Сайт о телевидении

Сайт о телевидении

» » Что такое sdr трансивер. Трансиверы. Софт и API для работы с RTL2832

Что такое sdr трансивер. Трансиверы. Софт и API для работы с RTL2832


Сегодня, наверное, уже нет радиолюбителя, не знающего, хотя бы в общих чертах, что такое SDR (Software-Defined Radio). На эту тему написано уже много, и в рамках этой статьи нет необходимости подробно рассказывать, что это такое и как это работает. Будем считать, что некоторое представление и некоторый опыт в данной области у читателя имеются.

Такая сравнительно новая технология обработки сигнала всё сильнее проникает в нашу радиолюбительскую жизнь, и в эфире уже работают много радиостанций с использованием SDR-тран-сиверов. Некоторые радиолюбители слушают эфир и визуально наблюдают обстановку на SDR-приёмниках, но свой сигнал передают в эфир по-прежнему с помощью обычного "классического" трансивера. Ведь помимо отличного качества приёма сигнала радиолюбителей в технике SDR привлекает наличие красивой и информативной панорамы эфира на экране компьютера. А вот работа на передачу с обычного трансивера предполагает и свои преимущества. Например, большинство импортных трансиверов, как правило, имеют на выходе "стандартные" 100 Вт, а многие модели ещё и встроенный автоматический тюнер. Большинство же предлагаемых для покупки или повторения SDR-трансиверов обеспечивают небольшую выходную мощность передатчика (не более 20 Вт) и не имеют встроенного антенного тюнера. Следовательно, в дальнейшем придётся позаботиться ещё и о дополнительном линейном усилителе мощности, и о выходных ФНЧ. В целом SDR-транси-вер может обойтись совсем не дёшево.

Для многих любителей существует ещё и некоторый психологический барьер - виртуальный. Трансивер на экране компьютера не всех устраивает, и человек предпочитает иметь на столе не невзрачную коробку с парой свето-диодов и разъёмов, а реальный трансивер с красивыми кнопками и ручками, которые можно потрогать и покрутить. Иметь и то и другое также могут далеко не все желающие, и при выборе большинство предпочитают всё-таки "классику". Так что же делать в случае, если имеется неплохой обычный трансивер, денег на приобретение отдельного SDR-трансивера нет, а пользоваться "благами" SDR и модно, и хочется?

Существуют два основных пути со своими достоинствами и недостатками. Рассмотрим их отдельно.

Путь первый - приобрести или изготовить отдельный полноценный SDR-приёмник, а на передачу работать по старинке, с обычного трансивера. В этом случае необходимо позаботиться как минимум о двух вещах - коммутации антенны, которая должна подключаться к SDR-приёмнику в режиме приёма и к выходу трансивера при передаче, и о синхронизации частоты настройки и режимов работы трансивера и отдельного SDR-приёмника. Если вмешательство в трансивер не планируется и не приемлемо для его владельца, то это очень удобный вариант реализации SDR-приёма. Правда, не самый дешёвый и простой.

Как удачный пример, можно привести приёмник "Hanter" (цена около 200 долл. США), имеющий встроенный блок коммутации антенны. Схема этого приёмника доступна на сайте производителя . Там можно почерпнуть для себя многие интересные схемотехнические решения (блок коммутации в частности) в случае, если вы имеете желание сделать подобную систему SDR-приёма самостоятельно.

Что касается синхронизации настройки SDR-приёмника и трансивера, то не всё так просто при самостоятельном изготовлении. Приёмник должен уметь обмениваться информацией о частоте и режимах работы с SDR-про-граммой, которая, в свою очередь, также должна уметь общаться с другими программами. И выбор тут, в принципе, невелик. В основном для управления приёмником все используют USB-интерфейс компьютера и пользуются синтезатором частоты на основе микросхемы Si570 (по причине доступности программного обеспечения для микроконтроллера управления синтезатором и приёмником). Этот синтезатор применяется во многих SDR-приёмниках и трансиверах серии "SoftRock", а также его можно приобрести как отдельное от приёмника устройство .

Информации по изготовлению, а также о возможностях приобретения различных SDR-наборов в Интернете очень много, и при желании не составит никакого труда найти её в любой поисковой системе. Достаточно ввести ключевые слова "sdr softrock" или подобные. Для примера, можно начать обзор с очень информативного и интересного сайта RV3APM . Как раз на одной из страниц этого сайта вкратце рассказывается о синхронизации отдельного приёмника и трансивера.

Второй путь реализации SDR-при-ёма - подключение простейшего SDR-приёмника (панорамной приставки) на одну фиксированную частоту к тракту ПЧ трансивера. Этот способ подробно описан на сайте WU2X - автора специальной программы POWERSDR/IF STAGE . В качестве примера там же приводится описание подключения такого SDR-приёмника к выходу ПЧ трансивера TS-940S.

Единственный недостаток такой схемы подключения в том, что не каждый трансивер имеет буферизированный выход ПЧ, да ещё и широкополосный, т. е. отведённый от тракта приёма до фильтра основной селекции. И если такого выхода ПЧ нет, его придётся делать самому или же отказаться от этого способа и вернуться к первому - отдельному приёмнику. Если же вы достаточно квалифицированный радиолюбитель, то без труда сможете найти на схеме своего трансивера первый смеситель приёмника и подключить к нему буферный каскад, с выхода которого можно вывести сигнал ПЧ приёмника на заднюю панель трансивера. Для примера, на рис. 1 приведён фрагмент схемы трансивера IC-735 с встроенным буферным усилителем.

Итак, предположим, что выход ПЧ у нас есть. Теперь необходимо выбрать приёмник. На этом этапе также произойдёт некоторое разделение вариантов, в зависимости от частоты ПЧ трансивера.

Если частота ПЧ "низкая" - меньше 40 МГц, да ещё и "круглая", например, 9 МГц, то вам повезло. Самый простой вариант - купить, например, здесь , недорогой (21 долл. США) набор одно-диапазонного SDR-приёмника "Softrock 6.2" или подобный, рассчитанный на приём диапазона 40 или 30 метров, и кварцевый резонатор на 12 МГц. Схема гетеродина приёмника позволяет возбудить этот резонатор на третьей гармонике, т. е. на частоте 36 МГц. Атак как сигнал гетеродина в приёмнике делится на четыре перед подачей на смеситель, то получим частоту SDR-приёма около 9 МГц. Это самый дешёвый и, можно сказать, идеальный вариант.

Но можно собрать подобный приёмник с фиксированной ПЧ и самостоятельно. В сети Интернет предложено немало вариантов простых приёмников на различных комплектующих. И здесь нельзя не упомянуть известного и уважаемого радиолюбителя Таsа (YU1LM), который разработал и опубликовал множество разновидностей SDR-при-ёмников и трансиверов. Очень полезно посетить его сайт , где можно найти схемы и подробные описания работы его конструкций, рисунки печатных плат (правда, всё это на английском языке).

Всё хорошо и понятно, если есть в наличии кварцевый резонатор на необходимую частоту. А если его нет? Что делать? Выбор невелик. Или отказаться от этой затеи, или сделать синтезатор частоты, о котором пойдёт речь чуть ниже.

Теперь рассмотрим самый сложный (и, к сожалению, самый распространённый) вариант - трансивер с "высокой" ПЧ и, соответственно, преобразованием "вверх". По этой структуре выполнено подавляющее большинство фирменных трансиверов, но далеко не все цифровые микросхемы, обычно применяемые в SDR-приёмниках, способны работать на частотах порядка 80 МГц. Также необходимо иметь кварцевый резонатор на нужную частоту. Есть и другие сложности.

В этом случае авторы некоторых конструкций применяют двойное преобразование частоты. Сигнал первой ПЧ трансивера (45...80 МГц в большинстве случаев) переносится на вторую ПЧ, на частоту, на которой способен работать SDR-приёмник. Это не самый лучший путь, так как двойное преобразование снижает достижимые динамические параметры приёмника и может создать дополнительные внутренние помехи приёму при неудачном выборе частот преобразования.

К динамическому диапазону панорамной приставки нужно относиться серьёзно, даже если вы продолжаете вести приём на трансивере, а на панораму просто смотрите. Любые перегрузки, как первого смесителя трансивера, так и смесителя SDR-приёмника, а также входа звуковой карты компьютера, приведут к появлению на картине панорамы ложных, несуществующих реально сигналов. Любые продукты ограничения по амплитуде и интермодуляционные составляющие будут прекрасно видны на панораме.

Поэтому нужно хорошо согласовывать весь тракт SDR-приёма по уровням сигналов. Не допускать перегрузок. Простой критерий - на самом "тихом" диапазоне шумовая дорожка панорамы должна лишь немного приподниматься вверх при подключении антенны к трансиверу, т. е. необходим небольшой запас по чувствительности, но не более. Не следует допускать ситуаций, когда шум эфира при подключении антенны поднимает шумовую дорожку панорамы на полэкрана, т. е. на десятки децибелл. Вы просто потеряете сигнал в шумах, ограничив при этом динамический диапазон всей системы. Пользуйтесь аттенюаторами трансивера или отдельным аттенюатором на входе панорамной приставки.

Также не пренебрегайте хорошим полосовым фильтром на частоту принимаемой ПЧ на входе вашего SDR-при-ёмника. На выходе первого смесителя трансивера присутствует широкий спектр всевозможных комбинационных частот, а SDR-приёмник имеет и побочные каналы приёма (на гармониках гетеродина, например), и возможна ситуация появления помех приёму по этой причине. И если в обычном трансивере мы слышим помехи, только когда они попадают в полосу пропускания фильтра основной селекции, то при SDR-приёме мы видим на панораме всё. Это общие рекомендации. Далее перейдём к рассмотрению предлагаемой для повторения панорамной приставки, схема которой показана на рис. 2.

Устройство представляет собой приёмник прямого преобразования на фиксированную частоту и очень близко по схемотехническим решениям ^"SoftRock 6.2". Этот вариант имеет отличные динамические параметры и очень хорошее соотношение простота/цена/качество.

Основное отличие от оригинального "SoftRock" - это применение вместо кварцевого генератора синтезатора частоты на микросхеме Si570 CAC000141G (DD2). Такое решение позволяет настроить панорамную приставку на частоту приёма сигнала первой ПЧ любого трансивера, и необходимость в поиске нужного кварцевого резонатора отпадает. Это не дешёвое решение (микросхема Si570 стоит примерно 30...40 долл. США), но наиболее качественное и простое схемотехнически. С таким синтезатором можно принимать сигналы от 1 до 80 МГц и даже выше. Микросхема Si570 (КМОП версии) способна генерировать сигнал с максимальной частотой до 160 МГц, но максимальная частота приёма будет ограничена быстродействием применённых в смесителе аналоговых ключей - микросхемы FST3253 (DD4). Реально проверена работа приставки на частоте ПЧ трансивера ICOM - 70,4515 МГц.

Схему приёмника можно выбрать в одном из двух вариантов. Приёмная часть и синтезатор одинаковы для обеих версий панорамной приставки, отличие только в фазовращателях. Какой вариант выбрать - решать вам. Печатная плата также разработана для двух вариантов.

Первый вариант - с применением фазовращателя на делителе на четыре, т. е. самый распространённый, обеспечивающий в нашем случае максимальную частоту приёма 40 МГц (160 МГц/4) и не требующий настройки фазовращателя. Этот вариант удобен для трансиверов с низкой ПЧ.

Второй вариант - применение в качестве фазовращателя интегрирующей RC-цепи, задерживающей сигнал одного из каналов фазовращателя относительно другого канала на 90о по фазе (рис. 3). Этот вариант требует подбора ёмкости конденсаторов фазовращателя и точной настройки подстроечным резистором.

Такой фазовращатель вместо делителя частоты на четыре позволяет сформировать два сигнала непосредственно на рабочей частоте синтезатора, без её деления. В случае с синтезатором на Si570 возможно получение выходной частоты фазовращателя вплоть до 160 МГц. Эта максимальная частота будет определяться быстродействием применённых инверторов и влиянием на высоких частотах ёмкости монтажа.

Аналогичный вариант применён в приёмнике YU1LM "Monoband SDR HF receiver DR2C". На его сайте можно найти полную схему приёмника с подробным описанием работы этого фазовращателя. Также на схеме YU1LM приведены ориентировочные значения ёмкости конденсатора фазовращателя, в зависимости от принимаемой частоты (частоты первой ПЧ вашего трансивера).

Входной полосовой фильтр 2-го порядка - C17L1C18 - достаточно широкополосный. На схеме указаны номиналы для частоты ПЧ в полосе 8.10,7 МГц. Для другого значения ПЧ необходимо пересчитать номиналы элементов фильтра. Это очень просто и удобно делать с помощью программы RFSim99 .

Для управления синтезатором частоты Si570 применён популярный и дешёвый микроконтроллер Atmega8 (DD1) с записанными в его EEPROM-па-мять кодами программы из файла SOFT_UNIPAN.hex.

Катушка L1 содержит 24 витка, намотанных проводом ПЭВ-2 0,35 на кольцевом магнитопроводе Т30-6 фирмы Amidon. Трансформатор T1 смесителя намотан на аналогичном магнитопроводе и таким же проводом. Число витков первичной обмотки - 9, вторичной - 2x3.

Микросхему 0PA2350 (DA4) можно заменить другим малошумящим сдвоенным ОУ. Усиление корректируют подбором резисторов R8 и R10.

Всё устройство собрано на печатной плате размерами 60x65 мм (рис. 4) из двустороннего фольгированного стеклотекстолита, а на рис. 5 показано расположение на ней деталей (всё для варианта приёмника с делителем на четыре). Практически все резисторы и конденсаторы типоразмера 0805.

Для программирования контроллера удобно использовать программатор USBasp. Он относительно недорог и удобен тем, что используется USB подключение к компьютеру. Информации по этим программаторам и программам для него в Интернете множество. К панорамной приставке программатор подключают стандартным (идущим в комплекте с большинством продаваемых программаторов) ISP-кабелем для программирования.

Конфигурацию микроконтроллера задают в соответствии с рис. 6 в окне программы, обслуживающей программатор, т. е. программируют только разряды конфигурации, необходимые для работы с внутренним генератором 8 МГц (CKSEL=0100 и SUT=10). Также нужно установить разряды EESAVE=0, BODEN=0, BODLEVEL=1 (2,7 В).

Управление синтезатором предельно простое. После записи программы, по умолчанию, устанавливается частота генерации 35,32 МГц, что в случае применения делителя на четыре даёт частоту 8,83 МГц, соответствующую частоте ПЧ трансивера TS-940S.

Частоту генерации можно изменять в широких пределах кнопками "FR-" (SB3) и "FR+" (SB4). Скорость перестройки увеличивают, нажав и удерживая кнопку "FAST" (SB2). Установив нужную частоту, следует нажать на кнопку "SAVE" (SB1), и новое значение запишется в энергонезависимую память микроконтроллера - EEPROM. Эта частота будет устанавливаться при каждом включении панорамной приставки. Частоту генерации синтезатора можно контролировать измерительными приборами или прослушивать на трансивере или другом приёмнике.

Разъём Х3 "MUTЕ" может быть полезен для блокировки SDR-приёма в момент передачи, для чего следует замкнуть контакты этого разъёма. Микросхема DA1 - детектор понижения напряжения (супервизор). При его отсутствии бывали случаи потери данных в энергонезависимой памяти в других конструкциях.

Приёмник практически не нуждается в настройке и при правильном монтаже начинает работать сразу.

На фотографии рис. 7 представлен вид готовой панорамной приставки. Она несколько отличается от предлагаемых вариантов, так как на ней отрабатывались и ис-пытывались оба варианта - с делителем на четыре и RC-фа-зовращателем. Малые габариты во многих случаях позволяют разместить эту приставку непосредственно внутри трансивера, а уже с трансивера выводить готовый I/Q сигнал для подключения к линейному входу звуковой карты компьютера. Ну а далее на компьютере нужно установить программу POWERSDR IF STAGE и внимательно изучить всю информацию на сайте WU2X .

В заключение хотелось бы отметить некоторые преимущества использования панорамной приставки перед применением отдельного SDR-приём-ника. Это и относительная простота, и дешевизна самой приставки, и простота подключения к трансиверу. Если нет необходимости управления трансивером со стороны SDR-программы, т. е. вас устраивает управление и перестройка частоты трансивером, то можно применять для просмотра панорамы и SDR-приёма практически любую SDR-программу (нет необходимости в синхронизации частот отдельного приёмника и трансивера). Недостаток - нужен выход ПЧ в трансивере.

В настоящее время панорамная приставка эксплуатируется с трансивером Kenwood TS-940S.

Программу микроконтроллера и чертежи второго варианта печатной платы приёмника можно скачать .

Литература

1. Hunter - SDR Receiver/Panadapter. - http://www.radio-kits.co.uk/hunter/.

2. QRP2000 USB-Controlled Synthesizer. - http://www.sdr-kits.net/QRP2000_ Description.html.

3. SDR-SOFTWARE DEFINE RADIO - программа определяет функции радио. - http://www.rv3apm.com/rxdx.html.

4. Как использовать SDR-панораму с любым трансивером-приёмником. - http://www.rv3apm.com/sdrtrx.html.

5. POWERSDR/IF STAGE. - http://www. wu2x.com/sdr.html.

6. Five Dash Inc/Your Source for SoftRock. - http://fivedash.com/.

7. Amateur Radio Site Devoted to Homebrew, QRP and Low Power Contesting. - http://yu1lm.qrpradio.com/.

8. RFSim99 на русском. - http://dl2kq.de/soft/6-1.


Дата публикации: 15.07.2013

Мнения читателей
  • Vlad / 02.04.2015 - 20:16
    Спасибо автору за информацию. Очень долго пытаюсь найти и купить данный аппарат, может подскажете? С уважением Владимир [email protected]
  • тот же радиомеханик / 08.07.2014 - 18:36
    добавить должен. ну практически не видел удачно работающих и как положено по рассуждениям " на бумаге". у меня и приятелей, которых давно знаю, почему- то хорошо работали приемники с одной ПЧ - пусть и необычно по понятиям многих- высокой. всегда находится какая то "гадость" и пролезает по куче дополнительных каналов приема.
  • радиомеханик / 08.07.2014 - 18:25
    не надо забывать, что "сложнилка" не обязательно станет работать лучьше! и учитывайте возможные самые не идеальные условия приема на практическом месте приема!!! гениальность в простоте схемного решения тщательности и продуманности изготовления.
  • Лена / 13.05.2014 - 10:29
    ...og heren. То совсем не то, что многие подумали! радиолюбительское творчество я очень уважаю. радиолюбитель не подсунул-бы мне явно дохлый аккомулятор. всем вам здоровья и успехах.
  • Лена / 13.05.2014 - 10:19
    пардон. уважаемые damen og heren.воспользовалась деда последней(надеюсь) жены ноут-буком. пока он пошел(три магазинчика в радиусе разлета осколков соответствующего ситуации снарядов \"среднего\" танка. покупать аккомулятор или что-то для моего. согласна с тем, что видела им натыканого в... (пустоту,надеюсь я дура не права).
  • Сергей / 10.05.2014 - 06:53
    Говоря прямо - маразм крепчает.Или автору нечем заняться на чужбине и в жаре.На мой взгляд это уже достояние не радиоэлектроники, а отрасли медицины - психиатрия. Думаю (к сожалению), я не ошибся.Не говоря о анализе текста уважаемого автора. Что поделать - ностальгия его мучит вероятно...

Немного странно и неинформативно звучит заголовок этой статьи, не так ли? Кажется, что оные сокращения поймут только самые что ни на есть прожженные гики. Но на самом деле все немного проще и интереснее. О том, что такое RTL SDR и слова с другими циферками - читай ниже.

Что такое SDR

За непонятной аббревиатурой SDR кроется весьма интересная штука, расшифровываемая как Software Defined Radio , что в переводе означает нечто типа «программного радио». Идея универсального радиоприемника на основе персонального компьютера витала в воздухе достаточно давно. Но дело шло с огромным скрипом, ведь для того, чтобы компьютер стал радиоприемником, кроме самого компьютера и программного обеспечения, нужно было и специальное железо, которое и должно добывать радиосигнал из воздуха, его оцифровывать и передавать на обработку компьютеру.

Все еще непонятно, что такое SDR? SDR это всеволновый радиоприемник на основе персонального компьютера (или другого вычислительного устройства, например, смартфона). При помощи SDR можно прослушивать радиоэфир в очень широком диапазоне начиная от килогерц и заканчивая мегагерцами. А услужливый компьютер, при помощи специализированных программ поможет не только раскодировать модуляцию радиосигнала, но и найти соответствующую трансляцию.

Как правило, при помощи обычного SDR можно прослушивать любые аналоговые передачи в эфире. Начиная от переговоров между авиалайнерами и диспетчерами, и заканчивая разговорами обычных радиолюбителей. Если простой радиоприемник или рация позволяют работать только в каком-то определенном диапазоне, например, радиоприемник в автомобиле позволяет прослушивать FM-диапазон, а иногда еще и AM. Там вещают радиостанции с музыкой, новостями или телемагазинами. А всеволновый SDR может больше. Он универсален и одинаково хорошо может подслушать разговор детишек по walky-talky, таксистов с диспетчером, пожарных, полицию, а заодно и соседскую радионяню. Правда, слушать разговоры силовых органов уже не так просто поскольку они если не полностью перешли на цифровое вещание с шифрованием, то уже предельно близки к тому. Но зато все остальные передачи прослушиваются принимаются при достаточном уровне сигнала просто великолепно.

Кстати, поскольку SDR это штука весьма и весьма универсальная, то она может прослушивать не только аналоговые радиопередачи, но и просматривать аналоговое телевещание! Ведь по сути, устройству все равно, что вылавливать из эфира, оцифровывать и передавать в компьютер. Хватило бы только частоты дискретизации, да ширины канала захвата. Но и это еще не все. Если очень захотеть, то можно спокойно раскодировать и цифровые каналы. Компьютеру в целом все равно, что раскодировать. Аналоговое вещание или цифровое, был бы только соответствующий модуль для декодирования. Хотя некоторые стандарты и протоколы, просто так перехватить и разобрать до удобоваримого вида не получится. Например, Bluetooth, работающей на частотах, поддерживаемых SDR, выловить из эфира будет практически невозможно, поскольку там применяется не только динамическая смена частот, но и активное шифрование трафика. А вкупе с низким радиусом действия практическое применение SDR для «прослушивания» Bluetooth становится нереальным.

Итак, SDR - это программно-аппаратный комплекс для радиолюбительского доступа, в режиме приема, к эфиру с широким диапазоном частот. Применяется зачастую из чистого любопытства, дабы узнать, что творится вокруг в радиоэфире. Или же целенаправленно, с прицелом на развитие радиолюбительских навыков.

А за это не посодют?

В Российской Федерации не посодют, поскольку подобные устройства, являются только и исключительно приемниками. Передавать в эфир они не могут чисто конструктивно, помехи способные нарушить деятельность других радиоустройств - не излучают. Соответственно SDR лицензированию не подлежит, оборот подобных устройств на территории страны - свободный. Более подробно сие расписано в таких документах, как «Закон о связи » и прочих нормативных актах. А ребята с ДПС-ФМ , не поленились и собрали целый дайджест правовой информации, включая разъяснения регулятивных органов.

Единственные действия, которые могут вызвать определенный конфликт в правовой плоскости, это без тени сомнения попытки расшифровки или взлома зашифрованных каналов. Но на подобные подвиги способны лишь самые просветленные головы, поскольку с кондачка к этой теме даже и не подобраться.

Конкретный образец с Китаю

Но прочь теорию, давайте рассмотрим конкретный прибор, который откроет дорогу в мир широкополосного радиолюбительства! Еще всего несколько лет назад, экспериментаторы-самоучки, обнаружили что если немного подковырять обычный USB телевизионный приемник, построенный на чипе RTL2832, то можно из него сделать очень неплохой SDR-приемник. В принципе, подобный подход производителей, когда аппаратное обеспечение может делать очень многое, но для конечного пользователя функциональность ограничивают программными средствами - не нов. Можно вспомнить хотя бы модемы от USRobotics или некоторые процессоры от Intel. Так и тут, производитель чипов изготовил их с изрядным запасом, дабы чип можно было использовать в максимально большом количестве устройств без модификаций, а все ограничения там чисто программные. Отсюда и пошел массовый интерес именно к подобным приемникам, обязательно с чипом RTL2832. Ушлые китайцы сообразили достаточно быстро, прошло всего года два, что тут дело нечисто и есть определенный интерес именно к таким продуктам и именно с целью создания SDR приемников. А затем взяли и наладили выпуск настоящих SDR приемников и непосредственно на чипах RTL2832.

Хочу сразу заметить, что даже на том же самом Aliexpress, SDR-приемников можно найти сразу несколько видов. А кроме того, такой приемник можно спаять и самостоятельно из продаваемых там же наборов DIY, а от заботливого продавца получить все необходимые детали, корпус, инструкцию, да антенну. Но я все же предпочел получить уже готовый прибор, а не испытывать судьбу в припайке многоногого чипа к печатной плате.

Итак, после некоторого ожидания, на моем рабочем столе лежит небольшая металлическая коробочка размерностью 45х75х20 мм. Корпус изготовлен из крашеного алюминия, с одного торца два разъема для подключения антенны, а с противоположного разъем MiniUSB и светодиодный индикатор рабочего состояния прибора. В комплекте, помимо самого приемника идет еще и неплохой USB кабель для подключения, и небольшая антенна на немагнитном основании и весьма длинным кабелем. Кстати, поскольку подобные устройства не имеют никакого бренда и являются стопроцентным NoName, то у продавцов периодически возникает необходимость в выдумывании наименования своего товара. Вот и тут, продавец вывернулся и назвал SDR примерно так «NEW 100 KHZ to 1.7 GHz all band radio RTL - the SDR receiver RTL2832 + R820T». Что же, при поддерживаемых частотах с 100 килогерц и до 1.7 гигагерц, оно действительно «всеволновое».

Если разобрать SDR, тем более что он работает, а разборка на гарантию ну никак не повлияет, то внутри можно найти очень мало чего интересного. Да тут есть пара многоногих чипов, да несколько прочих деталей. Есть тут R820T, как наследник E4000. Но в целом и смотреть-то не на чего. Собрано аккуратно, видно, что китайцы отошли от практики паять все у себя дома, в деревне на циновке. За них уже все давно паяют роботизированные станции и только самую сложную работу, типа приклейки пары тончайших проводочков - выполняет человек.

Как бы то ни было - устройство вполне работоспособно, при подключении его к USB-порту, загорается синий светодиод, а это значит, что питание подается и можно приступать к установке программного обеспечения.

Устанавливаем программное обеспечение

И вот именно тут пользователь SDR, обычно, наступает на те самые грабли, по которым периодически ходят все остальные. Для того чтобы можно было пользоваться SDR, необходимо установить драйвера и программное обеспечение на компьютер. Но тут нужно учитывать, что все программное обеспечение, включая драйвер, разрабатывается для SDR энтузиастами. А они чхать хотели на совместимость и проверки работоспособности своих творений с разнообразным оборудованием.

Поэтому повозиться придется. Процесс установки разделяется на две части, сначала необходимо установить специальный драйвер для SDR, а затем уже программу для работы с SDR. Я, как истинный экстремал, все операции проводил на Win10 x64. Хочу сразу предупредить, если необходимый драйвер не устанавливается по причине отсутствия верной цифровой подписи, то необходимо отключить проверку цифровых подписей драйверов в операционной системе. Как это делается? Гуглите.

1 . Первым делом скачиваем специальную программу по установке драйвера. Скачать ее можно с сайта RTLSDR.org . Это как раз и есть тот сайт, где объединились добровольцы для разработки специального драйвера под чип RTL2832. А устанавливать драйвер необходимо через программу Zadig, поскольку драйвер для работы SDR подменяет оригинальный драйвер для RTL2832.

Итак, скачиваем программу, запускаем, подключаем устройство по USB к компьютеру. Желательно подключать его именно в системный блок, а не через монитор или какой-то другой внешний USB-хаб.

Если все пошло хорошо, то в Zadig необходимо выбрать устройство с именем Bulk-in, Interface (Interface 0). Далее, легким движением руки, нажимаем Install Driver и устанавливаем WinUSB (и никакой другой). Если драйвер установился и в Device Manager исчезли неизвестные устройства, то можно смело переходить на шаг 2 и устанавливать непосредственно программу для работы с SDR.

А вот, если что-то пошло не так… Тут уже все немного сложнее. Windows могла успеть установить стандартный драйвер для RTL2832 или драйвер просто не установился. В этом случае последовательность действий следующая:

А . Удаляем устройство из Device Manager с удалением драйвера.

Включаем режим отображения скрытых устройств в Device Manager.

Если устройство не видно в списке, значит оно скрыто и необходимо включить опцию отображения скрытых устройств.

Б . Запускаем Zadig еще раз, в опциях включаем отображение всех устройств. Ищем наше устройство, а оно уже скорее будет называться RTL2832UHIDIR. И для него переустанавливаем драйвер на WinUSB. Для надежности перезагружаемся.

2 . Самым простым и наглядным программным продуктом для работы с SDR можно смело назвать SDRSharp. В дальнейшем, можно попробовать и другие программы, но для начала SDRSharp будет именно тем, что доктор прописал.

Изначально, SDR# разрабатывался командой энтузиастов AirSpy. Впрочем, AirSpy и сейчас поддерживает SDR#, но по каким-то неведомым причинам, последняя версия SDR#, загруженная с их официального сайта , отказалась работать с моим устройством. Вернее, даже не с устройством, а тем драйвером, который был установлен через Zadig. Видимо, в продукт были внесены какие-то изменения, и он оказался не совсем совместим с предыдущими версиями драйверов. И возможно, что именно по этой причине на страничке AirSpy есть ссылка еще и на некий совместимый драйвер.

Но я не стал разбираться в причинах несовместимости, а просто использовал те версии SDR#, что были предоставлены мне продавцом устройства. Они как раз работают так как требуется. А чтобы программы никуда не потерялись, я их заботливо сложил в отдельный архивчик .

Проверить работоспособность полученного комплекта можно достаточно просто. Запускаем SDRSharp и в левом верхнем углу выбираем RTL-SDR/USB (а это именно то устройство, которое мы устанавливали). Если программа не ругается на недоступность устройств и если на экране началось оживление в виде графиков, то все работает как надо. А если же SDR# ругнулась, то нужно возвращаться к шагу 1 и мудрить с драйверами.

Пробуем в работе SDR#

Интерфейс SDR Sharp - примитивен. Тут есть всего лишь одно окно. В левой части располагаются настройки, а в правой графики. График в виде кривой линии отображает уровень сигнала на выбранных частотах. Чем выше уровень сигнала, тем, соответственно, мощнее сигнал на этой частоте и есть вероятность, что именно там ведется трансляция чего-либо отличного от шума. Но далеко не всегда высокий уровень означает осмысленную или же вообще трансляцию. Помочь разобраться с тем - есть там хоть какой-то сигнал или же это просто шум, поможет нижний график, выполненный по методологии «водопад».

Водопад отображает наличие полезного сигнала на каждой их отображаемых частот. Шум обычно показывается синим или холодным спектром, а полезный сигнал цветным или теплым. На разных частотах и при разных типах кодирования сигнала, ширина и теплота участков отлична. Так, например, если пытаться поймать сигнал FM радиостанции или телевизионный сигнал, то теплый поток будет хорошо заметен и достаточно широк. Достаточно будет только кликнуть мышкой где-то в середине потока и, скорее всего, из динамиков польется звук трансляции. А вот если ловить источники попроще, да еще и выходящие в эфир эпизодически, например, пользователей портативных радиостанций или пилотов авиалайнеров, то за ними придется очень внимательно охотиться и ловить пролетающие тончайшие цветные полосочки.

В левой части окна программы сосредоточились опции настройки приема. Помимо различных фильтров, кои лучше не трогать, если не знаешь их назначение, а программа поставляется с заранее настроенными опциями, тут располагается интерфейс настройки частоты и типа кодирования. Вся эта красота скрывается в группе Radio. Особое внимание, при попытке настройки на нужную частоту стоит обращать на тип кодирования:

  • NFM - частотная модуляция, часто используются портативными радиостанциями.
  • AM - амплитудная модуляция. С ней работают некоторые радиостанции на средних и длинных волнах, гражданские авиалайнеры и многие другие.
  • LSB -однополосная модуляция (амплитудная модуляция с одной нижней боковой полосой), разновидность амплитудной модуляции. Применяется сейчас, в основном, только в любительской радиосвязи.
  • USB - почти полный аналог предыдущего, но применяется верхняя боковая полоса. Применяется до сих пор на некоторых морских и военных кораблях. Как и LSB, характеризуется пониженным энергетическим требованиям для передатчика.
  • WFM - широкополосная частотная модуляция, тут как раз роятся музыкальные радиостанции.
  • DSB - разновидность амплитудной модуляции, а именно балансная амплитудная модуляция с подавлением несущей (double side band). Ведется ли с этой модуляцией какая-то трансляция или нет, сказать не могу. Но если тип и появился в программе, значит, где-то она применяется.
  • CW (или CWL-L/CW-U) - линейная частотная модуляция. Применяется для трансляций радиотелеграфа. Надеюсь, что азбуку Морзе еще не все позабыли?
  • RAW - чистый сигнал, без обработки. Может быть полезен для передачи сигнала в другие модули.

Разобраться с типами аналоговых модуляций, поможет вполне неплохая страничка на портале микроэлектронных технологий. Плюс, могу порекомендовать ознакомиться с кратеньким и не совсем актуальным описанием интерфейса SDR# на русском языке. Описание поможет, если вдруг будут какие вопросы к непонятным элементам интерфейса.

Помимо всего прочего, в SDR# есть возможность подключать плагины сторонних разработчиков. Среди них есть и весьма полезные, например, осуществляющие самостоятельный поиск трансляции в окне мониторинга либо вывод на экран картинки транслируемого видеосигнала. Плагины под SDR Sharp собираются в сети на множестве сайтов, ведь разработкой занимаются энтузиасты, а начать можно, например, с этого . Из русскоязычных же проектов, наиболее интересным могу назвать проект RTL-SDR.ru , соответственно порекомендую посетить и его.

А что дальше?

После того как все настроено, проверено в работе - наступает чувство, что все, наигралося. И хочется, чего больше. Но, поскольку у нас в руках именно программный продукт, то его можно расширять и допиливать до нужного состояния неимоверным количеством путей и практически до бесконечности. Некоторые умельцы аж вылавливают спутниковые сигналы, GPS всякий и балуются отслеживанием авиалайнеров на карте по сигналам их радиомаяков.

Но прежде всего можно попробовать увеличить дальность приема, а тут поможет только хорошая антенна, поскольку рассматриваемая плата уже оборудована вполне сносным усилителем. Антенн существует множество видов, большинство из которых можно без особых мучений собрать собственными руками, следуя концепции DIY. Более того, поскольку в комплекте идет универсальная антенна, которая одинаково плохо будет работать во всем диапазоне, то в состоянии «наигралося» некоторые потребности по направлению приема уже будут понятны. И собственно именно под них и можно будет собирать целенаправленно правильную антенну.

Если возможностей SDR# недостаточно или по каким-то причинам сей продукт не устраивает, то можно попытаться скрестить SDR-приемник с одной из многих альтернатив. Начать можно хотя бы с

Программно-зависимые приёмники SDR на самом деле достаточно несложны и малогабаритны. Размером от спичечного коробка до пачки сигарет. Но как говорится, мал золотник, да дорог. При всей своей простоте, с компьютером и соответствующей программой, подобный приёмник превращается в достаточно серьёзное приёмное устройство. Вполне может использоваться как по прямому назначению, так и служить в качестве анализатора спектра. На сегодняшний день наиболее популярны приёмники разработанные YU1LM и различные варианты приёмникаSoftRock 40. Как правило, для упрощения конструкции, в качестве задающего генератора используется кварцевый генератор. С таким расчётом, чтобы центральная частота находилась в середине интересующего участка диапазона. Хотя ничего не мешает использовать и синтезатор частоты.

Рис.1 - Внешний вид простого SDR приемника


Для работы с такими приемниками создано несколько программ (например, Rocky, SDRadio, KGKSDR), которые обеспечивают перестройку по частоте путем изменения низкой промежуточной частоты (т.н. перестраиваемая ПЧ).


Рис.2 - Экранная форма программы для работы с SDR приемником


Блок-схема очень простого аналогового приемника для SDR на диапазон 40 м SoftRock40, который разработалиTony Parks, KB9YIG, и Bill Tracey, KD5TFD, приведена ниже. Он состоит из диапазонного полосового фильтра, квадратурного детектора Tayloe , малошумящего предварительного НЧ усилителя, кварцевого генератора на частоту 28,224 МГц, формирователя прямоугольных импульсов и делителя частоты на D-триггерах. Квадратурный детектор на быстродействующих ключах, предложенный D.Tayloe, N7VE, обладает большой перегрузочной способностью, низкими потерями, а также очень хорошими фильтрующими свойствами, т.к. этот детектор фактически включает в себя фильтр на коммутируемых конденсаторах. Частота кварцевого генератора в 4 раза превышает частоту принимаемого сигнала. С помощью D-триггеров частота кварцевого генератора делится на 4, а сигналы, подаваемые на квадратурный детектор, сдвинуты по фазе на 90о. Используя кварцевый генератор на частоту 28,224 МГц, можно принимать сигналы в диапазоне 40 м, находящиеся как выше, так и ниже частоты 7056 кГц.


Рис.3 - Структурная схема SDR приемника


Если частота дискретизации звуковой карты составляет 48 кГц, то на вход звуковой карты можно подавать сигналы частотой до 24 кГц. Следовательно, с упомянутым приемником перекрывается полоса частот от (7056 – 24) до (7056 + 24) кГц, т.е. 7032 - 7080 кГц. Прием в этой полосе ведется с использованием фазового метода подавления нерабочей полосы. Сигналы I и Q, сдвинутые по фазе на 90о, позволяют программному обеспечению отличать, как следует обрабатывать сигналы боковых полос в зависимости от того, выше или ниже частоты опорного кварцевого генератора (7056 кГц) ведется прием. При переходе частоты через ноль автоматически программно переключается боковая полоса, и, соответственно, получается удвоенная полоса приема. При частоте дискретизации звуковой карты 96 кГц диапазон перестройки SDR-приемника увеличивается до +/- 48 кГц. В зависимости от выбранной частоты дискретизации (48 или 96 кГц) желательно, чтобы частотная характеристика малошумящего предварительного НЧ усилителя имела завал на частотах выше 25 или 50 кГц соответственно. Любые сигналы, частоты которых расположены выше частоты дискретизации, будут интерферировать с полезными сигналами, вызывая появление побочных сигналов в потоке данных. Применив в опорном генераторе синтезатор частоты, формирующий сетку частот через 48 кГц или 96 кГц, на основе программы Rocky и аппаратной части SoftRock40 можно изготовить всеволновый всережимный SDR-приемник. Такой приемник имеет панорамный спектральный дисплей, DSP-фильтры с различной полосой пропускания и коэффициентом прямоугольности вплоть до 1,05 (!), традиционные для современных трансиверов и приемников функции подавления помех и снижения шума, автоматический notch-фильтр и т.д. Как правило, SDR-приемник обеспечивает демодуляцию практически всех распространенных видов излучения - CW, LSB, USB, AM, FM, а с помощью дополнительного программного обеспечения и цифровых видов - как радиолюбительских, так и коммерческих (например, DRM - цифрового радиовещания). Итак, какие же практические преимущества предлагает в настоящее время SDR по сравнению со стандартным радиолюбительским приёмником или трансивером? Первое и основное ключевое преимущество заключается в том, что программная часть SDR позволяет “увидеть” радиосигналы - не только тот, который принимается на определенной частоте, но и сигналы, которые присутствуют в определенном участке любительского диапазона. Это стало возможным благодаря очень высокой чувствительности и разрешающей способности панорамного спектрального дисплея. Steve Ireland, VK6VZ - “фанат” диапазона 160 м - построил SDR приемник на свой любимый диапазон. Тестируя Rocky и SoftRock на слабых телеграфных DX сигналах в диапазоне 160 м, VK6VZ отмечает, что, по сравнению с трансивером Yaesu FT-1000MP, из каждого четвертого сигнала, который он видит на экране компьютера, на слух, при перестройке FT-1000MP по диапазону, можно было заметить только один из них. А вот панорамный спектральный дисплей Rocky позволяет увидеть сигналы всех любительских передатчиков в полосе частот около 48 кГц, и кликом мышки настроиться на прием любого из них. Кстати, имея более 200 подтвержденных стран на диапазоне 160 м, VK6VZ считает, что стран было бы гораздо больше, если бы он в предыдущие годы использовал SDR-приемник. Спектральный дисплей в программе можно растянуть на всю ширину экрана монитора. Располагая самый интересный для радиолюбителя участок спектра перед глазами, можно действительно сказать: “Вижу, что диапазон представляет сегодня”. Кроме того, для работы спектрального дисплея используется полифазное быстрое преобразование Фурье, что позволяет отчетливо различать даже очень слабые сигналы на экране компьютера, которые при стандартном преобразовании просто сливаются. VK6VZ нашел, что слабые CW сигналы (S2 - S3) в диапазоне 160 м отчетливо отображаются даже летом, когда уровень шума на этом диапазоне очень велик. Кроме панорамного спектрального дисплея, который имеет очень высокое разрешение по частоте, в SDR-программах часто встроен дисплей с высоким разрешением по времени (“водопад”). Этот дисплей позволяет видеть даже телеграфные посылки, передаваемые со скоростью до 40 слов в минуту. Кроме того, с помощью “водопада” можно оценить спектральную чистоту принимаемых сигналов, в частности, увидеть выбросы на фронтах телеграфных посылок. Еще одно ключевое преимущество SDR заключается в том, что благодаря компьютерной обработке сигнала, когда селективность обеспечивается цифровыми методами, а не кварцевыми и электромеханическими фильтрами, у оператора появляется возможность непрерывной коррекции требуемой селективности. Например, в программе Rocky простым кликом мышки на “бегунке” управления шириной полосы пропускания фильтра и перетаскиванием бегунка можно плавно изменять ширину полосы пропускания выбранного фильтра (для телеграфного фильтра - от 600 до 20 Гц). Это означает, что можно действительно оптимизировать полосу пропускания для принимаемого сигнала с точки зрения получения наилучшего отношения сигнал/шум. Кроме того, фильтрация и подавление шума в SDR значительно лучше, чем в любом аналоговом трансивере, даже оборудованном дополнительными устройствами DSP. Говоря о SDR, также нельзя не отметить программную реализацию автоматической регулировки усиления, которая, в отличие от классической (аппаратной), обеспечивает оптимальный динамический диапазон выходного сигнала. Кроме того, в SDR автоматическая регулировка усиления имеет не только привычные состояния “быстрая”, “медленная” и “выключена”, но и позволяет регулировать такие параметры как время атаки, задержки включения и восстановления, порога срабатывания и т.д. Как правило, радиолюбители достаточно скептически относятся к S-метрам промышленных трансиверов, не говоря уже о самодельных конструкциях. И это вполне заслуженно, ведь традиционно S-метр зависим от напряжения системы АРУ. Да и калибровка в различных моделях трансиверов оставляет желать лучшего.


Рис.4 - S-meter


В SDR приёмнике, а точнее в программе, измерения никак не связаны с АРУ. Панорама замеряет уровни доDSP фильтра основной селекции, S-метр после. До этой части нет никаких регулируемых каскадов, способных изменить уровни сигналов. Достаточно откалибровать программу одним известным напряжением на антенном входе, например 50 мКв, хотя это значение не принципиально. Математика в дальнейшем безошибочно будет определять уровни сигналов на входе приёмника, начиная от уровня собственных шумов приёмной части, до максимально возможных. Это значит, что и S-метру и панорамному анализатору SDR радио вполне можно доверять не только при работе в эфире, но и использовать как измерительный прибор или анализатор спектра. Один американский радиолюбитель метко высказался по этому поводу, SDR - это измерительный комплекс с возможностями радио. Попробуйте собрать SDR приёмник, думаю он вас не разочарует и будет настоящим помощником в шэке.

В этой статье я расскажу о том, как на базе отладочной платы DE0-nano сделать достаточно простой КВ SDR приёмник.
Пример принимаемых сигналов:

Про технологию SDR можно почитать . Вкратце - это методика приёма радиосигнала, в которой большой объем обработки информации производится в цифровом виде. Благодаря использованию ПЛИС и высокоскоростного АЦП, можно сделать приёмник, в котором даже перенос частоты «вниз» производится цифровым способом. Такой метод называется DDC (Digital Down Conversion), подробнее про него можно прочитать и . Используя эту методику, можно сильно упростить приёмник, в котором единственной аналоговой частью становится АЦП.

А теперь поподробнее о моем приёмнике.
Его основой является ПЛИС производства компании Altera, установленная на отладочной плате DE0-Nano. Плата относительно дешевая (60$ для студентов), правда, с достаточно дорогой доставкой (50$). Сейчас она становится все более популярной у радиолюбителей, начинающих знакомство с ПЛИС.
Главная задача ПЛИС - «захватить» цифровой сигнал с АЦП, перенести его в область низких частот, отфильтровать и отправить результат на компьютер. Структурная схема приёмника, реализованного мной, имеет такой вид:

Рассмотрим последовательно компоненты, которые проходит радиосигнал и цифровая информация.

Антенна

У радиолюбителей есть поговорка «Хорошая антенна - лучший усилитель». Действительно, от антенны зависит очень многое. Большинство наиболее интересных сигналов на коротких волнах нельзя принять на простую антенну (например, на кусок провода). За городом особых проблем нет - достаточно длинный провод может работать хорошей антенной (на приём). В городе, особенно внутри крупных железобетонных домов все значительно хуже - длинную антенну не растянуть, при этом мешающих шумов очень много (бытовые приборы способны создавать в эфире очень большой уровень шума), так что выбор антенны становится непростым делом.
Для приёма радиосигналов я пользуюсь активной рамочной антенной, конструкция которой описана .
Моя антенна выглядит так:

Фактически антенна представляет собой большой колебательный контур (конденсатор находится внутри коробки на столе). Установлена она на балконе, и достаточно неплохо работает. Основное достоинство рамочной антенны - за счет использования явления резонанса она позволяет подавлять шумы на неиспользуемых частотах, однако есть и недостаток - при переходе с одного диапазона частот на другой антенну нужно перестраивать.

АЦП

Выбор АЦП тоже непрост. АЦП должен обладать большой разрядностью для повышения динамического диапазона, а для DDC приёмника - еще и высоким быстродействием. Обычно в хорошие DDC приёмники ставят АЦП с разрядностью 16-бит и быстродействием >50 MSPS. Однако стоимость таких АЦП больше 50$, и в экспериментальную конструкцию хотелось поставить что-нибудь попроще.
Я выбрал AD9200 - 10-битный 20 MSPS АЦП стоимостью 200 руб. Это очень посредственные характеристики для DDC приёмника, однако, как показала практика, АЦП вполне пригоден для приёма сигналов.
АЦП установлен на отдельной плате, которая вставляется в отладочную:

Снизу плата металлизирована, слой металла соединен с землей АЦП, что тоже защищает от помех.

Схема подключения АЦП


Опыта разводки ВЧ конструкций у меня нет, так что возможно, что схему и разводку можно улучшить.


Так как АЦП оцифровывает только сигналы положительного уровня, а сигнал с антенны биполярный, то сигнал приходится смещать на половину опорного напряжения (для этого служат резисторы R1 и R2). Искусственно созданная постоянная составляющая затем вычитается уже из цифрового сигнала в ПЛИС.

Вся дальнейшая обработка сигнала после АЦП идет в ПЛИС.
Поток данных с АЦП составляет 200 Мбит (10-bit x 20 MSPS). Передать такой поток напрямую в компьютер, а потом его еще и обработать очень сложно, поэтому частоту сигнала нужно специально понизить. При переносе на более низкую частоту возникает явление «зеркального канала», для борьбы с которым используют квадратурное преобразование частоты - сигнал преобразовывают в комплексную форму (происходит разделение на два канала I/Q). Перенос на более низкую частоту производится путем умножения исходного сигнала на сигнал генератора. В используемой ПЛИС достаточно аппаратных умножителей, так что это не представляет проблемы.

NCO

Для того, чтобы переносить входной сигнал на нужную частоту, ее нужно создать. Для этого используется готовый компонент Quartus - NCO (numerically controlled oscillator). На генератор подается тактовая частота, такая же как и у АЦП (20 МГц), на его вход управления подается значение, определяющее частоту, и на его выходе формируется цифровой синусоидальный сигнал нужной частоты, дискретизованный с частотой 20 МГц. NCO способен параллельно формировать и косинусный сигнал, благодаря чему можно формировать квадратурный сигнал.

CIC-фильтр

После смешивания с сигналом генератора с выхода умножителей сигнал выходит уже перенесенный на более низкую частоту, но все еще с высокой частотой дискретизации (20 MSPS). Сигнал требуется децимировать , то есть отбросить часть выборок. Просто так отбросить лишние выборки нельзя, так как это приведет к искажению выходного сигнала. Поэтому сигнал нужно пропустить через специальный фильтр (CIC-фильтр). В данном случае я хотел получить на выходе приёмника частоту дискретизации сигнала 50 кГц. Из этого следует, что частота должна быть понижена в (20e6 / 50e3 = 400) раз. Децимацию придется производить в 2 этапа - сначала в 200, затем в 2 раза.
Первый этап выполняет именно CIC-фильтр. Я использовал 5-каскадный фильтр.
В результате работы CIC-фильтр за счет понижения полосы сигнала разрядность выходного сигнала увеличивается. С своем приёмнике я искусственно ограничил ее 16 битами.
Так как каналов в приёмнике два, то и фильтров потребуется тоже два.
К сожалению, CIC-фильтр имеет довольно крутую АЧХ, стремящуюся к 0 при приближении к выходной частоте дискретизации (100 кГц). Для компенсации ее кривизны служит следующий фильтр.

Компенсационный FIR-фильтр

Этот фильтр нужен для того, чтобы компенсировать спад АЧХ CIC-фильтра и выполнить еще один этап децимации (в два раза). В Altera уже позаботились о методике расчета этого фильтра - при создании CIC-фильтра автоматически формируется программа для Matlab, запустив которую, можно сформировать коэффициенты для компенсационного фильтра.
Вид АЧХ CIC, FIR и получающегося результата (графики строит та же программа для Matlab):


Видно, что на частоте 25 кГц CIC-фильтр ослабит сигнал на 20 Дб, что очень много, однако с использованием FIR-фильтра ослабление всего 10 Дб, а на более низких частотах ослабление практически отсутствует.
На выходе FIR-фильтра с учетом децимации будет частота дискретизации сигнала будет 50 кГц.
Почему нельзя сразу было произвести децимацию сигнала в 400 раз? Это связано с тем, что частота среза FIR-фильтра должна составлять 1/4 от его выходной. В данном случае частота дискретизации на выходе фильтра без децимации, как и на его входе, составляет 100 кГц. В результате этого частота среза будет как раз 25 кГц, что и видно на графиках выше.
Оба фильтра являются готовыми компонентами Quartus.

Передача данных на компьютер

Полученный поток данных ((16+16)bit x 50 KSPS = 1.6 Mbit) нужно передать на компьютер. Данные я решил передавать через Ethernet. На отладочной плате нет такого интерфейса. Наиболее правильно было бы сделать отдельную плату с контроллером PHY, запустить soft-процессор Nios, и передавать данные через них. Однако это значительно усложняет конструкцию. Я пошел более простым путем - Ethernet пакеты можно формировать на самой ПЛИС, таким образом можно передавать данные со скоростью 10 Mbit. В данном случае Ethernet кабель через разделительный трансформатор соединяется с выводами ПЛИС. Проекты с таким принципом работы можно посмотреть и .
В качестве основы я выбрал первый проект, частично его доработав. В изначальном проекте ПЛИС посылает на компьютер с заданным IP и MAC адресом определенный UDP-пакет. После переделки модуль Ethernet передатчика мог передавать 1024 байта, считывая их из RAM. В результате на компьютер в одном пакете отправляются 256 пар 16-битных значений сигнала, взятого с выходов фильтров. Так как данные поступают от АЦП непрерывно, а отправлять их на компьютер нужно пакетами, то пришлось реализовать двойную буферизацию памяти - в то время, пока одна RAM заполняется, данные из другой RAM передаются по Ethernet. После того, как первая RAM заполнится, обе RAM «меняются местами», за что отвечает довольно простой управляющий модуль.
Так как на выходе фильтров данные передаются потоком из пары 16 битных величин, а по Ethernet передаются отдельные байты, то для преобразования потоков в конструкцию введен модуль, который преобразует поток 32 бит 50 KSPS в 8 бит 200 KSPS.

Как оказалось, если передавать поток данных со скоростью 1.6 Mbit, то устройство, к которому подключен приёмник, даже не обнаруживает его (нет линка). Это связано с тем, что пакеты данных при этом передаются с периодом примерно 5 мс, а для того, чтобы сообщить другому сетевому устройству скорость подключения (10 Mbit), нужно каждые 8-24 мс передавать специальный короткий импульс (NLP). Из-за высокой частоты передачи пакетов, модуль Ethernet не успевает передавать эти импульсы, и Autonegotiation не происходит.
Поэтому, для того, чтобы противоположное устройство все же могло определить скорость соединения, достаточно при включении приёмника временно уменьшить частоту передачи пакетов (у меня - в 4 раза), благодаря чему модуль Ethernet успевает передать импульсы NLP.

Приём данных от компьютера

Для того, чтобы управлять приёмником (устанавливать частоту настройки), на него нужно передавать определенную величину, которая будет использоваться для задания частоты NCO.
Для приёма этой величины так же используется компонент с вышеуказанного сайта, модифицированный для приёма данных, и выдачи их в виде 24 битного числа. Так как модули приёмника и передатчика никак не связаны друг с другом, то реализовать ARP нельзя, и фактически это значит, что приёмник не будет иметь IP и MAC адреса. Передать информацию на него можно, если отправить в сеть широковещательный пакет.
Физически, как и в случае с передатчиком, сетевой провод соединяется с отладочной платой через трансформатор. Однако здесь уже нельзя подключаться к произвольным выводам ПЛИС, так как сигнал достаточно мал. Нужно использовать выводы, поддерживающие интерфейс LVDS - он является дифференциальным.

Ресурсы, используемые программой ПЛИС:
- 5006 LE
- 68 9-bit умножителей (64 из них используются в FIR -фильтре).
- 16,826 bit памяти (8 блоков M9K).

Вид проекта проекта в Quartus:

Обработка данных на компьютере

После того, как компьютер принял данные, их нужно обработать. Лучше всего взять готовую программу. Обычно в SDR программах реализовывают нужные цифровые фильтры, алгоритмы, предназначенные для формирования звука и его фильтрацию, БПФ принятого сигнала, построение его спектра и «водопада».
Я использую программы HDSDR и SDRSharp, они обе поддерживают ввод данных при помощи одинаковых библиотек ExtIO (формат программы Winrad). Требования программ к библиотеке хорошо документированы .
Вот есть пример создания такой библиотеки. Я переделал этот пример, добавил в него приём данных из сети, склеивание двух пакетов (программа за раз приминает минимум 512 пар I/Q выборок), отправку их в программу, и передачу широковещательного пакета с вычисленным значением для NCO при смене частоты в программе. До этого мне никогда не приходилось создавать библиотеки, да и в C++ я не силен, так что в библиотека может быть написана совсем не оптимально.
Так как частота дискретизации I/Q сигналов на выходе фильтров приёмника составляет 50 кГц, то в программе при приёме для обзора будет доступна полоса 50 кГЦ. (± 25 кГц от частоты, формируемой NCO).

Собранный приёмник выглядит так:


Резистор соединяет средние точки трансформатора с 3.3 В платы - это улучшает приём и передачу данных по сети.

После того, как приёмник был полностью собран и все программы написаны, оказалось, что чувствительности не хватает. Даже на активную антенну принимались только вещательные радиостанции и сигналы радиолюбителей, работающих на больших мощностях.
Насколько я понимаю, это связано с низкой разрядностью АЦП. Для повышения чувствительности пришлось сделать дополнительный усилитель на транзисторе BF988 (находится внутри маленькой металлической коробочки). Усилитель смог заметно поднять чувствительность приёмника.
Внешний вид всей конструкции:

Блок питания обеспечивает напряжение 12 В для питания усилителя антенны, в металлической круглой коробке находятся несколько диапазонных полосовых фильтров, которые снижают внедиапазонные сигналы, что улучшает прим сигналов. Отмечу, что во многих случаях приём возможен и без ДПФ.

Теперь о том, что же удается принять на КВ. Несмотря на достаточно высокий уровень шумов, удается принять достаточно много сигналов, хорошо принимаются вещательные радиостанции, неплохо принимаются радиолюбители.
Пример приема сигналов в программе HDSDR (приём велся во время CQ WW DX Contest):


Видео приёма:

Удается принять сигналы WSPRnet. WSPRnet - сеть радиолюбительских маяков, которые автоматически обмениваются короткими сообщениями друг с другом. Данные от маяков автоматически публикуются в интернете. В данном случае, установив специальную программу, можно декодировать принятые сигналы и отправлять их в сеть. На сайте есть возможность посмотреть карту, на которой показываются связи между маяками за определенный интервал времени.
Вот что получилось у меня за полдня приема:


Важная особенность WSPR - очень маленькая мощность передатчиков (меньше 5 Вт), узкая полоса передаваемого сигнала, и большая длительность передачи одного сообщения (2 мин). Благодаря цифровой обработке в программе-декодере удается принимать очень слабые сигналы. Мне удавалось принять сигнал маяка мощностью 100 мВт, находящегося на расстоянии ~2000 км.

Радиолюбители, работающие с использованием JT65. JT65 - это один из протоколов цифровой связи между радиолюбителями. Как и в WSPR, в нем используются маленькие мощности и длительные передачи (1 мин). Принимаются сообщения автоматически, так что можно оставить приемник на длительное время, а потом смотреть, кого удалось принять.
Пример приема:

Цифровое радиовещание (DRM). Некоторые вещательные радиостанции передают звук в цифровом виде. Принять такие сигналы непросто в условиях города - не хватает уровня сигнала. Одну станцию принять удалось:

Существует множество других радиосигналов, которые было бы интересно принять. Есть еще погодные факсы, станция точного времени RBU (на чудной частоте 66.6 кГц), и другие.