Сайт о телевидении

Сайт о телевидении

» » Ethernet – что это такое, кто придумал и как работает. Технология Ethernet и ее развитие

Ethernet – что это такое, кто придумал и как работает. Технология Ethernet и ее развитие

Технология Ethernet в своем стремительном развитии уже давно перешагнула уровень локальных сетей. Она избавилась от коллизий, получила полный дуплекс и гигабитные скорости. Широкий спектр экономически выгодных решений позволяет смело внедрять Ethernet на магистралях.

Metro Ethernet строится по трехуровневой иерархической схеме и включает ядро, уровень агрегации и уровень доступа. Ядро сети строится на высокопроизводительных коммутаторах и обеспечивает высокоскоростную передачу трафика. Уровень агрегации также создается на коммутаторах и обеспечивает агрегацию подключений уровня доступа, реализацию сервисов и сбор статистики. В зависимости от масштаба сети ядро и уровень агрегации могут быть объединены. Каналы между коммутаторами могут строиться на основе различных высокоскоростных технологий, чаще всего Gigabit Ethernet и 10-Gigabit Ethernet. При этом необходимо учитывать требования по восстановлению сети при сбое и структуру построения ядра. В ядре и на уровне агрегации обеспечивается резервирование компонентов коммутаторов, а также топологическое резервирование, что позволяет продолжать предоставление услуг при одиночных сбоях каналов и узлов. Существенного сокращения времени на восстановление можно добиться только за счет применения технологии канального уровня. Поддержка технологии EAPS — собственного протокола компании Extreme Networks, предназначеного для поддержки топологии, исключающей зацикливание трафика и ее перестроение в случае нарушений в кольцевых сетях Ethernet. Cети, использующие EAPS, обладают всеми положительным свойствами сетей SONET/SDH и Resilient Packet Ring (RPR) включая время восстановления топологии =50ms.

Уровень доступа строится по кольцевой или звездообразной схеме на коммутаторах Metro Ethernet для подключения корпоративных клиентов, офисных зданий, а также домашних и SOHO клиентов. На уровне доступа реализуется полный комплекс мер безопасности, обеспечивающих идентификацию и изоляцию клиентов, защиту инфраструктуры оператора.

Обзор технологии

Ethernet (эзернет, от лат. aether — эфир) — пакетная технология компьютерных сетей.

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат пакетов и протоколы управления доступом к среде — на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине 90-х годов прошлого века, вытеснив такие технологии, как Arcnet, FDDI и Token ring.

В стандарте первых версий (Ethernet v1.0 и Ethernet v2.0) указано, что в качестве передающей среды используется коаксиальный кабель, в дальнейшем появилась возможность использовать кабель витая пара и кабель оптический. Метод управления доступом — множественный доступ с контролем несущей и обнаружением коллизий (CSMA/CD, Carrier Sense Multiply Access with Collision Detection), скорость передачи данных 10 Мбит/с, размер пакета от 72 до 1526 байт, описаны методы кодирования данных. Количество узлов в одном разделяемом сегменте сети ограничено предельным значением в 1024 рабочих станции (спецификации физического уровня могут устанавливать более жёсткие ограничения, например, к сегменту тонкого коаксиала может подключаться не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100). Однако сеть, построенная на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов.

В 1995 году принят стандарт IEEE 802.3u Fast Ethernet со скоростью 100 Мбит/с, а позже был принят стандарт IEEE 802.3z Gigabit Ethernet со скоростью 1000 Мбит/с. Появилась возможность работы в режиме полный дуплекс.

Формат кадра

Существует несколько форматов Ethernet-кадра.

Первоначальный Variant I (больше не применяется).
Ethernet Version 2 или Ethernet-кадр II, ещё называемый DIX (аббревиатура первых букв фирм-разработчиков DEC, Intel, Xerox) — наиболее распространена и используется по сей день. Часто используется непосредственно протоколом интернет.

Novell — внутренняя модификация IEEE 802.3 без LLC (Logical Link Control).
Кадр IEEE 802.2 LLC.
Кадр IEEE 802.2 LLC/SNAP.
В качестве дополнения, Ethernet-кадр кадр может содержать тег IEEE 802.1Q, для идентификации VLAN к которой он адресован и IEEE 802.1p для указания приоритетности.
Некоторые сетевые карты Ethernet, производимые компанией Hewlett-Packard использовали при работе кадр формата IEEE 802.12, соответствующий стандарту 100VG-AnyLAN.
Разные типы кадра имеют различный формат и значение MTU.

Разновидности Ethernet

В зависимости от скорости передачи данных и передающей среды существует несколько вариантов технологии. Независимо от способа передачи стек сетевого протокола и программы работают одинаково практически во всех нижеперечисленных вариантах.

В этом разделе кратко описаны все официально существующие разновидности. По некоторым причинам, в дополнение к основному стандарту многие производители рекомендуют пользоваться другими запатентованными носителями — например, для увеличения расстояния между точками сети используется оптоволоконный кабель. Большинство Ethernet-карт и других устройств имеет поддержку нескольких скоростей передачи данных, используя автоопределение скорости и дуплексности, для достижения наилучшего соединения между двумя устройствами. Если автоопределение не срабатывает, скорость подстраивается под партнёра, и включается режим полудуплексной передачи. Например, наличие в устройстве порта Ethernet 10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт Ethernet 10/100/1000 — поддерживает стандарты 10BASE-T, 100BASE-TX, и 1000BASE-T.

Ранние модификации Ethernet

Xerox Ethernet — оригинальная технология, скорость 3Мбит/с, существовала в двух вариантах Version 1 и Version 2, формат кадра последней версии до сих пор имеет широкое применение.

0BROAD36 — широкого распространения не получил. Один из первых стандартов, позволяющий работать на больших расстояниях. Использовал технологию широкополосной модуляции, похожей на ту, что используется в кабельных модемах. В качестве среды передачи данных использовался коаксиальный кабель.

1BASE5 — также известный, как StarLAN , стал первой модификацией Ethernet-технологии, использующей витую пару. Работал на скорости 1 Мбит/с, но не нашёл коммерческого применения.

10 Мбит/с Ethernet

10BASE5, IEEE 802.3 (называемый также «Толстый Ethernet») — первоначальная разработка технологии со скоростью передачи данных 10 Мбит/с. Следуя раннему стандарту IEEE использует коаксиальный кабель, с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.

10BASE2, IEEE 802.3a (называемый «Тонкий Ethernet») — используется кабель RG-58, с максимальной длиной сегмента 200 метров, компьютеры присоединялись один к другому, для подключения кабеля к сетевой карте нужен T-коннектор, а на кабеле должен быть BNC-коннектор. Требуется наличие терминаторов на каждом конце. Многие годы этот стандарт был основным для технологии Ethernet.

StarLAN 10 — Первая разработка, использующая витую пару для передачи данных на скорости 10 Мбит/с. В дальнейшем, эволюционировал в стандарт 10BASE-T.

10BASE-T, IEEE 802.3i — для передачи данных используется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента 100 метров.

FOIRL — (акроним от англ. Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet, использующий для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя 1км.

10BASE-F, IEEE 802.3j — Основной термин для обозначения семейства 10 Mбит/с ethernet-стандартов использующих оптоволоконный кабель на расстоянии до 2 километров: 10BASE-FL, 10BASE-FB и 10BASE-FP. Из перечисленного только 10BASE-FL получил широкое распространение.

10BASE-FL (Fiber Link) — Улучшенная версия стандарта FOIRL. Улучшение коснулось увеличения длины сегмента до 2 км.

10BASE-FB (Fiber Backbone) — Сейчас неиспользуемый стандарт, предназначался для объединения повторителей в магистраль.

10BASE-FP (Fiber Passive)- Топология «пассивная звезда», в которой не нужны повторители — никогда не применялся.

Быстрый Ethernet (100 Мбит/с) (Fast Ethernet)

100BASE-T — Общий термин для обозначения одного из трёх стандартов 100 Мбит/с ethernet, использующий в качестве среды передачи данных витую пару. Длина сегмента до 200-250 метров. Включает в себя 100BASE-TX, 100BASE-T4 и 100BASE-T2.

100BASE-TX, IEEE 802.3u — Развитие технологии 10BASE-T, используется топология звезда, задействован кабель витая пара категории-5, в котором фактически используются 2 пары проводников, максимальная скорость передачи данных 100 Мбит/с.

100BASE-T4 — 100 MБит/с ethernet по кабелю категории-3. Задействованы все 4 пары. Сейчас практически не используется. Передача данных идёт в полудуплексном режиме.

100BASE-T2 — Не используется. 100 Mбит/с ethernet через кабель категории-3. Используется только 2 пары. Поддерживается полнодуплексный режим передачи, когда сигналы распространяются в противоположных направления по каждой паре. Скорость передачи в одном направлении — 50 Mбит/с.

100BASE-FX — 100 Мбит/с ethernet с помощью оптоволоконного кабеля. Максимальная длина сегмента 400 метров в полудуплексном режиме (для гарантированного обнаружения коллизий) или 2 километра в полнодуплексном режиме по многомодовому оптическому волокну и до 32 километров по одномодовому.

Гигабит Ethernet

1000BASE-T, IEEE 802.3ab — Стандарт Ethernet 1 Гбит/с. Используется витая пара категории 5e или категории 6. В передаче данных участвуют все 4 пары. Скорость передачи данных — 250 Мбит/с по одной паре.

1000BASE-TX, — Стандарт Ethernet 1 Гбит/с, использующий только витую пару категории 6. Практически не используется.

1000Base-X — общий термин для обозначения технологии Гигабит Ethernet, использующей в качестве среды передачи данных оптоволоконный кабель, включает в себя 1000BASE-SX, 1000BASE-LX и 1000BASE-CX.

1000BASE-SX, IEEE 802.3z — 1 Гбит/с Ethernet технология, использует многомодовое волокно дальность прохождения сигнала без повторителя до 550 метров.

1000BASE-LX, IEEE 802.3z — 1 Гбит/с Ethernet технология, использует многомодовое волокно дальность прохождения сигнала без повторителя до 550 метров. Оптимизирована для дальних расстояний, при использовании одномодового волокна (до 10 километров).

1000BASE-CX — Технология Гигабит Ethernet для коротких расстояний (до 25 метров), используется специальный медный кабель (Экранированная витая пара (STP)) с волновым сопротивлением 150 Ом. Заменён стандартом 1000BASE-T, и сейчас не используется.

1000BASE-LH (Long Haul) — 1 Гбит/с Ethernet технология, использует одномодовый оптический кабель, дальность прохождения сигнала без повторителя до 100 километров.

10 Гигабит Ethernet

Новый стандарт 10 Гигабит Ethernet включает в себя семь стандартов физической среды для LAN, MAN и WAN. В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3.

10GBASE-CX4 — Технология 10 Гигабит Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.

10GBASE-SR — Технология 10 Гигабит Ethernet для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля), используется многомодовое оптоволокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового оптоволокна (2000 МГц/км).

10GBASE-LX4 — использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому оптоволокну. Также поддерживает расстояния до 10 километров при использовании одномодового оптоволокна.

10GBASE-LR и 10GBASE-ER — эти стандарты поддерживают расстояния до 10 и 40 километров соответственно.

10GBASE-SW, 10GBASE-LW и 10GBASE-EW — Эти стандарты используют физический интерфейс, совместимый по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.

10GBASE-T, IEEE 802.3an-2006 — принят в июне 2006 года после 4 лет разработки. Использует экранированную витую пару. Расстояния — до 100 метров.

Технология Ethernet - самая распространенная для организации локальных сетей. Сегодня их количество превышает показатель в пять миллионов. Если говорить о компьютерах, которые оснащены сетевыми картами, работающими по технологии Ethernet, то их значительно больше.

Что же означает это понятие в узком понимании? Это сетевой стандарт, который был основан на экспериментальной сети Изернет Нетворк. Его разработала компания Ксерокс, он был реализован в семьдесят пятом году еще прошлого столетия. Хотя этот метод был опробован гораздо раньше в радиосети одного Гавайского университета. Случилось это во второй половине шестидесятых годов двадцатого столетия. Тогда использовались всевозможные способы случайных доступов к общей радиосреде. Называли этот метод тогда Aloha.

Ethernet-технология в восьмидесятом году двадцатого века претерпела изменения. Компании Дек, Интел и Ксерокс совместно создали, а также опубликовали стандарт Ethernet 2 для сети. Его основой был коаксиальный кабель, который стал самой последней версией этого фирменного стандарта технологии Ethernet. Именно поэтому данную версию называют Ethernet DIX или 2.

На основе этого стандарта был разработан еще один, который называется IEEE 802.3. У него очень много общего со своим предшественником, но некоторые отличия эта технология Ethernet все же имеет. В то время как в новом варианте отличаются друг от друга уровни MAC и LLC, у его старшего брата оба этих уровня были объединены в один канальный. У DIX-версии определяется протокол проверки конфигурации, отсутствующий новой версии. Да и формат кадра немного отличается, правда, максимальные и минимальные размеры кадров у обоих стандартов совпадают.

Технология Ethernet IEEE часто называется 802.3, в то время как DIX именуют просто Ethernet, без каких-либо обозначений. Делается это для того, чтобы отличить новый стандарт от предыдущего. В зависимости от того, какой тип физического окружения используется, технология Ethernet стандарта IEEE 802.3 предусматривает различные вариации (10 Base-5 вместе с 10 Base-2, также 10Base-T с10Base-FL и, наконец, 10Base-FB).

В девяносто пятом году двадцатого столетия был принят стандарт, который назвали Справедливо будет сказать, что он во многом не является самостоятельным. Это подтверждает тот факт, что его простое описание является дополнением основного стандарта 802.3 - разделом 802.3i. Аналогичным образом в 1998 году был принят новый - Gigabit Ethernet, который описан в другом разделе 802.3z этого основного документа.

Для отправки и получения двоичной информации по шнуру для всех видов на физическом уровне у технологии Ethernet, которыми обеспечивается десять мегабит в секунду, применяется Абсолютно все стандарты Ethernet, вместе с двумя последними, используют идентичный метод для разделения среды при передаче данных. Он называется CSMA/CD.

Мы с вами пробежались по всей истории этой технологии. На днях ей исполнилось уже сорок лет. Несмотря на это, она все еще популярна. Сегодня, конечно, появляются новые и более удобные технологии, но, скорее всего, технология Ethernet будет еще много и много лет обеспечивать работу наших сетей, поскольку она надежна, практична, благополучно используется многие десятилетия.

Рассмотрение принципов работы любой технологии, стоит начинать с истории ее создания. Технология Ethernet появилась как один многих из проектов корпорации Xerox PARC. В 1973 году сотрудником исследовательского центра компании Xerox Робертом Меткалфом была составлена докладная записка, описывающая принципы работы технологии Ethernet. Технология Ethernet основывалась на принципе «множественного доступа с контролем несущей и обнаружением коллизий» (CSMA/CD). В этом же году совместно Дэвидом Боггсом он создал первую сеть, объединявшую два компьютера на скорости 2,944 Мбит/с.

По прошествии лет благодаря стараниям Роберта Меткалфа ведущие компании Intel, Xerox, DEC начинают стандартизировать протокол Ethernet. Вскоре технология Ethernet начинает конкурировать с ведущими в то время технологиями Token Ring и Arcnet.

В 1985 году публикуется документ IEEE 802.3, который описывает стандарт передачи данных на скорости 10 Мбит/с. В первых стандартах Ethernet в качестве среды передачи использовался коаксиальный кабель. То есть не было еще тогда привычных для нас коммутаторов. Для соединения с сетевой картой компьютера использовались специальные трансиверы, либо коннекторы. Коаксиальный кабель выступал в роли общей шины. На обеих концах шины устанавливались терминаторы — сетевые окончания. Существовали две разновидности первого Ethernet: 10Base5 (толстый коаксиальный кабель) и 10Base2 (тонкий коаксиальный кабель).

В 1991 году был принят стандарт 10Base-T, который использует в качестве среды передачи двойную неэкранированную витую пару. Используется кабель 3 категории (Cat 3). Соединения конечных станций осуществлялись по топологии «точка-точка» со специальным устройством — многопортовым повторителем (концентратором). Принцип работы концентратора достаточно прост. Он принимает сигнал на одном из портов, после чего повторяет его на все остальные. Таким образом, реализуется свойственная для Ethernet топология «общая шина» с разделением пропускной способности между всеми хостами сети.

26 октября 1995 года в институте IEEE был официально принят стандарт 802.3u, описывающий технологию Fast Ethrenet. Fast Ethernet отличался высокой скоростью передачи данных — 100 Мбит/с. От традиционного Ethernet сохранили метод случайного доступа CSMA/CD, формат кадра, звездообразную топологию. Все отличия от Ethernet сосредоточены на физическом уровне. В организации Fast Ethernet используется три типа кабелей: оптический многоволоконный кабель (100Base-FX), витая пара 5-ой категории (100Base-TX), витая пара 3-ей категории (100Base-T4).

Со временем требования к скорости передачи данных возрастают. Следующим шагом в развитие было стандартизация стандарта Gigabit Ethernet, имеющего официальное название IEEE 802.3z. Данный стандарт был опубликован в июле 1998 года. IEEE 802.3z включал в себя три вида кабелей: 1000BASE-SX - для передачи сигнала по многомодовому оптоволокну, 1000BASE-LX - по одномодовому оптоволокну, и почти вышедший из употребления 1000BASE-CX - по экранированному сбалансированному медному кабелю.

После краткого исторического очерка перейдем непосредственно к принципам работы технологии Ethernet. В начале статьи было упомянуто, что Ethernet использует метод «множественного доступа с контролем несущей и обнаружением коллизий» (CSMA/CD). Именно этот принцип является «фундаментом» всей технологии. Что же он из себя представляет?

Все станции подключены к общей шине. Каждая из них прослушивает среду на наличие несущей. Наличие несущей означает, что какая-то из станций в данный момент передает кадр. Для получения доступа к среде передачи станция должна обнаружить отсутствия несущей, выждать технологическую паузу и, если несущей нет, то может начать передавать свой кадр. Кадр передается по общей шине и доходит до всех станций. Если адрес назначения совпадает, то станция принимает кадр, в противном случае она его отбрасывает.

Если станции будут передавать кадры одновременно, то возникнет коллизия .

Коллизия — наложение двух и более кадров

После обнаружения коллизии все станции обязаны прекратить передачу кадров и ожидать в течении короткого случайного промежутка времени для того, чтобы снова получить доступ к среде передачи.

Из описания метода видно, что он носит вероятностный характер. Предполагается, что любая станция в любой момент времени может начать передачу кадров. С увеличением станций вероятность возникновения коллизий увеличивается, вследствие чего стандарт Ethrenet устанавливает ограничение не более 1024 узлов в одной сети. При этом максимальное расстояние между любыми двумя узлами должно составлять не более 2500 м.

Стандарт 802.3 определяет формат кадра Ethrenet.

Рассмотрим формат кадра:

  • Преамбула — представляет из себя последовательность битов 10101010… , состоящую из 7 байтов. Преамбула предназначена для синхронизации приемопередатчиков.
  • SA (Start Delititer) — начальный ограничитель. Состоит из одного байта и представляет из себя последовательность 10101011. Эта комбинация указывает на начало кадра.
  • Destination address — адрес назначения. Состоит из 6 байт и обозначает MAC-адрес получателя.
  • Source address — адрес источника. Обозначает MAC-адрес отправителя.
  • L (Length) — длина. Указывает на длину фрейма для того, что получатель мог правильно предсказать окончание кадра.
  • DSAP - Destination Service Access Point. 1 байтовое поле. Это точка доступа к сервису системы получателя, которая указывает на то, в каком месте системы получателя буферов памяти следует разместить данные фрейма.
  • SSAP - Source Service Access Point - так же 1 байтовое поле. Это точка доступа к сервису системы отправителя, которая указывает на то, в каком месте системы отправителя буферов памяти следует разместить данные фрейма.
  • Control - Управление. Размер поля 1-2 байта. Это поле указывает на тип сервиса, который необходим для данных. В зависимости от того, какой сервис нужно предоставить, поле может быть как 1 так и 2 байта.
  • Data — данные. Непосредственно сами передаваемые данные. Могут занимать длину от 46 до 1500 байт.
  • FCS — проверка на наличие ошибок. Представляет из себя контрольную сумму.

Ethernet - это самый распространенный на сегодняшний день стандарт локальных сетей. Общее количество сетей, использующих в настоящее время

Fast Ethernet

Технология Fast Ethernet во многом совпадает с традиционной технологией Ethernet, но быстрее ее в 10 раз. Fast Ethernet или 100BASE-T работает со скоростью 100 мегабит в секунду (Mbps) вместо 10 для традиционного варианта Ethernet. Технология 100BASE-T использует кадры того же формата и длины, как Ethernet и не требует изменения протоколов высших уровней, приложений или сетевых ОС на рабочих станциях. Вы можете маршрутизировать и коммутировать пакеты между сетями 10 Mbps и 100 Mbps без трансляции протоколов и связанных с ней задержек. Технология Fast Ethernet использует протокол CSMA/CD подуровня MAC для обеспечения доступа к среде передачи. Большинство современных сетей Ethernet построены на основе топологии "звезда", где концентратор является центром сети, а кабели от концентратора тянутся к каждому компьютеру. Такая же топология используется в сетях Fast Ethernet, хотя диаметр сети несколько меньше по причине более высокой скорости. Fast Ethernet использует неэкранированный кабель из скрученных пар проводников (UTP), как указано в спецификации IEEE 802.3u для 100BASE-T. Стандарт рекомендует использовать кабель категории 5 с двумя или четырьмя парами проводников, помещенных в пластиковую оболочку. Кабели категории 5 сертифицированы для полосы пропускания 100 MHz. В 100BASE-TX одна пара используется для передачи данных, вторая - для обнаружения коллизий и приема.

Стандарт Fast Ethernet определяет три модификации для работы с разными видами кабелей: 100Base TX, 100Base T4 и 100Base FX. Модификации 100Base TX и 100Base T4 расчитаны на витую пару, а 100Base FX был разработан для оптического кабеля.

Стандарт 100Base TX требует применения двух экранированных или неэкранированных витых пар. Одна пара служит для передачи, другая для приёма. Этим требованиям отвечают два основных кабельных стандарта: на неэкранированную витую пару категории 5 (UTP-5) и экранированную витую пару типа 1 от IBM.

Стандарт 100Base T4 имеет менее ограничительные требования к кабелю, так как в нём задействуются все четыре пары восьмижильного кабеля: одна пара для передачи, другая для приёма, а оставшиеся две пары работают как на передачу, так и на приём. В результате, в стандарте 100Base T4 и приём и передача данных могут осуществляться по трём парам. Для реализации сетей 100Base T4 подойдут кабели с неэкранированной витой парой категории 3-5 и экранированной типа 1.

Преемственность технологий Fast Ethernet и Ethernet позволяет легко выработать рекомендации по применению: Fast Ethernet целесообразно применять в тех организациях, которые широко использовали классический Ethernet, но на сегодняшний день испытывают потребность в увеличении пропускной способности. При этом сохраняется весь накопленный опыт работы с Ethernet и, частично, сетевая инфраструктура.

Для классического Ethernet время прослушивания сети определяется максимальным расстоянием, которое 512-битный кадр может пройти по сети за время, равное времени обработки этого кадра на рабочей станции. Для сети Ethernet это расстояние равно 2500 метров. В сети Fast Ethernet этот же самый 512-битный кадр за время, необходимое на его обработку на рабочей станции, пройдёт всего 250 метров.

Основная область работы Fast Ethernet сегодня - это сети рабочих групп и отделов. Целесообразно совершать переход к Fast Ethernet постепенно, оставляя Ethernet там, где он хорошо справляется с поставленными задачами. Одним из очевидных случаев, когда Ethernet не следует заменять технологией Fast Ethernet, является подключение к сети старых персональных компьютеров с шиной ISA.

Gigabit Ethernet/

эта технология использует тот же формат кадров, тот же метод доступа к среде передачи CSMA/CD, те же механизмы контроля потоков и те же управляющие объекты, все же Gigabit Ethernet отличается от Fast Ethernet больше, чем Fast Ethernet от Ethernet. В частности, если для Ethernet было характерно разнообразие поддерживаемых сред передачи, что давало повод говорить о том, что он может работать хоть по колючей проволоке, то в Gigabit Ethernet волоконно-оптические кабели становятся доминирующей средой передачи (это, конечно, далеко не единственное отличие, но с остальными мы подробнее познакомимся ниже). Кроме того, Gigabit Ethernet ставит несравнимо более сложные технические задачи и предъявляет гораздо более высокие требования к качеству проводки. Иными словами, он гораздо менее универсален, чем его предшественники.

СТАНДАРТЫ GIGABIT ETHERNET

Основные усилия рабочей группы IEEE 802.3z направлены на определение физических стандартов для Gigabit Ethernet. За основу она взяла стандарт ANSI X3T11 Fibre Channel, точнее, два его нижних подуровня: FC-0 (интерфейс и среда передачи) и FC-1 (кодирование и декодирование). Зависимая от физической среды спецификация Fibre Channel определяет в настоящее время скорость 1,062 гигабод в секунду. В Gigabit Ethernet она была увеличена до 1,25 гигабод в секунду. С учетом кодирования по схеме 8B/10B мы получаем скорость передачи данных в 1 Гбит/с.

Что такое Ethernet

Ethernet – это наиболее распространённая технология организации локальных сетей. Стандарты Ethernet описывают реализацию двух первых уровней модели OSI – проводные соединения и электрические сигналы (физический уровень), а так же форматы блоков данных и протоколы управления доступом к сети (канальный уровень). Начнём с идеи, лежащей в основе Ethernet. Название Ethernet произошло от двух английских слов – ether (эфир) и net (сеть). Ethernet использует концепцию общего эфира. Каждый ПК посылает данные в этот эфир и указывает, кому они адресованы. Данные могут дойти до всех ПК сети, но обрабатывает их только тот ПК, которому они предназначены. Остальные ПК чужие данные игнорируют. Такая работа аналогична эфиру радиостанций. Все радиостанции транслируют свои передачи в общее электромагнитное поле – радиоэфир. Ваш радиоприёмник получает электромагнитные сигналы всех станций. Но слушаете вы не всё сразу, а ту станцию, которая вам нужна.

История Ethernet

Ethernet был разработан в 70-х годах XX века в Xerox PARC (Xerox Palo Alto Research Center) – научно-исследовательском центре Xerox. Может показаться неожиданным, что ведущую сетевую технологию разработала компания по производству копировальной техники. Тем не менее, в Xerox PARC в 70-е годы были разработаны: лазерный принтер, концепция ноутбука, графический интерфейс (1973 год, за 12 лет до выхода Windows 1.0), принцип WYSIWYG и многое другое. Однако руководство Xerox проявляло интерес только к разработкам в области печати/сканирования/копирования. Поэтому сейчас многие изобретения Xerox PARC ассоциируются с совсем другими именами. Так что помните – изобретение классной вещи само по себе ничего не гарантирует. Убедить остальных в том, что она классная, и запустить её на рынок – не менее сложные задачи.

Вернёмся к сетям. В начале 80-х годов Ethernet проходит стандартизацию. Появляется группа стандартов IEEE 802.3, описывающая Ethernet и по сей день. Тут опять надо сделать лирическое отступление и поговорить немного про стандартизацию. Сейчас в мире существует много организаций, принимающих стандарты. Например, наш Межгосударственный совет по стандартизации, метрологии и сертификации выпускает государственные стандарты (ГОСТы). Название организации обычно отображается в названии стандарта. Так, упомянутую группу стандартов IEEE 802.3 разработал и принял IEEE – Институт инженеров по электротехнике и электронике (Institute of Electrical and Electronics Engineers). Силы закона стандарты сейчас не имеют, применять их или нет – личное дело каждого. Но, если стандарт принят авторитетной организацией (IEEE – очень авторитетная организация), и его уже поддержали ведущие производители (за спиной первых стандартов Ethernet стояли DEC, Intel и Xerox), то лучше стандарта придерживаться. Иначе оборудование будет не совместимо с упомянутыми организациями, и его никто не купит.

Стандарт, который разработали DEC, Intel и Xerox, реализовывал общий эфир в прямом смысле слова. Все компьютеры сети подключались к общему коаксиальному кабелю. Коаксиальный кабель (coaxial, от co - совместно и axis - ось, то есть «соосный») – это кабель из пары проводников – центрального провода и окружающего его металлического цилиндра – экрана. Промежуток между проводом и экраном заполнен изоляцией, снаружи кабель так же покрыт изолирующей оболочкой. Такой кабель используется, например, в телевизионных антеннах.

В ранних сетях Ethernet коаксиальный кабель являлся носителем общего электромагнитного эфира. ПК подключались к общему кабелю с помощью специальных коннекторов. Такая структура соединения называется шинной, а сам общий кабель называют «шина».

Каждый ПК отправлял в шину электрические сигналы, все остальные ПК их получали. Дальше ПК должен был определить, кому реально этот сигнал адресован, и, соответственно, свои сигналы обработать, а чужие – проигнорировать. Несмотря на то, что Ethernet на коаксиальном кабеле уже давно не используется, механизм адресации данных и концепция общего эфира сохранились без изменений.

MAC-адреса

Рассмотрим подробнее, как на канальном уровне Ethernet данные из общего эфира распределяются по адресатам. Начнём, собственно, с адресации. На канальном уровне обмен данными идёт между сетевыми интерфейсами (network interface), то есть теми компонентами оборудования, которые физически соединены с сетью. Как правило, одно устройство имеет один сетевой интерфейс, то есть одно физическое соединение. Однако бывают и устройства с несколькими интерфейсам, например, в ПК можно поставить несколько сетевых контроллеров (network interface controller, NIC) и каждый подсоединить к сети. Поэтому в общем случае не следует путать устройства и их сетевые интерфейсы.

Все интерфейсы в пределах сети имеют собственные уникальные идентификаторы – MAC-адреса (Media Access Control address, адрес управления доступом к носителю данных). В сетях Ethernet используются 48-битные MAC-адреса. Их принято записывать в 16-ричной форме, разделяя байты знаком: или -. Например, 00-18-F3-05-19-4F.



Как правило, производитель раз и навсегда записывает MAC-адрес в оборудование при его изготовлении, и поменять MAC-адрес нельзя. Уникальность адресов достигается следующим образом. Первые 3 байта адреса обозначают производителя устройства и называются уникальным идентификатором организации (Organizationally Unique Identifier, OUI). Назначаются они не произвольно, их выдаёт IEEE. Любая организация, решившая производить сетевые интерфейсы, регистрируется в IEEE и получает свой идентификатор, уникальность которого гарантирует IEEE. Список уже розданных идентификаторов можно просмотреть на сайте IEEE . Последние 3 байта MAC-адреса производитель назначает сам и за их уникальностью следит тоже сам. Таким образом, при соблюдении производителями стандартов, ни у каких двух сетевых интерфейсов в мире MAC-адреса не совпадают. Ключевое слово – при соблюдении стандартов. Технически возможно изготовить интерфейс с произвольным MAC-адресом. Однако ни к чему хорошему это не приведёт.

Как не трудно догадаться, MAC-адреса нужны не сами по себе. MAC-адреса позволяют указать, кому именно предназначены данные, отправленные в общий эфир. Реализовано это следующим образом.

Данные в эфир передаются не однородным потоком, а блоками. Блоки эти на канальном уровне принято называть кадрами (frame). Каждый кадр состоит из служебных и полезных данных. Служебные данные – это заголовок, в котором указаны MAC-адрес отправителя, MAC-адрес назначения, тип вышестоящего протокола и тому подобное, а так же контрольная сумма в конце кадра. В середине кадра идут полезные данные – собственно то, что передаётся по Ethernet.

Контрольная сумма позволяет проверить целостность кадра. Сумму считает отправитель и записывает в конец кадра. Получатель вновь считает сумму и сравнивает её с той, что записана в кадре. Если суммы совпали, то, скорее всего, данные в кадре при передаче не повредились. Если же сумма не совпала, то данные точно повредились. Понять по контрольной сумме, какая именно часть кадра повреждена, невозможно. Поэтому в случае несовпадения суммы весь кадр считается ошибочным. Это примерно как если бы мы что-нибудь, на пример уголь, перевозили по аварийной железной дороге. Сначала мы бы загрузили уголь в вагоны. Вагоны имеют собственный вес, бесполезный для нас, но без вагонов по железной дороге перемещаться нельзя. Каждый вагон либо успешно целиком доедет в пункт назначения, либо попадёт в аварию и не доедет. Не бывает так, чтобы полвагона доехало, а полвагона осталось на разбитых путях.

Если кадр пришёл с ошибкой, его необходимо передать заново. Чем больше размер кадра, тем больше данных придётся передавать повторно при каждой ошибке. Плюс, пока интерфейс передаёт один большой кадр, остальные кадры вынуждены ждать в очереди. Поэтому передавать очень большие кадры не выгодно, и длинные потоки данных делятся на части между кадрами. С другой стороны, делать кадры короткими тоже не выгодно. В коротких кадрах почти весь объём будут занимать служебные данные, а полезных данных будет передано мало. Это характерно не только для Ethernet, но для многих других протоколов передачи данных. Поэтому для каждого стандарта существует свой оптимальный размер кадра, зависящий от скорости и надёжности сети. Максимальный размер полезной информации, передаваемой в одном блоке, называется MTU (maximum transmission unit). Для Ethernet он равен 1500 байт. То есть каждый Ethernet-кадр может нести не более 1500 байт полезных данных.

MAC-адреса и кадры позволяют разделить данные в общем Ethernet-эфире. Интерфейс обрабатывает только те кадры, MAC-адрес назначения которых совпадает с его собственным MAC-адресом. Кадры, адресованные другим получателям, интерфейс должен игнорировать. Достоинство такого подхода – простота реализации. Но есть и масса недостатков. Во-первых, проблемы безопасности. Любой может прослушать все данные, транслируемые в общий эфир. Во-вторых, эфир можно заполнить помехами. На практике, одна сбойная сетевая карта, постоянно отсылающая какие-то кадры, может повесить всю сеть предприятия. В-третьих, плохая масштабируемость. Чем больше компьютеров в сети, тем меньший кусочек эфира им достаётся, тем меньше эффективная пропускная способность сети.

Концепция эфира, MAC-адреса и Ethernet-кадры реализуют второй (канальный) уровень модели OSI. Этот уровень не претерпел изменений со времён первых стандартов Ethernet. Однако физический уровень сети Ethernet изменился радикально.