тонкую полоску. Такой грунт просвечивается ультразвуком насквозь.

Влияние расположения преобразователя

Преобразователь эхолота может устанавливаться для работы тремя разными способами, это:

  1. Преобразователь с установкой внутри корпуса.
  2. Преобразователь с установкой на транец.
  3. Преобразователь с установкой на корпусе.

Рассмотрим каждый из этих способов в отдельности.

Преобразователь с установкой внутри корпуса

Этот вид преобразователей устанавливается внутри корпуса лодки.

Причем его можно применять, только на судах имеющих стеклопластиковый корпус. Такой вид преобразователя не может нормально работать на лодках, сделанных из металла, дерева или многослойного стеклопластика.

Устройство прикрепляется в лодке при помощи клея из эпоксидной смолы. Использовать для этой цели другие способы крепления (пластичный герметик) не стоит, так как это может помешать проводке акустики. Преобразователь должен размещаться таким образом, чтобы между ним и водой находилась только обшивка лодки без каких-либо дополнительных вставок.

Используя такую установку преобразователя, рыбак должен понимать, что слой стеклопластика, через который проходят акустические волны, ухудшает возможности прибора по обнаружению рыбы.

Преобразователь с установкой на транец

Данный вид преобразователей устанавливается на специальный кронштейн, который находится на транце и располагается ниже линии воды. Кронштейн сделан таким образом, что может при необходимости откидываться назад (например, при наезде на препятствие) и таким образом уберегает преобразователь от механических повреждений.

Достоинства такого способа установки:

  • быстрый и простой монтаж;
  • также возможность демонтажа;
  • легкое обслуживание.

Главным недостатком этого способа крепления специалисты считают близкое расположение гребного винта. При его вращении возникает большое количество пузырьков воздуха, которые мешают правильной работе эхолота. Поэтому пользуясь подобным устройством, рыбаку не следует разгонять лодку, так как это вызывает волнение воды.

Данный вид преобразователей « Truehull» устанавливается в специальное отверстие, которое находится в корпусе лодки.

Такой способ установки преобразователя считается самым эффективным.

Его минусом является достаточно большая стоимость. Подобный вид преобразователей предназначен для установки на большие и мощные лодки с подвесным или стационарным мотором.

Обычно он крепится ближе к винтам в плоской части корпуса. Если судно не имеет плоского дна, тогда для крепления используют пластмассовые прокладки. Они позволяют установить преобразователь, однако ухудшают управляемость лодки на большой скорости.

Этот вид преобразователей работает очень эффективно и позволяет рыбаку получить четкий сигнал.

Влияние скорости движения на работу преобразователя

Еще совсем недавно подобный вопрос мало кого интересовал, так как большинство рыбаков обладали плавательными средствами, которые не могли развивать большую скорость.

Однако сейчас, когда лодки стали значительно быстрее многие рыбаки стали замечать на экране своих эхолотов возникающие помехи, в некоторых случаях изображение пропадает совсем.

Основная причина данной проблемы – это кавитация явление, которое нарушает непрерывное течение жидкости. Если лодка построена правильно тогда вода плавно огибает ее внутреннюю часть. Если же на корпусе судна находится большое количество выступающих деталей, тогда вокруг них в процессе движения образовываются завихрения воды.

Турбулентное движение водных потоков создает большое количество пузырьков воздуха, которые поглощают волны ультразвука и таким образом скрывают от прибора пространство под лодкой.

Больше всего от этой проблемы страдают владельцы преобразователей, которые крепятся на транце судна.

Даже сам транец с кронштейном создает кавитацию, кроме того такой вид преобразователей устанавливается вблизи винтов и поэтому его эффективность заметно падает. Поэтому владельцам мощных лодок лучше всего приобретать эхолоты с преобразователем системы «Truehull». Он гораздо лучше переносит кавитацию и наиболее качественно демонстрирует обстановку под водой.

Чувствительность эхолота это ключевое понятие характеризующее способность устройства находить даже очень слабый отраженный сигнал. При этом прибор должен отображать полученные данные, не смотря на всевозможные акустические помехи и посторонние шумы.

Чувствительность конкретного эхолота определяется его способностью находить самые маленькие предметы на большой глубине.

Приемник, установленный в приборе, может улавливать сигналы в самом широком диапазоне. Ведь ему приходится принимать мощные отраженные сигналы, энергия которых равнозначна четвертой степени глубины.

В этом потоке он должен суметь распознать и получить слабый сигнал от небольшого предмета, который может находиться на большой или маленькой глубине.

Так как необходимость требует от устройства способность работать в разных диапазонах, у многих рыбаков при выборе чувствительности эхолота, появляется некоторое противоречие . Оно проявляется в том, что высокая чувствительность дает возможность наблюдать за самыми разными объектами на максимально большой глубине.

Однако в этом есть и отрицательная сторона. Например, на небольшой глубине эхолот с высокой чувствительностью принимает сигналы боковыми лепестками вне зоны основного луча.

Для того чтобы уйти от этого противоречия производители снабжают свои устройства специальными регуляторами чувствительности. Раньше такую настройку пользователю приходилось делать в ручную.

Однако последние модели эхолотов, способны автоматически устанавливают нужные параметры чувствительности. Причем эта установка может меняться в зависимости от смены окружающей обстановки (например, от перемены глубины). Это очень удобно и поэтому большинство рыбаков пользуется этим средством.

Установка эхолота

Установка эхолота это важнейшая деталь, которая при правильном ее исполнении позволит рыбаку с большой долей вероятности наблюдать обстановку под водой.

Это позволит гораздо быстрее найти желаемую добычу, а также подобрать максимально удобное место для рыбалки.

Установка излучателя

Преобразователь – это самая важная часть эхолота.

Именно от его работы зависит, насколько быстро владелец прибора сможет отыскать рыбу. Поэтому правильная установка преобразователя это та операция, от которой в конечном итоге зависит, то насколько эффективно будет работать эхолот.

Излучатель нужно крепить в таком месте обшивки, где нет технологических отверстий, большого числа заклепок и других неровностей которые создают в процессе движения судна водные завихрения и большое количество пузырьков воздуха.

Установка преобразователя на транец

В этом случае преобразователь крепится к специальному кронштейну на транце.

Такое крепление обладает рядом преимуществ:

  • быстрый монтаж;
  • также быстрый демонтаж;
  • удобное обслуживание.

Кроме того кронштейн для преобразователя обладает специальной возможностью откидываться в случае наезда лодки на препятствие. Это значительно снижает риск механических повреждений.

Установка преобразователя «In Hull» в корпусе

Этот метод установки подходит лодкам из стеклопластика. Он более удобный и надежный чем крепление на транец. Однако такая установка обойдется хозяину плавательного средства дороже.

Смысл установки заключается в том, что преобразователь устанавливается в специальное отверстие внутри корпуса лодки. Сейчас некоторые производители стеклопластиковых лодок делают отверстия для монтажа преобразователя еще на заводе. Это конечно облегчает монтаж прибора.

Отверстие для преобразователя должно находиться перед килем или винтом. Это позволит избежать помех, которые возникают в процессе образования большого количества пузырьков воздуха. Если дно лодки не плоское тогда устройство устанавливается на специальную подкладку, которая крепится на обшивке.

Эксплуатация эхолота

Для того чтобы правильно эксплуатировать эхолот нужно знать как он работает, а также какие возможности доступны конкретной модели прибора.

Отображаемая информация

Современные модели эхолотов предлагают пользователям большое количество полезной информации о том, что происходит под водой.

Вот некоторые параметры, которые показывает устройство:

  1. Глубина . Прибор выводит на экран показатель глубины под дном лодки.
  2. Напряжение. На экране видно, какое напряжение задействует эхолот.
  3. Температура. Прибор (не все модели) обладает датчиком, который фиксирует температуру воды за бортом.
  4. Скорость . Прибор (не все модели) может показывать скорость движения судна.
  5. Рыба. Эхолот фиксирует рыбу в воде, демонстрируя специальный символ.
  6. Термоклины. Самые последние модификации эхолотов могут отображать термоклины в толще воды.
  7. Строение и рельеф дна. Эхолот демонстрирует пользователю четкую картину рельефа дна, а показывает данные о структуре грунта.
  8. Частоты . На экране отображается частота, на которой работает прибор (50, 200 кГц).

Управление эхолотом

Эхолоты разных моделей в основном управляются при помощи кнопок и меню, которое выводится на экран.

Вот перечень функций, которые они выполняют:

  • кнопки управления (со стрелками). Они нужны для того чтобы выбирать подходящие функции в меню управления. Также при их помощи происходят настройки и вводятся данные;
  • кнопка «Enter». Она подтверждает команды, выключает и выключает панель (меню) управления и настроек;
  • копка «SETUP» . С ее помощью можно включить или выключить панель настроек;
  • кнопка «POWER». Эта кнопка предназначена для включения или выключения питания прибора. А также она может включать подсветку.

Меню управления эхолота содержит множество параметров, которые помогают пользователю ориентироваться в ситуации под водой.

Вот эти параметры, отображаемые на экране:

  • Глубина. Цифра, показывающая глубину под дном лодки.
  • Напряжение. Цифра, демонстрирующая текущее напряжение источника питания.
  • Температура воды. Этот параметр (цифра) имеется не у всех приборов. Он демонстрирует температуру воды за бортом.
  • Скорость движения. Цифра, показывающая с какой скоростью, плывет лодка.
  • Шкала глубин. На ней можно видеть рельеф дна и размер глубин.
  • На экране также есть символы, которые позволяют получать сигнал в тот момент, когда прибор замечает что-то важное.

Меню прибора дает доступ пользователю к установкам и функциям, которые наиболее часто используются в процессе рыбной ловли.

А именно:

  • шкала глубин;
  • масштабирование;
  • чувствительность и ее регулировка.

Давно вы имели по-настоящему КРУПНЫЙ УЛОВ?

Когда последний раз ловили десятки ЗДОРОВЕННЫХ щук/карпов/лещей?

Нам всегда хочется получать результат от рыбалки – поймать не три окунька, а десяток килограммовых щук – вот это будет улов! Каждый из нас мечтает о таком, но далеко не каждый умеет.

Хорошего улова можно достичь (и мы это с вами знаем) благодаря хорошей прикормке.

Ее можно приготовить в домашних условиях, можно купить в рыбацких магазинах. Но в магазинах дорого, а чтобы приготовить прикормку дома, нужно потратить уйму времени, да и, по праве говоря, далеко не всегда домашняя прикормка хорошо работает.

Вам знакомо то разочарование, когда вы купили прикормку или приготовили ее дома, а поймали три-четыре окунька?

Так может быть пора воспользоваться действительно рабочим продуктом, эффективность которого доказана как научно, так и практикой на реках и прудах России?

Дает тот самый результат, который мы не можем достичь сами, тем более, стоит она дешево, что отличает от других средств и времени тратить на изготовление не нужно – заказал, привезли и вперед!


Конечно, лучше один раз попробовать, чем тысячу раз услышать. Тем более сейчас – самый сезон! при заказе это отличный бонус!

Узнайте подробнее про приманку!

Эта самая современная американская разработка пока мало известна большинству рыбаков. Находясь в той же ценовой группе, что и трехмерные приборы Interphase позволяют сканировать водную толщу на значительном расстоянии (до 360 м) впереди лодки, причем, в реальном времени. У всех обычных эхолотов, к которым относятся все Humminbird, Eagle, Lowrence, Raytheon, Apelco, BottomLine и др. зондирующий луч направлен вертикально вниз, а изображение на экране получается как сдвинутая во времени картинка. У впередсмотрящих приборов Interphase используются передовые разработки компьютерной томографии - 90 градусный датчик направлен вперед, а сканирующий луч имеет ширину около 1 градуса. Это позволяет показать детально рельеф дна, плавающие предметы, рыбу, камни и препятствия впереди судна подобно подводному радару, постоянно обновляя информацию. Таких возможностей нет ни у каких других эхолотов. Владелец прибора получает в свое распоряжение как бы два прибора в одном. Первая функция просмотра вперед наиболее эффективно может использоваться для поиска ям, мест установки рыболовных снастей и для предотвращения наезда на подводные препятствия. Вторая функция - режим просмотра водной толщи под судном, аналогична всем остальным эхолотам второй группы: детальное исследование структуры дна, поиск рыбы.

Выбор эхолота.

Очень важной потребительской характеристикой эхолота является качество экрана - его размер, разрешение и количество цветов. Чем больше количество пикселей и крупнее экран, тем более точно изображаются контуры наблюдаемых объектов, тем более мелкие детали доступны наблюдению и тем лучше разрешаются (разделяются) наблюдаемые объекты - элементы контура дна, водоросли, коряги и рыба. Кроме разрешающей возможности экран характеризуется количеством цветов. Современные черно-белые экраны воспроизводят 10 и более оттенков серого цвета. Это уже позволяет не только разделить предметы на условно «твердые» и «мягкие» по черному или светло-серому цвету (одного оттенка) их изображений, но и понимать сложные ситуации, когда на экране одновременно изображаются поверхность дна, валуны, растительность, рыба и т.д. Это достигается благодаря индивидуальному оттенку окраски каждого из наблюдаемых предметов. Но если черно-белое многооттеночное изображение только позволяет различать предметы разной плотности, то цветное изображение делает эти различия существенно более детальными и контрастными. Важной характеристикой является мощность излучения. Для обеспечения реальной возможности обнаружения рыбы в широком конусе (50-60 град) на малых и средних глубинах необходима мощность сигнала не менее 600Вт. Не менее важна процедура обработки сигнала. Эту процедуру, к сожалению, невозможно проверить при покупке эхолота. Но на водоеме вы можете протестировать свой эхолот простым способом: современный даже самый дешевый эхолот для рыбалки должен четко фиксировать блесну размером 2-3см. на глубине 5м., на трехметровой глубине должна быть заметна мормышка среднего размера. Любителям подледного лова рыбы рекомендуется уточнить допустимый диапазон рабочих температур эхолота. А также убедиться в возможности применения предлагаемого источника питания при отрицательных температурах. Если вы предполагаете использовать эхолот при подледном лове рыбы или с небольшой, например, надувной лодки, рекомендуется при покупке получить консультацию по портативной комплектации эхолота для конкретного способа его применения.

Немного теории.

В базовую комплектацию эхолота входит, как правило, стандартный ультразвуковой датчик. Этот датчик является одновременно передающей антенной, излучающей ультразвуковые сигналы, и приемной антенной, принимающей отраженные ультразвуковые сигналы.

Излучаемые сигналы можно представить в виде пучка «щупов», причем мощность (или «щупов» максимальна в центре и падает по мере удаления от центрального направления к периферии. В результате луч представляется в форме лепестка, как это изображено на рисунке справа.

В технике принято описывать подобные лучи шириной центральной наиболее мощной части луча и дальностью, на которую распространяется эта центральная часть. Дальностью действия луча принято считать 85% от дальности действия (длины) его центрального«щупа». Углом луча считается угол, содержащий только те «щупы», которые достигают заявленной дальности действия луча. Например, если в описании эхолота указано, что угол луча его датчика составляет 20град., а дальность – 200м., то это означает, что «длина щупов» внутри 20-градусного конуса не меньше 200м. и потому гарантированная дальность действия внутри 20-и градусного конуса составляет 200м. Но если вас интересуют меньшие глубины, то реальный угол обзора эхолота может оказаться существенно шире! (рисунок справа)

Фирма Lowrance Electronics внедряет в свои эхолоты специальную процедуру (ASP ) обработки принятых ультразвуковых сигналов, позволяющую на глубинах до 20-30м. при использовании стандартного 20-градусного датчика получить реальный угол обзора до 50-60град.

Кроме стандартного 20-градусного датчика эхолот может быть укомплектован узким 8-и или 12-и градусным датчиком. Концентрация излучаемой энергии в более узком луче позволяет увеличить гарантированную дальность действия эхолота и, что бывает не менее важно, повысить точность определения рельефа дна.

Ниже приводится упрощенное описание принципов работы любительских эхолотов.
Каждый из узких ультразвуковых «щупов» распространяется в воде до «столкновения» с препятствием, которым является граница сред с разной плотностью, например, «вода-рыба», «вода-камень», «вода-воздух» и т.д. «Щуп разбивается» об это препятствие, а его энергия рассеивается во все стороны. Часть этой рассеянной энергии достигает датчика эхолота и фиксируется.

Эхолот фиксирует расстояние, на котором находится препятствие и мощность отраженного сигнала. На правом краю экрана эхолота формируется столбец со шкалой глубин и наносится штрих на зафиксированном расстоянии. Цвет штриха соответствует мощности полученного сигнала. При последующем измерении этот столбец без изменения сдвигается на экране на одну позицию влево, а результат нового измерения помещается в освободившийся крайний правый столбец. И так далее: при поступлении нового измерения все ранее полученные сдвигаются на один столбец влево, а последнее измерение всегда находится на правом краю экрана. Таким образом изображение все время перемещается справа налево.

Справа поступает новая информация, по мере устаревания она сдвигается к левой границе экрана и пропадает.

Если объект достаточно велик и «об него разбивается множество щупов», то изображение этого объекта на экране эхолота представляется в виде полосы. Это объясняется тем, что расстояния от передатчика до различных элементов объекта отличаются и соответствующие им штрихи заполняют целый диапазон глубин от расстояния до ближайшего элемента до расстояния до самого удаленного элемента. Поверхность дна, например, на малых и средних глубинах представляется в виде широкой полосы. Верхняя граница этой полосы соответствует ближайшей точке донной структуры. Расстояние до этой точки и считается глубиной. Нижняя граница полосы - это расстояние до наиболее удаленной части структуры дна, находящейся в луче.
На любом расстоянии между этими границами обязательно найдется элемент донной структуры, который добавит свой штрих в изображение дна, в результате весь диапазон закрашивается и получается полоса. Эту полосу обычно называют «мертвой зоной», т.к. находящаяся в ней рыба не изображается на экране.

Ближним элементом структуры дна может оказаться, например, вершина крупного валуна, находящегося несколько в стороне. Но широкий луч своими периферийными «щупами» фиксирует валун, а рыба, находящаяся прямо под датчиком, но дальше верхней точки валуна, оказывается в «мертвой зоне». Узкий луч не «захватит» находящийся в стороне валун, и в результате эхолот покажет реальную глубину под датчиком и находящуюся у дна рыбу.

Наличие «мертвых зон» практически исключает возможность использования дополнительных лучей для бокового обзора на малых и средних глубинах. Реальная дальность бокового обзора любительских эхолотов оказывается очень мала и примерно равна глубине. Действительно, на небольших глубинах реальная ширина луча бокового обзора может составлять 50-60 град. и как бы вы его не направляли он вскоре достигает поверхности дна (или поверхности воды). А на расстояниях, превышающих расстояние до ближайшей точки поверхности дна (или поверхности воды), образуется «мертвая зона». Поэтому боковой обзор применяется только на глубоких озерах и у скалистых обрывистых берегов.

Таким образом, не всегда, чем шире обзор эхолота – тем лучше. Как правило, расширение обзора приводит к потере деталей. Компромиссным решением для глубин до 20-30 метров является выбор стандартного 20-и градусного датчика, которым обычно и комплектуется эхолот. А для комплектации нестандартным датчиком рекомендуется проконсультироваться со специалистами.

Настройка.

При включении эхолота он автоматически выбирает настройки, близкие к оптимальным для поиска рыбы и определения рельефа дна. Единственными недостатками автоматических настроек являются измерения глубины в футах и включение режима идентификации рыбы. Но это легко исправляется с помощью меню. Некоторые эхолоты запоминают установленные вами настройки и они автоматически возобновляются при следующих включениях эхолота.

Режим идентификации рыбы, когда эхолот с помощью специальной программы пытается различать изображения рыб и «не рыб» еще далек от совершенства. И это отмечают не только рыболовы, но и производители эхолотов. Этот режим может быть полезен только начинающим пользователям эхолотов, которым изображения символов рыб понятнее каких-то странных дуг и полос. Но после накопления даже небольшого опыта они соглашаются, что эти дуги и полосы несут существенно более точную и полную информацию, необходимую для обнаружения рыбы вблизи дна, в складках дна, скрывающихся в корягах и среди растительности.

Режим идентификации рыбы однако очень эффективен и нагляден при поиске крупных косяков рыбы, особенно, «в полводы» и полностью пренебрегать им не следует.

Настройки эхолота, как правило меняют, для получения более удобного вида изображения: для просмотра увеличенного изображения, включения многооконного вида экрана и т.п. Основные рабочие настройки эхолота (чувствительность, диапазон зондируемых глубин и т.д.) требуется менять только для решения специфических задач, например, для более точного определения глубины. Определение рельефа с помощью широкого (около 50 угл.град.) ультразвукового луча похоже на попытку зондирования дна толстым щупом, диаметр которого близок глубине. При этом скрадываются все неровности дна меньшие по площади, чем основание щупа, а измеренная глубина над наклонной поверхностью явно занижается. Толстый щуп просто упирается в ближайшую выступающую точку поверхности дна, а все объекты ниже этой точки попадают в «мертвую» зону и не наблюдаются.

Уменьшая чувствительность эхолота мы реально уменьшаем ширину луча, с помощь которого зондируем дно и ищем рыбу. Чем уже луч – тем точнее и подробнее мы можем исследовать рельеф дна. Но при этом мы можем переступить грань, за которой эхолот перестает «чувствовать» даже крупную рыбу.

При использовании эхолота для изучения рельефа и придонных слоев в профессиональных целях, возможно, окажется недостаточно просто уменьшать чувствительность эхолота и потребуется либо применять узколучевой датчик, либо корректировать диаграмму направленности стандартного датчика.

Краткие выводы.

Для определения рельефа дна и текущей глубины достаточно простого и недорогого эхолота.
Начинающим могу порекомендовать недорогую Piranha Max10 (рисунок вверху страницы).
Простое управление всеми настройками эхолота.
Мне эта игрушка прослужила верой и правдой не один сезон. Не раз ударялся трансдьюсером (датчиком) в берег и топляки, ронял прибор на пол.

У Max 10-й достаточно высокое разрешение - 160 x 132 пикселя, чёткая картинка дна, рыбы и подводных объектов, подсветка для ночной рыбалки. Немаловажно наличие в нем сигнализации глубины (Depth Alarm), т.е. если глубина в месте замера становится менее, введенного вами критического значения,- прибор подаст сигнал.

Встроеный датчик температуры плюс все типичные опции:
1. Fish ID+™ (обнаружение и идентификация рыбы по "калибру")с отображением глубины
2.Регулировка увеличения (Zoom)
3.Чувствительности (Sensitivity)
4.Вида дна (Bottom View) (каким цветом оно будет представлено)
5.Скорости перемещения экрана (Chart Speed) (для меня было не актуально, всегда устанавливал максимум "5")

Крепление прибора и трансдьюсера быстросъёмное, позволяет использование Эхолота на взятых на прокат лодках.

Напряжение питания, В 10-20, постоянный ток
Средняя потребляемая мощность 100 Вт
Габариты (ШxВxГ), мм 110 x 155 x 80 (с креплением)

Если же Вашей задачей является определить наличие в водоеме рыбы и детально исследовать дно, то необходим эхолот из второй ценовой группы с шириной луча не менее 50 градусов, причем не важно, 2-х или 3-х мерный, 2-х или многолучевой. Рыба не стоит на месте. Важнее знать, что она рядом с вами, а не справа или слева по борту. Мое личное мнение - для поиска хищной рыбы эхолот бесполезен. Вернее, по эхолоту можно искать бровки, коряги, смотреть твердость дна, НО НЕ ИСКАТЬ РЫБУ!

Очень важна настройка эхолота, причем настраивать его надо каждый раз заново, в зависимости от того, где мы ловим, какова сила ветра, и какой вес приманки мы используем. Основной секрет заключается в том, что на экране эхолота мы должны видеть игру нашей приманки. Если мы видим игру приманки, то ловля будет очень эффективной. Мы можем облавливать, держа приманку буквально в 5 см над дном, не касаясь дна, и изображать нашей приманкой, грубо говоря, игру безмотыльной мормышки. На экране видна рыба, которая выходит к приманке, зачастую даже видна атака нашей приманки.

Мы проплываем, видим, что появилась рыба. Потом в зону досягаемости рыбы входит наша приманка.

Кроме того, благодаря экрану эхолота, можно даже не заставлять себя считать. Ведь когда мы ловим зимой на вертикальную блесну или на балансир, всегда приходится про себя считать: раз, два, три, четыре, пять, шесть, семь, восемь, пауза. И эта пауза очень важна, как и при игре отвесным блеснением.

При ловле с эхолотом, который видит нашу приманку, мы можем избавиться от изнуряющего подсчета. Ловя в отвес, мы все время смотрим на экран эхолота и по длине пиков можем, не считая, определить, что длина пика совпадает. Сделали взмах, увидели, что опять совпадает – сделали еще один взмах. Это очень эффективно и легко, такая ловля не напрягает.

На экране эхолота видны полоски – это наша приманка. По длине полосок можно отмерять паузу. Мы отмерили два раза паузу – 8 секунд. Считать не нужно, мы по эхолоту видим полоски одинаковой продолжительности. Я немного опускаю приманку, на экране эхолота видно, что она пошла над самым дном. По длине полоски определяем, что прошло еще 8 секунд.

На нашем эхолоте мы отключили сигнал идентификации рыбы, и вместо рыбок мы видим на экране линии (рис. 54-37) – наклонные вверх, вниз, то есть рыба идет с одной стороны, с другой, линия то поднимается выше, то опускается. Но на дне мы рыбы не видим. Если бы здесь был судак, мы бы увидели такие полоски, которые буквально приклеивались бы ко дну. А поскольку рыба находится выше, то это, скорее всего, лещ. Как правило, леща всегда сопровождает судак, значит, и он находится где-то неподалеку.

Возможность увидеть нашу приманку на экране эхолота зависит от того, насколько она велика. Большую приманку мы можем увидеть даже на низкой чувствительности. Но если приманка небольшая, необходимо повысить чувствительность эхолота. Это первая настройка эхолота.

Вторая настройка заключается в том, что мы скорость прокрутки экрана должны ставить на максимум – это будет наиболее реальная картинка дна, и мы будем видеть рыбу и приманку в реальном режиме времени.

И третье – необходимо поставить датчик таким образом, чтобы мы увидели нашу приманку. Опускаем руку в воду и начинаем плавно крутить датчик, словно ищем фонариком что-то на дне. И таким образом, вращая датчик эхолота, мы должны добиться такого положения, чтобы увидеть приманку. Отметим, что если изменится скорость дрейфа, увеличится сила ветра, то приманка выйдет из конуса датчика эхолота, и надо будет опять подкорректировать настройку.

Для каждого нового варианта приманки необходимо слегка корректировать направление луча датчика эхолота, чтобы все время ее видеть. Если мы все время видим приманку, то ловля становится очень эффективной и превращается из мучения удовольствие.

Например, мы видим на эхолоте корягу. Мы можем приподнять нашу приманку и, играя прямо над корягой, огибая ее, обойти ее приманкой, не зацепившись. Звучит как из области фантастики, на самом деле это так и есть.

Проводя опрос наших посетителей, что 80% рыбаков столицы сберегают своивклады в банках Москвы . А остальные 20% вообще не доверяют подобного вида структурам!


Другие рыболовные статьи по теме:


    Придя на водоем, первым этапом мы сверлим лунку, считая количество оборотов бура. Посчитав их, следующую лунку мы будем сверлить на 2 оборота меньше, чтобы не просверлить до конца, вытаскиваем крошку, и только потом досверливаем. Тогда лунку можно...


    На стоячем водоеме гораздо эффективнее использовать электромотор. Электромотор здесь незаменим, потому что, во-первых, при ловле в ветер мы можем использовать его и плыть вдоль бровки змейкой на первой скорости, или можем задним ходом плыть вдоль...


    Какие преимущества мы получаем при использовании этих оснасток? Во-первых, приманкой можно играть более деликатно. Мы можем остановить проводку и начать на месте подергивать кончиком спиннинга, и эти колебания будут передаваться приманке. ...


    Джиговые приманки самодостаточны, и в принципе, улучшать их нет необходимости. И если идет речь об улучшении джиговых приманок, то в первую очередь это касается пассивных приманок – поролонок, полиуретановых рыбок. Сама по себе джиговая приманка...


    В последнее время очень популярными становятся приманки, которые называют «съедобной резиной». Что это такое? Это приманка, в которую добавляют всевозможные химические вещества, разработанные специалистами. Вещества эти воздействуют на рыбу...

ПОКАЗАТЬ

СВЕРНУТЬ

Современные приборы по типу эхолота стали незаменимыми помощниками для рыбаков. Ведь с помошью данных устройств пользователь может с легкостью выяснить особенности рельефа дна, наличие коряг, рыбы и даже температуры воды.

Сегодня на рынке представлено множество эхолотов от различных производителей, однако, особой популярностью, благодаря оптимальному сочетанию цена-качество, пользуются устройства компании Humminbird.

Первыми трудностями эксплуатации прибора является его настройка под себя. Инструкция зачастую нерусифицированна и не может дать точных ответов на распространенные вопросы новичков.

Ознакомившись с нашими рекомендациями, каждый рыбак в эхолоте найдет надежного помощника, а не просто «игрушку, придуманную маркетологами для выматывания денег». Ведь только разобравшись в особенностях эксплуатации прибора, настроив его под себя, рыбак сможет получить отличные результаты в качестве богатых уловов.

Общие рекомендации по наст ройке эхолота Humminbird

  • Производитель предлагает много разных серий и моделей эхолотов, отличающихся между собой техническими характеристиками. Соответственно каждая конкретная модель требует определенной настройки и подхода в целом. Скачайте русифицированную версию инструкции именно для вашего эхолота Humminbird.
  • Да экспериментам – не нужно бояться сделать хуже. Если что-то пойдет не так и эффективность работы эхолота с настройками пользователя снизится, можно всегда вернутся к заводским.
  • Определяем особенности ловли. Если ловля производится на глубине 5-8 метров, исследовать водные просторы нужно именно на этом расстоянии. Только с помощью ручных настроек можно добиться максимально точного результата и четкого отображения картинки.
  • Настройка критериев чувствительности прибора – единственно правильного показателя для всех без исключения условий ловли не существует. Настройку нужно производить в процессе эксплуатации, начиная с 75% и постоянно регулируя с целью найти оптимальный показатель.
  • Настройка цветовой гаммы – методом проб и ошибок выбирается оптимальный показатель, при котором изображение максимально четкое.
  • Шумоподавление и очистка изображения – данные настройки желательно выставить на самый нижний уровень. Таким образом, пользователь получит наиболее качественное изображение.