Сайт о телевидении

Сайт о телевидении

» » Для чего можно использовать большие данные. Big Data — что такое системы больших данных? Развитие технологий Big Data. Проблемы с Big-Data

Для чего можно использовать большие данные. Big Data — что такое системы больших данных? Развитие технологий Big Data. Проблемы с Big-Data

Мы регулярно натыкаемся на модные слова и определения, смысл которых нам интуитивно вроде бы понятен, но четкой картины того, что это все-таки за штука и как она работает, у нас нет.

Одним из таких понятий является Big Data, в русском языке иногда можно встретить буквальный перевод - «большие данные», но чаще люди говорят и пишут как есть: Big Data. Все наверняка слышали или, по крайней мере, встречали это словосочетание в интернете, и оно вроде бы несложное, но что конкретно имеется в виду, далеким от тонкостей диджитал-мира офисным гуманитариям понятно не всегда.

Отличной попыткой восполнить этот пробел в мозгах самого широкого круга пользователей является статья одного из наших любимых авторов Бернарда Марра , которая так и называется «Что такое Big Data? Суперпростое объяснение для каждого» . Без заумного жаргона с единственной целью объяснить ключевые идеи этого феномена для каждого вне зависимости от образования и сферы деятельности.

На самом деле последние несколько лет мы уже живем в мире, насквозь пронизанном Big Data, но продолжаем путаться в понимании того, что же это все-таки такое. Отчасти это происходит и потому, что сама по себе концепция Big Data постоянно трансформируется и переосмысляется, потому что мир высоких технологий и обработки больших массивов информации очень быстро меняется, включая в себя все новые и новые опции. А объем этой информации постоянно растет.

Итак, что значит Big Data - 2017?

Все началось со взрывным ростом количества данных, которые мы создаем с начала цифровой эры. Это стало возможным в основном благодаря росту числа и мощности компьютеров, расширению интернета и развитию технологий, способных захватывать информацию из реального, физического мира, в котором все мы живем, и конвертировать ее в цифровые данные.

В 2017-м мы производим данные, когда заходим в интернет, когда пользуемся нашими укомплектованными GPS-смартфонами, когда общаемся с друзьями в соцсетях, скачиваем мобильные приложения или музыку, когда совершаем покупки.

Можно сказать, что мы оставляем за собой множество цифровых следов, что бы мы ни делали, если наши действия включают в себя какие-либо цифровые транзакции. То есть уже почти всегда и везде.

Помимо этого, с огромной скоростью растет количество данных, сгенерированных самими машинами. Данные создаются и передаются, когда наши умные девайсы коммуницируют друг с другом. Производственные предприятия по всему миру оснащаются оборудованием, которое денно и нощно собирает и передает данные.

В ближайшем будущем наши улицы будут заполнены самоуправляемыми автомобилями, самостоятельно прокладывающими маршруты на основе четырехмерных карт, данные которых генерируются в режиме реального времени.

Что может Big Data?

Бесконечно растущий поток сенсорной информации, фотографий, текстовых сообщений, аудио- и видеоданных лежит в основе Big Data, которые мы можем использовать так, как невозможно было даже представить себе несколько лет назад.

Прямо сейчас основанные на Big Data проекты помогают:

- Лечить болезни и предотвращать рак . Основанная на использовании Big Data медицина анализирует огромное количество медицинских записей и снимков, что делает возможным очень раннюю диагностику и способствует созданию новых методов лечения.

- Бороться с голодом . Сельское хозяйство переживает настоящую революцию Big Data, которая позволяет использовать ресурсы так, чтобы максимально увеличить урожайность при минимальном вмешательстве в экосистему и оптимизировать использование машин и оборудования.

- Открывать далекие планеты . НАСА, к примеру, анализирует огромное количество данных и выстраивает с их помощью модели будущих миссий в далекие миры.

- Предсказывать чрезвычайные ситуации различной природы и минимизировать возможный ущерб. Данные многочисленных сенсоров могут предсказать, где и когда произойдет следующее землетрясение или возможное поведение людей в чрезвычайной ситуации, что повышает шансы на выживание.

- Предотвращать преступления за счет использования технологий, которые позволяют более эффективно распределять ресурсы и направлять их туда, где они наиболее необходимы.

И самое близкое большинству из нас: Big Data делает жизнь обычного человека проще и удобнее - это и онлайн-шопинг, и планирование поездок, и навигация в условиях мегаполиса.

Выбрать лучшее время для покупки авиабилетов и решить, какой фильм или сериал посмотреть, стало гораздо легче именно благодаря работе Big Data.

Как это работает?

Big Data работает на принципе: чем больше вы знаете о чем-либо, тем точнее вы можете предсказать, что случится в будущем. Сравнение отдельных данных и отношений между ними (речь идет об огромном количестве данных и невероятно большом количестве возможных связей между ними) позволяет обнаружить ранее скрытые закономерности. Это дает возможность заглянуть внутрь проблемы и в конечном итоге понимание того, как мы можем управлять тем или иным процессом.

Чаще всего процесс обработки больших объемов информации включает в себя построение моделей, базирующихся на собранных данных, и запуск симуляций, в процессе которого постоянно меняются ключевые настройки, при этом каждый раз система мониторит, как «смена настроек» влияет на возможный результат.

Этот процесс полностью автоматизирован, ведь речь идет об анализе миллионов симуляций, перебора всех возможных вариантов вплоть до того момента, пока паттерн (нужная схема) не будет найден или пока не случится «просветление», что поможет решить задачу, ради которой все и затевалось.

В отличие от привычного нам мира предметов и вычислений, данные принимаются в неструктурированной форме, то есть их сложно засунуть в привычные нам, людям, таблицы с ячейками и столбиками. Огромное количество данных передается как изображения или видео: от спутниковых снимков до селфи, которые вы постите в инстаграм или фейсбук, - так же, как записи в email и мессенджер или телефонные звонки.

Чтобы придать всему этому бесконечному и разношерстному потоку данных практический смысл, Big Data часто использует самые передовые технологии анализа, которые включают в себя искусственный интеллект и машинное обучение (это когда программа в компьютере обучает другие программы).

Компьютеры сами обучаются определять, что представляет та или иная информация - например, распознавать изображения, язык, - и они могут делать это намного быстрее, чем люди.

Большой брат?

Пропорционально беспрецедентным возможностям, которые дает нам сегодня Big Data, растет количество опасений и вопросов, связанных с ее использованием.

НЕПРИКОСНОВЕННОСТЬ ЛИЧНЫХ ДАННЫХ. Big Data собирает огромное количество информации о нашей частной жизни. Очень много информации, которую мы предпочли бы сохранить в тайне.

БЕЗОПАСНОСТЬ. Даже если мы решили, что в передаче всех наших персональных данных машине ради какой-то конкретной, выгодной нам цели нет ничего страшного, можем ли мы быть уверены, что наши данные хранятся в безопасном месте?
Кто и как может нам это гарантировать?

ДИСКРИМИНАЦИЯ. Когда все известно, допустимо ли подвергать людей дискриминации на основании того, что о них известно благодаря Big Data? Банки используют кредитную историю, а страховые компании определяют стоимость автостраховки, исходя из того, что они знаю о вас. Как далеко это может зайти?

Можно предположить, что ради минимизации рисков компании, государственные органы и даже частные лица будут использовать то, что они могут узнать о нас, и по каким-то соображениям ограничивать нам доступ к ресурсам и информации.

При всех преимуществах мы должны признать, что все эти опасения также являются неотъемлемой частью Big Data. До последнего времени над ответами ломали голову ученые, но сейчас пришло время, когда волна докатилась до бизнеса, который хочет использовать преимущества Big Data в своих целях. А это может быть чревато в том числе и катастрофическими последствиями.

Волкова Юлия Сергеевна,студентка 4 курса, Финансовый университет при Правительстве Российской Федерации, Калужский филиал, г. Калуга[email protected]

Большие Данные в современном мире

Аннотация.Статья посвящена внедрению технологий Больших Данных в наше современное общество. Исследованы основные характеристики Больших Данных, рассмотрены основные сферы применения, такие как банковская сфера, ритейл, частный и государственный сектор и даже повседневная жизнь. Исследование выявило недостатки использования технологий Больших Данных. Обозначена необходимость развития нормативного регулирования использования Больших Данных.Ключевые слова: Большие Данные, банки, банковская сфера, ритейл, частный сектор, государственный сектор.

По мере увеличения степени встраиваемости средств информационныхтехнологийв различные направления современного общества возрастают и требования к их адаптируемостидлярешенияновых задач, которые предполагают огромные объемы данных. Есть такие объемы информации,которые невозможно обрабатывать традиционными способами, в том числе структурированные данные, медиаданные и случайные объекты. И если с анализом первых существующие сегодня технологии болееменее справляются, то анализ вторых и третьих практически остается непосильным трудом. Исследования показывают, что объемы медиаданных, таких как результаты видеонаблюдения, аэрофотосъемки, цифровая медицинская информация, и случайных объектов, хранящихся в многочисленных архивах и облаках, увеличивается год от года.Огромный объем данных стал глобальным процессом и получил определение Большие Данные. Исследованию Больших Данных посвящены труды как зарубежных, так и российских ученых: James Manyika, Michael Chui, Топорков В.В., Будзко В.И. Существенныйвклад в изучение этой технологии вносят крупные мировые компании, такие как: McKinsey& Company, СNews Analytics, SAP, Oracle, IBM, Microsoft, Teradataи многие другие. Онизанимаются обработкой и анализом данных и на основе Больших данных создаютпрограммноаппаратные комплексы.Согласно отчету McKinsey Institute: «Большие Данные –это набор данных,размер которых выходит за пределы возможностей типовых баз данных программных инструментов для захвата, хранения, управления и анализа данных». В сущности, понятие больших данных подразумевает работу с информацией огромного объема и разнообразного состава,постоянно обновляемой и находящейся в разных источниках в целях увеличения эффективности работы, создания новых продуктов и повышения конкурентоспособности. Консалтинговая компания Forrester дает краткую и достаточно понятную формулировку: «Большие данныеобъединяют техники и технологии, которые извлекают смысл из данных на экстремальном пределе практичности».На сегодняшний день сфера Больших Данных характеризуется следующими признаками: Volume–объем, накопленная база данных представляет собой большой объем информации.Velocity–скорость, данный признак указывает как на увеличивающуюся скорость накопления данных (90% информации было собрано за последние 2 года).Variety–многообразие, т.е. возможность одновременной обработки, структурированнойи неструктурированной разноформатной информации. Эксперты из числа маркетологов полюбили добавлять сюда свои «V». Ктото говорит еще о достоверности (veracity), другие добавляют, что технологии больших данных непременно должны приносить пользу бизнесу (value).Ожидается, что к 2020 г. накопленный объем информации на планете будет удваиваться каждые два года. Обилие данных вызывает желание использовать их для анализа и прогнозирования. Колоссальные объемы требуют соответствующих технологий. Сегодня компании должны обрабатывать колоссальное количество данных в объемах, которые трудно представить, это приводит к тому, что традиционные базы данных не могут справиться с такой задачей, и это приводит к необходимости внедрять технологии Больших данных. В таблицепредставлена сравнительная характеристика Больших данных и традиционных баз данных. Основанием для формирования данной таблицы послужили исследования Будзко В. И. и Московской биржи.Таблица 1 Сравнительная характеристика больших данных и традиционных данных

Традиционные базы данныхБольшие ДанныеОбласть применения

Одна или более предметная область примененияСфера применения технологий Больших Данных обширна. От выявления предпочтений клиентов до анализа рисковХарактеристика данныхТолько структурированные данныеОгромные массивы информации со сложной неоднородной и\или неопределенной структуройСпособ хранения данныхЦентрализованныйДецентрализованныйМодель хранения и обработки данныхВертикальная модельГоризонтальная модельКоличество информации для обработкиОт гигабайта (109байт) до терабайт (1012байт)От петабайт (1015байт) до эксабайт (1018 байт)Так, область применения традиционных баз данных охватывает всего одну или несколько, при том такие области должны содержатьтолько структурированные данные. Что касается Больших Данных, то сфера их применения обширна с огромными массивами информации со сложной структурой.Согласно результатам исследования СNews Analytics, представленных на рисунке 1,российский рынок приходит к такому явлению как Большие Данные, что показывает повышение уровня зрелости компаний. Многие фирмы переходят на технологии Больших Данных изза объема их обрабатываемых данных, уже сейчас более 44% генерируют около 100 терабайт, а у 13% эти объемы данныхпревышают 500 терабайт.

Рис.1. Объемы информации, обрабатываемые в компаниях

Такие объемы невозможно обрабатывать традиционными базами данных, поэтому такие компании видят решение перехода на Большие Данные не просто как обработку огромных объемов, но и как повышение конкурентоспособности, увеличения лояльности покупателя к своему продукту и привлечения новых. Наиболее активными заказчиками таких решений являются банки, телеком и ритейл, их процентное соотношение представлено на рисунке 2.Менее заметно количество компаний, которые используют или готовы использовать большие данные в транспортной отрасли и энергетики, промышленности. Первые примеры использования больших данных появились и в госсекторе.

Рис.2. Отраслевая структура использования Больших Данных

Что касается Западного правительства, поразным оценкам, цифровая экономика составляет от3% до21% ВВП стран большой двадцатки. Российский госсектор пока не добился значимых результатов в работе с большими данными. Сегодня в России подобными технологиями интересуются в основном коммерческие предприятия: торговые сети, банки, телекоммуникационные компании.Пооценке Российскойассоциацииэлектронныхкоммуникаций, объем цифровой экономики вРФ составляет всего 1 трлн. руб. -около 1,5% отВВП. Тем не менее, уРФ есть огромный потенциал роста цифровой экономики.Несмотря на малый срок существования сектора Big Data, уже есть оценки эффективного использования этих технологий, основанные на реальных примерах. Банки сегодня в среднем обрабатывают примерно 3,8 петобайт данных, они используют технологии Больших Данных для достижения определенных задач: сбор данных о использовании кредитных карточек;сбор данных о залогах;сбор данных о кредитах;44%16%13%7%20%БанкиТелекомРитейлГоссекторДругиесбор данных о профилях клиента;сбор данных о сбережениях клиента.Банки заявляют, что после того, как они начали пользоваться технологиями Больших Данных, они смогли привлечь новых клиентов, лучше взаимодействовать как с новыми, так и со старыми клиентами и поддерживать их лояльность. В 2015 г. CNews Analyticsпровел опрос среди тридцати крупнейших российских банков по совокупным активам, чтобы узнать, какие технологии больших данных они применяют и с какими целями. По сравнению с опросом 2014 г., число банков топ30, сообщивших о применении технологий больших данных, увеличилось, но это изменение связано скорее с изменением состава топ30. На рисунке 3представлено сравнение опроса 2015 по сравнению с 2014 годом наоснове опроса Кирьяновой А.

Рис. 3. Использование Больших Данных топ30 российскими банками

По оценкам компании IBS, 80% банков, ответивших положительно, внедряют Big Data Appliance–программноаппаратные комплексы для хранения и обработки данных. Эти решения обычно выступают в качестве аналитического или транзакционного хранилища, главное преимущество которого –высокая производительность при работе с большими объемами данных.Тем не менее, практика применения больших данных в российских банках находится на этапе становления. Причина такой медленной адаптации в России проявляется в настороженном отношении ИТспециалистов заказчиков к новым технологиям. Они не испытывают уверенности в том, что технологии больших данных помогут решать задачи в полном объеме.А вот что касается американского рынка, там банки уже накопили 1 экзабайт данных, который можно сравнить с 275 млрд записей mp3. Количество источников, откуда поступает информация,обширно, из них можно выделить классические: посещение клиентов офисов банка;записи телефонных звонков;поведение клиентов в социальных сетях;сведения об операциях по кредитным карточками другое.Офлайнрозница использует большие данные, чтобы анализировать поведение покупателей, проектировать маршруты следования по торговому залу, правильно расставить товары, планировать закупки, и, в конечном итоге, повысить продажи. В онлайнрознице на больших данных строится сам механизм продаж: пользователям предлагают товары на базе предыдущих покупок и их персональных предпочтений, информация о которых собирается, например, в соцсетях. В обоих случаях анализ больших данных помогает сократить издержки, повысить лояльность клиентов и охватить большую аудиторию.По мере развития торгового потенциала компаний, традиционные база данных перестают отвечать растущим требованиям бизнеса, изза чего система не может обеспечить должной детализации управленческого учета. Переходя на большие данные, новые технологии позволяют оптимизировать управление товародвижением, добиться актуальности данных и оперативности их обработки дляоценки последствий управленческих решений, быстро формировать управленческую отчетность. Общий объем накопленных данных составляет более 100 экзабайт, при том только Walmart c помощью больших данных обрабатывает в час 2,5 Петабайт данных. При том, от использования технологий Больших Данных на 60% увеличивается операционная рентабельность, а также по статистке Hadoop после внедрения Больших данных производительность аналитики увеличивается до обработки 120 алгоритмов, а прибыль растет на 710%.Но если взять в рассмотрение Российский ритейл, то тут Большие Данные только начинают набирать обороты, так как разрыв по обработке информации сильно отличается. Так, например, онлайнрозница в 18 раз меньше чем в Китае, и весь оборот данных, который производится в онлайнрознице в 4,5 раза меньше одного магазина Amazon. При этом число онлайнмагазинов в России, которые используют Большие данные меньше 40 тысяч, в то время, как Европе, число таких магазинов больше 550 тысяч. Что характеризует российский рынок ритейла как еще развивающийся и не до конца сформировавшийся. Что касается нашей повседневной жизни, то и здесь используются технологии Больших Данных, о которых мы даже не задумывались.15 млн композиций каждый день, а это примерно 1,5~2 петабайта, обрабатывает shazam, музыкальный сервис, по всему миру, и на основе этого потом музыкальные продюсеры прогнозируют популярность артиста. Большие данные так же используются для обработки информации по кредитным картам, таким как mastercard и visa. Таким образом, 65 млрд транзакций за год с помощью 1,9 млрд карт в 32 млн торговых фирм обрабатывает mastercard для прогнозирования торговых трендов. Ежедневно, людипо всему миру пишут в социальных сетях,таких как twitter и facebook, на 19 терабайт данных. Они загружают и обрабатывают фотографии, пишут, пересылают сообщения и так далее. Инфраструктура также пользуется технологиями Больших Данных, от троллейбусов досамолетов и ракет. Так, в лондонском метро каждый день турникеты фиксируют около 20 млн проходов, в результате анализа, проведенного на базе технологий Больших данных, определено 10 всевозможных эпицентров, что так же учитывается при дальнейшем развитии метро. Несомненно, разнообразие и объем данных, возникающих в результате всевозможных взаимодействий, является мощной базой для бизнеса по построению и уточнению прогнозов, выявлению закономерностей, оценки эффективности и т.д. Однако у всего есть своинедостатки, которые также необходимо грамотно учитывать.Несмотря на явные и потенциальные преимущества использования Больших Данных, их использование имеет и свои недостатки, которые в первую очередь связаны с большими объемами информации, разными методами доступа к ней и с зачастую недостаточным ресурсным обеспечением функции информационной безопасности в организациях. Проблемы, которые связаны с использованием технологий Больших Данных представлены на рисунке 4.

Рис. 4. Проблемы использования Больших Данных

Все эти проблемы приводят к тому, что многие компании с опаской вводят технологии больших данных, так как при работе с третьими лицами у них самих возникает проблема раскрытия инсайда, который компания не могла бы раскрыть, используя толькособственные ресурсы.По моему мнению,самым главным шагом на пути полного внедрения технологий на базе больших данных должно быть именно законодательный аспект. Сейчас уже существуют законы, ограничивающие сбор, использование, хранение определенных типов личных данных, но они не ограничивают полностью большие данные, поэтому для них должны существовать специальные законодательные нормы. Для того чтобы соответствовать быстро меняющимся и новым законам, компании должны выполнять начальную инвентаризацию соответствующих нормативных правовых актов и на регулярной основе обновлять данный список.Тем не менее, несмотря на все выше перечисленные недостатки, как показывает опыт западных представителей, технологии Больших Данных помогают успешно решать, как современные бизнесзадачи и повышение конкурентоспособности, так и задачи, связанные непосредственно с жизнью людей. Российские компании уже сейчас находятся на пути внедрения технологий Больших Данных как в производственную сферу, так и в общественную, так как количество информации с каждым годом увеличивает практически в двое. Со временем, множество сфер нашей жизни подвергнется изменению под влиянием Больших Данных.

Ссылки на источники1.БудзкоВ. И. Системы высокой доступности и Большие Данные // Большие данные в национальной экономике 2013. С. 1619.2.Короткова Т. «EMC Data Lake 2.0 -средство перехода к аналитике больших данных и цифровой экономике» http://bigdata.cnews.ru/news/line/20151203_emc_data_lake_20_pomozhet_perejti_k_analitike.3.Кирьянова А. «Большие данные не стали мэйнстримом в российских банках» http://www.cnews.ru/news/top/bolshie_dannye_ne_stali_mejnstrimom.4.CNews«Инфографика: Большие данные пришли в Россию» http://bigdata.cnews.ru/articles/infografika_bolshie_dannye_prishli_v_rossiyu.5.CNews«Инфографика: Как розница использует большие данные» http://bigdata.cnews.ru/articles/infografika_kak_roznitsa_ispolzuet в мире отсутствуют специальные законодательные нормы в отношении Big Data данные должны быть замаскированы в целях сохранности исходных источников данных компании должны быть уверены в том, что все требования безопасности в отношении данных отслеживаются и поддерживаются внедрение Big Dataрешений может привести к созданию или обнаружению ранее конфиденциальной информацииУправление данными Поддержание требований к безопасности данных Законадательные нормыРеидентификация риска6.CNews«Инфографика: Технологии BigData» http://bigdata.cnews.ru/articles/big_data_v_zhizni_cheloveka.7.CNews«Инфографика: Что могут большие данные в банках» http://bigdata.cnews.ru/articles/infografika_chto_mogut_bolshie_dannye.8.Московская биржа «АналитическийобзоррынкаBigData» http://habrahabr.ru/company/moex/blog/256747/9.Большие данные (BigData). http://www.tadviser.ru/index.php/Статья:Большие_данные_(Big_Data).10.BigData–электричество XXIвека http://bit.samag.ru/archive/article/1463.11.McKinsey Global institute «Bigdata: The next frontier for innovation, competitionand productivity» (June 2011).

Постоянное ускорение роста объема данных является неотъемлемым элементом современных реалий. Социальные сети, мобильные устройства, данные с измерительных устройств, бизнес-информация – это лишь несколько видов источников, способных генерировать гигантские массивы данных.

В настоящее время термин Big Data (Большие данные) стал довольно распространенным. Далеко не все еще осознают то, насколько быстро и глубоко технологии обработки больших массивов данных меняют самые различные аспекты жизни общества. Перемены происходят в различных сферах, порождая новые проблемы и вызовы, в том числе и в сфере информационной безопасности, где на первом плане должны находиться такие важнейшие ее аспекты, как конфиденциальность, целостность, доступность и т. д.

К сожалению, многие современные компании прибегают к технологии Big Data, не создавая для этого надлежащей инфраструктуры, которая смогла бы обеспечить надежное хранение огромных массивов данных, которые они собирают и хранят. С другой стороны, в настоящее время стремительно развивается технология блокчейн, которая призвана решить эту и многие другие проблемы.

Что такое Big Data?

По сути, определение термина лежит на поверхности: «большие данные» означают управление очень большими объемами данных, а также их анализ. Если смотреть шире, то это информация, которая не поддается обработке классическими способами по причине ее больших объемов.

Сам термин Big Data (большие данные) появился относительно недавно. Согласно данным сервиса Google Trends , активный рост популярности термина приходится на конец 2011 года:

В 2010 году уже стали появляться первые продукты и решения, непосредственно связанные с обработкой больших данных. К 2011 году большинство крупнейших IT-компаний, включая IBM, Oracle, Microsoft и Hewlett-Packard, активно используют термин Big Data в своих деловых стратегиях. Постепенно аналитики рынка информационных технологий начинают активные исследования данной концепции.

В настоящее время этот термин приобрел значительную популярность и активно используется в самых различных сферах. Однако нельзя с уверенностью сказать, что Big Data – это какое-то принципиально новое явление – напротив, большие источники данных существуют уже много лет. В маркетинге ими можно назвать базы данных по покупкам клиентов, кредитным историям, образу жизни и т. д. На протяжении многих лет аналитики использовали эти данные, чтобы помогать компаниям прогнозировать будущие потребности клиентов, оценивать риски, формировать потребительские предпочтения и т. д.

В настоящее время ситуация изменилась в двух аспектах:

— появились более сложные инструменты и методы для анализа и сопоставления различных наборов данных;
— инструменты анализа дополнились множеством новых источников данных, что обусловлено повсеместным переходом на цифровые технологии, а также новыми методами сбора и измерения данных.

Исследователи прогнозируют, что технологии Big Data активнее всего будут использоваться в производстве, здравоохранении, торговле, госуправлении и в других самых различных сферах и отраслях.

Big Data – это не какой-либо определенный массив данных, а совокупность методов их обработки. Определяющей характеристикой для больших данных является не только их объем, но также и другие категории, характеризующие трудоемкие процессы обработки и анализа данных.

В качестве исходных данных для обработки могут выступать, например:

— логи поведения интернет-пользователей;
— Интернет вещей;
— социальные медиа;
— метеорологические данные;
— оцифрованные книги крупнейших библиотек;
— GPS-сигналы из транспортных средств;
— информация о транзакциях клиентов банков;
— данные о местонахождении абонентов мобильных сетей;
— информация о покупках в крупных ритейл-сетях и т.д.

Со временем объемы данных и количество их источников непрерывно растет, а на этом фоне появляются новые и совершенствуются уже имеющиеся методы обработки информации.

Основные принципы Big Data:

— Горизонтальная масштабируемость – массивы данных могут быть огромными и это значит, что система обработки больших данных должна динамично расширяться при увеличении их объемов.
— Отказоустойчивость – даже при сбое некоторых элементов оборудования, вся система должна оставаться работоспособной.
— Локальность данных. В больших распределенных системах данные обычно распределяются по значительному числу машин. Однако по мере возможности и в целях экономии ресурсов данные часто обрабатываются на том же сервере, что и хранятся.

Для стабильной работы всех трех принципов и, соответственно, высокой эффективности хранения и обработки больших данных необходимы новые прорывные технологии, такие как, например, блокчейн.

Для чего нужны большие данные?

Сфера применения Big Data постоянно расширяется:

— Большие данные можно использовать в медицине. Так, устанавливать диагноз пациенту можно не только опираясь на данные анализа истории болезни, но также принимая во внимание опыт других врачей, сведения об экологической ситуации района проживания больного и многие другие факторы.
— Технологии Big Data могут использоваться для организации движения беспилотного транспорта.
— Обрабатывая большие массивы данных можно распознавать лица на фото- и видеоматериалах.
— Технологии Big Data могут быть использованы ритейлерами – торговые компании могут активно использовать массивы данных из социальных сетей для эффективной настройки своих рекламных кампаний, которые могут быть максимально ориентированы под тот или иной потребительский сегмент.
— Данная технология активно используется при организации предвыборных кампаний, в том числе для анализа политических предпочтений в обществе.
— Использование технологий Big Data актуально для решений класса гарантирования доходов (RA) , которые включают в себя инструменты обнаружения несоответствий и углубленного анализа данных, позволяющие своевременно выявить вероятные потери, либо искажения информации, способные привести к снижению финансовых результатов.
— Телекоммуникационные провайдеры могут агрегировать большие данные, в том числе о геолокации; в свою очередь эта информация может представлять коммерческий интерес для рекламных агентств, которые могут использовать ее для показа таргетированной и локальной рекламы, а также для ритейлеров и банков.
— Большие данные могут сыграть важную роль при решении открытия торговой точки в определенной локации на основе данных о наличии мощного целевого потока людей.

Таким образом наиболее очевидное практическое применение технологии Big Data лежит в сфере маркетинга. Благодаря развитию интернета и распространению всевозможных коммуникационных устройств поведенческие данные (такие как число звонков, покупательские привычки и покупки) становятся доступными в режиме реального времени.

Технологии больших данных могут также эффективно использоваться в финансах, для социологических исследований и во многих других сферах. Эксперты утверждают, что все эти возможности использования больших данных являются лишь видимой частью айсберга, поскольку в гораздо больших объемах эти технологии используются в разведке и контрразведке, в военном деле, а также во всем том, что принято называть информационными войнами.

В общих чертах последовательность работы с Big Data состоит из сбора данных, структурирования полученной информации с помощью отчетов и дашбордов, а также последующего формулирования рекомендаций к действию.

Рассмотрим вкратце возможности использования технологий Big Data в маркетинге. Как известно, для маркетолога информация – главный инструмент для прогнозирования и составления стратегии. Анализ больших данных давно и успешно применяется для определения целевой аудитории, интересов, спроса и активности потребителей. Анализ больших данных, в частности, позволяет выводить рекламу (на основе модели RTB-аукциона - Real Time Bidding) только тем потребителям, которые заинтересованы в товаре или услуге.

Применение Big Data в маркетинге позволяет бизнесменам:

— лучше узнавать своих потребителей, привлекать аналогичную аудиторию в Интернете;
— оценивать степень удовлетворенности клиентов;
— понимать, соответствует ли предлагаемый сервис ожиданиям и потребностям;
— находить и внедрять новые способы, увеличивающие доверие клиентов;
— создавать проекты, пользующиеся спросом и т. д.

Например, сервис Google.trends может указать маркетологу прогноз сезонной активности спроса на конкретный продукт, колебания и географию кликов. Если сопоставить эти сведения со статистическими данными, собираемыми соответствующим плагином на собственном сайте, то можно составить план по распределению рекламного бюджета с указанием месяца, региона и других параметров.

По мнению многих исследователей, именно в сегментации и использовании Big Data заключается успех предвыборной кампании Трампа. Команда будущего президента США смогла правильно разделить аудиторию, понять ее желания и показывать именно тот месседж, который избиратели хотят видеть и слышать. Так, по мнению Ирины Белышевой из компании Data-Centric Alliance, победа Трампа во многом стала возможной благодаря нестандартному подходу к интернет-маркетингу, в основу которого легли Big Data, психолого-поведенческий анализ и персонализированная реклама.

Политтехнологи и маркетологи Трампа использовали специально разработанную математическую модель, которая позволила глубоко проанализировать данные всех избирателей США систематизировать их, сделав сверхточный таргетинг не только по географическим признаками, но также и по намерениям, интересам избирателей, их психотипу, поведенческим характеристикам и т. д. После этого маркетологи организовали персонализированную коммуникацию с каждой из групп граждан на основе их потребностей, настроений, политических взглядов, психологических особенностей и даже цвета кожи, используя практически для каждого отдельного избирателя свой месседж.

Что касается Хиллари Клинтон, то она в своей кампании использовала «проверенные временем» методы, основанные на социологических данных и стандартном маркетинге, разделив электорат лишь на формально гомогенные группы (мужчины, женщины, афроамериканцы, латиноамериканцы, бедные, богатые и т. д.).

В результате выиграл тот, кто по достоинству оценил потенциал новых технологий и методов анализа. Примечательно, что расходы на предвыборную кампанию Хиллари Клинтон были в два раза больше, чем у ее оппонента:

Данные: Pew Research

Основные проблемы использования Big Data

Помимо высокой стоимости, одним из главных факторов, тормозящих внедрение Big Data в различные сферы, является проблема выбора обрабатываемых данных: то есть определения того, какие данные необходимо извлекать, хранить и анализировать, а какие – не принимать во внимание.

Еще одна проблема Big Data носит этический характер. Другими словами возникает закономерный вопрос: можно ли подобный сбор данных (особенно без ведома пользователя) считать нарушением границ частной жизни?

Не секрет, что информация, сохраняемая в поисковых системах Google и Яндекс, позволяет IT-гигантам постоянно дорабатывать свои сервисы, делать их удобными для пользователей и создавать новые интерактивные приложения. Для этого поисковики собирают пользовательские данные об активности пользователей в интернете, IP-адреса, данные о геолокации, интересах и онлайн-покупках, личные данные, почтовые сообщения и т. д. Все это позволяет демонстрировать контекстную рекламу в соответствии с поведением пользователя в интернете. При этом обычно согласия пользователей на это не спрашивается, а возможности выбора, какие сведения о себе предоставлять, не дается. То есть по умолчанию в Big Data собирается все, что затем будет храниться на серверах данных сайтов.

Из этого вытекает следующая важная проблема, касающаяся обеспечения безопасности хранения и использования данных. Например, безопасна ли та или иная аналитическая платформа, которой потребители в автоматическом режиме передают свои данные? Кроме того, многие представители бизнеса отмечают дефицит высококвалифицированных аналитиков и маркетологов, способных эффективно оперировать большими объемами данных и решать с их помощью конкретные бизнес-задачи.

Несмотря на все сложности с внедрением Big Data, бизнес намерен увеличивать вложения в это направление. По данным исследования Gartner, лидерами инвестирующих в Big Data отраслей являются медиа, ритейл, телеком, банковский сектор и сервисные компании.

Перспективы взаимодействия технологий блокчейн и Big Data

Интеграция с Big Data несет в себе синергетический эффект и открывает бизнесу широкий спектр новых возможностей, в том числе позволяя:

— получать доступ к детализированной информации о потребительских предпочтениях, на основе которых можно выстраивать подробные аналитические профили для конкретных поставщиков, товаров и компонентов продукта;
— интегрировать подробные данные о транзакциях и статистике потребления определенных групп товаров различными категориями пользователей;
— получать подробные аналитические данные о цепях поставок и потребления, контролировать потери продукции при транспортировке (например, потери веса вследствие усыхания и испарения некоторых видов товаров);
— противодействовать фальсификациям продукции, повысить эффективность борьбы с отмыванием денег и мошенничеством и т. д.

Доступ к подробным данным об использовании и потреблении товаров в значительной мере раскроет потенциал технологии Big Data для оптимизации ключевых бизнес-процессов, снизит регуляторные риски, раскроет новые возможности монетизации и создания продукции, которая будет максимально соответствовать актуальным потребительским предпочтениям.

Как известно, к технологии блокчейн уже проявляют значительный интерес представители крупнейших финансовых институтов, включая , и т. д. По мнению Оливера Буссманна, IT-менеджера швейцарского финансового холдинга UBS, технология блокчейн способна «сократить время обработки транзакций от нескольких дней до нескольких минут».

Потенциал анализа из блокчейна при помощи технологии Big Data огромен. Технология распределенного реестра обеспечивает целостность информации, а также надежное и прозрачное хранение всей истории транзакций. Big Data, в свою очередь, предоставляет новые инструменты для эффективного анализа, прогнозирования, экономического моделирования и, соответственно, открывает новые возможности для принятия более взвешенных управленческих решений.

Тандем блокчейна и Big Data можно успешно использовать в здравоохранении. Как известно, несовершенные и неполные данные о здоровье пациента в разы увеличивают риск постановки неверного диагноза и неправильно назначенного лечения. Критически важные данные о здоровье клиентов медучреждений должны быть максимально защищенными, обладать свойствами неизменности, быть проверяемыми и не должны быть подвержены каким-либо манипуляциям.

Информация в блокчейне соответствует всем перечисленным требованиям и может служить в роли качественных и надежных исходных данных для глубокого анализа при помощи новых технологий Big Data. Помимо этого, при помощи блокчейна медицинские учреждения смогли бы обмениваться достоверными данными со страховыми компаниями, органами правосудия, работодателями, научными учреждениями и другими организациями, нуждающимися в медицинской информации.

Big Data и информационная безопасность

В широком понимании, информационная безопасность представляет собой защищенность информации и поддерживающей инфраструктуры от случайных или преднамеренных негативных воздействий естественного или искусственного характера.

В области информационной безопасности Big Data сталкивается со следующими вызовами:

— проблемы защиты данных и обеспечения их целостности;
— риск постороннего вмешательства и утечки конфиденциальной информации;
— ненадлежащее хранение конфиденциальной информации;
— риск потери информации, например, вследствие чьих-либо злонамеренных действий;
— риск нецелевого использования персональных данных третьими лицами и т. д.

Одна из главных проблем больших данных, которую призван решить блокчейн, лежит в сфере информационной безопасности. Обеспечивая соблюдение всех основных ее принципов, технология распределенного реестра может гарантировать целостность и достоверность данных, а благодаря отсутствию единой точки отказа, блокчейн делает стабильной работу информационных систем. Технология распределенного реестра может помочь решить проблему доверия к данным, а также предоставить возможность универсального обмена ими.

Информация – ценный актив, а это значит, что на первом плане должен стоять вопрос обеспечения основных аспектов информационной безопасности. Для того, чтобы выстоять в конкурентной борьбе, компании должны идти в ногу со временем, а это значит, что им нельзя игнорировать те потенциальные возможности и преимущества, которые заключают в себе технология блокчейн и инструменты Big Data.

Большие данные – это широкий термин для обозначения нетрадиционных стратегий и технологий, необходимых для сбора, упорядочивания и обработки информации из больших наборов данных. Хотя проблема работы с данными, превышающими вычислительную мощность или возможности хранения одного компьютера, не является новой, в последние годы масштабы и ценность этого типа вычислений значительно расширились.

В этой статье вы найдете основные понятия, с которыми вы можете столкнуться, исследуя большие данные. Также здесь рассматриваются некоторые из процессов и технологий, которые используются в этой области в настоящее время.

Что такое большие данные?

Точное определение «больших данных» трудно сформулировать, потому что проекты, вендоры, специалисты-практики и бизнес-специалисты используют его совершенно по-разному. Имея это в виду, большие данные можно определить как:

  • Большие наборы данных.
  • Категорию вычислительных стратегий и технологий, которые используются для обработки больших наборов данных.

В этом контексте «большой набор данных» означает набор данных, который слишком велик, чтобы обрабатываться или храниться с помощью традиционных инструментов или на одном компьютере. Это означает, что общий масштаб больших наборов данных постоянно меняется и может значительно варьироваться от случая к случаю.

Системы больших данных

Основные требования к работе с большими данными такие же, как и к любым другим наборам данных. Однако массовые масштабы, скорость обработки и характеристики данных, которые встречаются на каждом этапе процесса, представляют серьезные новые проблемы при разработке средств. Целью большинства систем больших данных является понимание и связь с большими объемами разнородных данных, что было бы невозможно при использовании обычных методов.

В 2001 году Даг Лэйни (Doug Laney) из Gartner представил «три V больших данных», чтобы описать некоторые характеристики, которые отличают обработку больших данных от процесса обработки данных других типов:

  1. Volume (объем данных).
  2. Velocity (скорость накопления и обработки данных).
  3. Variety (разнообразие типов обрабатываемых данных).

Объем данных

Исключительный масштаб обрабатываемой информации помогает определить системы больших данных. Эти наборы данных могут быть на порядки больше, чем традиционные наборы, что требует большего внимания на каждом этапе обработки и хранения.

Поскольку требования превышают возможности одного компьютера, часто возникает проблема объединения, распределения и координации ресурсов из групп компьютеров. Кластерное управление и алгоритмы, способные разбивать задачи на более мелкие части, становятся в этой области все более важными.

Скорость накопления и обработки

Вторая характеристика, которая существенно отличает большие данные от других систем данных, — это скорость, с которой информация перемещается по системе. Данные часто поступают в систему из нескольких источников и должны обрабатываться в режиме реального времени, чтобы обновить текущее состояние системы.

Этот акцент на мгновенной обратной связи заставил многих специалистов-практиков отказаться от пакетно-ориентированного подхода и отдать предпочтение потоковой системе реального времени. Данные постоянно добавляются, обрабатываются и анализируются, чтобы успевать за притоком новой информации и получать ценные данные на ранней стадии, когда это наиболее актуально. Для этого необходимы надежные системы с высокодоступными компонентами для защиты от сбоев по конвейеру данных.

Разнообразие типов обрабатываемых данных

В больших данных существует множество уникальных проблем, связанных с широким спектром обрабатываемых источников и их относительным качеством.

Данные могут поступать из внутренних систем, таких как логи приложений и серверов, из каналов социальных сетей и других внешних API-интерфейсов, с датчиков физических устройств и из других источников. Целью систем больших данных является обработка потенциально полезных данных независимо от происхождения путем объединения всей информации в единую систему.

Форматы и типы носителей также могут значительно различаться. Медиафайлы (изображения, видео и аудио) объединяются с текстовыми файлами, структурированными логами и т. д. Более традиционные системы обработки данных рассчитывают, что данные попадают в конвейер уже помеченными, отформатированными и организованными, но системы больших данных обычно принимают и сохраняют данные, стараясь сохранить их исходное состояние. В идеале любые преобразования или изменения необработанных данных будут происходить в памяти во время обработки.

Другие характеристики

Со временем специалисты и организации предложили расширить первоначальные «три V», хотя эти нововведения, как правило, описывают проблемы, а не характеристики больших данных.

  • Veracity (достоверность данных): разнообразие источников и сложность обработки могут привести к проблемам при оценке качества данных (и, следовательно, качества полученного анализа).
  • Variability (изменчивость данных): изменение данных приводит к широким изменениям качества. Для идентификации, обработки или фильтрации данных низкого качества могут потребоваться дополнительные ресурсы, которые смогут повысить качество данных.
  • Value (ценность данных): конечная задача больших данных – это ценность. Иногда системы и процессы очень сложны, что затрудняет использование данных и извлечение фактических значений.

Жизненный цикл больших данных

Итак, как на самом деле обрабатываются большие данные? Существует несколько различных подходов к реализации, но в стратегиях и программном обеспечении есть общие черты.

  • Внесение данных в систему
  • Сохранение данных в хранилище
  • Вычисление и анализ данных
  • Визуализация результатов

Прежде чем подробно рассмотреть эти четыре категории рабочих процессов, поговорим о кластерных вычислениях, важной стратегии, используемой многими средствами для обработки больших данных. Настройка вычислительного кластера является основой технологии, используемой на каждом этапе жизненного цикла.

Кластерные вычисления

Из-за качества больших данных отдельные компьютеры не подходят для обработки данных. Для этого больше подходят кластеры, так как они могут справляться с хранением и вычислительными потребностями больших данных.

Программное обеспечение для кластеризации больших данных объединяет ресурсы многих небольших машин, стремясь обеспечить ряд преимуществ:

  • Объединение ресурсов: для обработки больших наборов данных требуется большое количество ресурсов процессора и памяти, а также много доступного пространства для хранения данных.
  • Высокая доступность: кластеры могут обеспечивать различные уровни отказоустойчивости и доступности, благодаря чему аппаратные или программные сбои не повлияют на доступ к данным и их обработку. Это особенно важно для аналитики в реальном времени.
  • Масштабируемость: кластеры поддерживают быстрое горизонтальное масштабирование (добавление новых машин в кластер).

Для работы в кластере необходимы средства для управления членством в кластере, координации распределения ресурсов и планирования работы с отдельными нодами. Членство в кластерах и распределение ресурсов можно обрабатывать с помощью программ типа Hadoop YARN (Yet Another Resource Negotiator) или Apache Mesos.

Сборный вычислительный кластер часто выступает в качестве основы, с которой для обработки данных взаимодействует другое программное обеспечение. Машины, участвующие в вычислительном кластере, также обычно связаны с управлением распределенной системой хранения.

Получение данных

Прием данных – это процесс добавления необработанных данных в систему. Сложность этой операции во многом зависит от формата и качества источников данных и от того, насколько данные отвечают требованиям для обработки.

Добавить большие данные в систему можно с помощью специальных инструментов. Такие технологии, как Apache Sqoop, могут принимать существующие данные из реляционных БД и добавлять их в систему больших данных. Также можно использовать Apache Flume и Apache Chukwa – проекты, предназначенные для агрегирования и импорта логов приложений и серверов. Брокеры сообщений, такие как Apache Kafka, могут использоваться в качестве интерфейса между различными генераторами данных и системой больших данных. Фреймворки типа Gobblin могут объединить и оптимизировать вывод всех инструментов в конце конвейера.

Во время приема данных обычно проводится анализ, сортировка и маркировка. Этот процесс иногда называют ETL (extract, transform, load), что означает извлечение, преобразование и загрузку. Хотя этот термин обычно относится к устаревшим процессам хранения данных, иногда он применяется и к системам больших данных. среди типичных операций – изменение входящих данных для форматирования, категоризация и маркировка, фильтрация или проверка данных на соответствие требованиям.

В идеале, поступившие данные проходят минимальное форматирование.

Хранение данных

После приема данные переходят к компонентам, которые управляют хранилищем.

Обычно для хранения необработанных данных используются распределенные файловые системы. Такие решения, как HDFS от Apache Hadoop, позволяют записывать большие объемы данных на несколько нод в кластере. Эта система обеспечивает вычислительным ресурсам доступ к данным, может загрузить данные в ОЗУ кластера для операций с памятью и обрабатывать сбои компонентов. Вместо HDFS могут использоваться другие распределенные файловые системы, включая Ceph и GlusterFS.

Данные также можно импортировать в другие распределенные системы для более структурированного доступа. Распределенные базы данных, особенно базы данных NoSQL, хорошо подходят для этой роли, поскольку они могут обрабатывать неоднородные данные. Существует множество различных типов распределенных баз данных, выбор зависит от того, как вы хотите организовывать и представлять данные.

Вычисление и анализ данных

Как только данные будут доступны, система может начать обработку. Вычислительный уровень, пожалуй, является самой свободной частью системы, так как требования и подходы здесь могут значительно отличаться в зависимости от типа информации. Данные часто обрабатываются повторно: с помощью одного инструмента, либо с помощью ряда инструментов для обработки различных типов данных.

Пакетная обработка – это один из методов вычисления в больших наборах данных. Этот процесс включает разбивку данных на более мелкие части, планирование обработки каждой части на отдельной машине, перестановку данных на основе промежуточных результатов, а затем вычисление и сбор окончательного результата. Эту стратегию использует MapReduce от Apache Hadoop. Пакетная обработка наиболее полезна при работе с очень большими наборами данных, для которых требуется довольно много вычислений.

Другие рабочие нагрузки требуют обработки в режиме реального времени. При этом информация должна обрабатываться и готовиться немедленно, и система должна своевременно реагировать по мере поступления новой информации. Одним из способов реализации обработки в реальном времени является обработка непрерывного потока данных, состоящих из отдельных элементов. Еще одна общая характеристика процессоров реального времени – это вычисления данных в памяти кластера, что позволяет избежать необходимости записи на диск.

Apache Storm, Apache Flink и Apache Spark предлагают различные способы реализации обработки в реальном времени. Эти гибкие технологии позволяют подобрать наилучший подход для каждой отдельной проблемы. В общем, обработка в режиме реального времени лучше всего подходит для анализа небольших фрагментов данных, которые меняются или быстро добавляются в систему.

Все эти программы являются фреймворками. Однако есть много других способов вычисления или анализа данных в системе больших данных. Эти инструменты часто подключаются к вышеуказанным фреймворкам и предоставляют дополнительные интерфейсы для взаимодействия с нижележащими уровнями. Например, Apache Hive предоставляет интерфейс хранилища данных для Hadoop, Apache Pig предоставляет интерфейс запросов, а взаимодействия с данными SQL обеспечиваются с помощью Apache Drill, Apache Impala, Apache Spark SQL и Presto. В машинном обучении применяются Apache SystemML, Apache Mahout и MLlib от Apache Spark. Для прямого аналитического программирования, которое широко поддерживается экосистемой данных, используют R и Python.

Визуализация результатов

Часто распознавание тенденций или изменений в данных с течением времени важнее полученных значений. Визуализация данных – один из наиболее полезных способов выявления тенденций и организации большого количества точек данных.

Обработка в реальном времени используется для визуализации метрик приложения и сервера. Данные часто меняются, и большие разлеты в показателях обычно указывают на значительное влияние на состояние систем или организаций. Проекты типа Prometheus можно использовать для обработки потоков данных и временных рядов и визуализации этой информации.

Одним из популярных способов визуализации данных является стек Elastic, ранее известный как стек ELK. Logstash используется для сбора данных, Elasticsearch для индексирования данных, а Kibana – для визуализации. Стек Elastic может работать с большими данными, визуализировать результаты вычислений или взаимодействовать с необработанными метриками. Аналогичный стек можно получить, объединив Apache Solr для индексирования форк Kibana под названием Banana для визуализации. Такой стек называется Silk.

Другой технологией визуализации для интерактивной работы в области данных являются документы. Такие проекты позволяют осуществлять интерактивное исследование и визуализацию данных в формате, удобном для совместного использования и представления данных. Популярными примерами этого типа интерфейса являются Jupyter Notebook и Apache Zeppelin.

Глоссарий больших данных

  • Большие данные – широкий термин для обозначения наборов данных, которые не могут быть корректно обработаны обычными компьютерами или инструментами из-за их объема, скорости поступления и разнообразия. Этот термин также обычно применяется к технологиям и стратегиям для работы с такими данными.
  • Пакетная обработка – это вычислительная стратегия, которая включает обработку данных в больших наборах. Обычно этот метод идеально подходит для работы с несрочными данными.
  • Кластеризованные вычисления – это практика объединения ресурсов нескольких машин и управления их общими возможностями для выполнения задач. При этом необходим уровень управления кластером, который обрабатывает связь между отдельными нодами.
  • Озеро данных – большое хранилище собранных данных в относительно сыром состоянии. Этот термин часто используется для обозначения неструктурированных и часто меняющихся больших данных.
  • Добыча данных – это широкий термин для обозначения разных практик поиска шаблонов в больших наборах данных. Это попытка организовать массу данных в более понятный и связный набор информации.
  • Хранилище данных (data warehouse) — это большое, упорядоченное хранилище для анализа и отчетности. В отличие от озера данных хранилище состоит из отформатированных и хорошо упорядоченных данных, интегрированных с другими источниками. Хранилища данных часто упоминаются в отношении больших данных, но часто они являются компонентами обычных систем обработки данных.
  • ETL (extract, transform, и load) – извлечение, преобразование и загрузка данных. Так выглядит процесс получения и подготовки необработанных данных к использованию. Он связан с хранилищами данных, но характеристики этого процесса также обнаруживаются в конвейерах систем больших данных.
  • Hadoop – это проект Apache с открытым исходным кодом для больших данных. Он состоит из распределенной файловой системы под названием HDFS и планировщика кластеров и ресурсов, который называется YARN. Возможности пакетной обработки предоставляются механизмом вычисления MapReduce. Вместе с MapReduce в современных развертываниях Hadoop можно запускать другие вычислительные и аналитические системы.
  • Вычисления в памяти – это стратегия, которая предполагает полное перемещение рабочих наборов данных в память кластера. Промежуточные вычисления не записываются на диск, вместо этого они хранятся в памяти. Это дает системам огромное преимущество в скорости по сравнению с системами, связанными с I/O.
  • Машинное обучение – это исследование и практика проектирования систем, которые могут учиться, настраиваться и улучшаться на основе передаваемых им данных. Обычно под этим подразумевают реализацию прогнозирующих и статистических алгоритмов.
  • Map reduce (не путать с MapReduce от Hadoop) – это алгоритм планирования работы вычислительного кластера. Процесс включает в себя разделение задачи между нодами и получение промежуточных результатов, перетасовку и последующий вывод единого значения для каждого набора.
  • NoSQL – это широкий термин, обозначающий базы данных, разработанные вне традиционной реляционной модели. Базы данных NoSQL хорошо подходят для больших данных благодаря их гибкости и распределенной архитектуре.
  • Потоковая обработка – это практика вычисления отдельных элементов данных при их перемещении по системе. Это позволяет анализировать данные в режиме реального времени и подходит для обработки срочных операций с использованием высокоскоростных метрик.
Tags: ,