Сайт о телевидении

Сайт о телевидении

» » Аналоговый и цифровой сигналы — различия, преимущества и недостатки. Аналоговый и цифровой сигнал. Типы сигналов и как это действует Дискретного сигнала который передается по

Аналоговый и цифровой сигналы — различия, преимущества и недостатки. Аналоговый и цифровой сигнал. Типы сигналов и как это действует Дискретного сигнала который передается по

Сигналами называют информационные коды, которые применяются людьми для того, чтобы передавать сообщения в информационной системе. Сигнал может подаваться, но его получение не обязательно. Тогда как сообщением можно считать только такой сигнал (или совокупность сигналов), который был принят и декодирован получателем (аналоговый и цифровой сигнал).

Одними из первых методов передачи информации без участия людей или других живых существ были сигнальные костры. При возникновении опасности последовательно разводились костры от одного поста к другому. Далее мы будем рассматривать способ передачи информации при помощи электромагнитных сигналов и подробно остановимся на рассмотрении темы аналоговый и цифровой сигнал .

Любой сигнал может быть представлен в виде функции, которая описывает изменения его характеристик. Такое представление удобно для изучения устройств и систем радиотехники. Помимо сигнала в радиотехнике есть еще шум, который является его альтернативой. Шум не несет полезной информации и искажает сигнал, взаимодействуя с ним.

Само понятие дает возможность отвлечься от конкретных физических величин при рассмотрении явлений, связанных с кодированием и декодированием информации. Математическая модель сигнала в исследованиях позволяет опираться на параметры функции времени.

Типы сигналов

Сигналы по физической среде носителя информации делятся на электрические, оптические, акустические и электромагнитные.

По методу задания сигнал может быть регулярным и нерегулярным. Регулярный сигнал представляется детерминированной функцией времени. Нерегулярный сигнал в радиотехнике представлен хаотической функцией времени и анализируется вероятностным подходом.

Сигналы в зависимости от функции, которая описывает их параметры могут быть аналоговыми и дискретными. Дискретный сигнал, который был подвергнут квантованию называется цифровым сигналом.

Обработка сигнала

Аналоговый и цифровой сигнал обрабатывается и направлен на то, чтобы передать и получить информацию, закодированную в сигнале. После извлечения информации ее можно применять в разных целях. В частных случаях информация подвергается форматированию.

Аналоговые сигналы подвергаются усилению, фильтрации, модуляции и демодуляции. Цифровые же помимо этого еще могут подвергаться сжатию, обнаружению и др.

Аналоговый сигнал

Наши органы чувств воспринимают всю поступающую в них информацию в аналоговом виде. К примеру, если мы видим проезжающий мимо автомобиль, мы видим его движение непрерывно. Если бы наш мозг мог получать информацию о его положении раз в 10 секунд, люди бы постоянно попадали под колеса. Но мы можем оценивать расстояние куда быстрее и это расстояние в каждый момент времени четко определено.

Абсолютно то же самое происходит и с другой информацией, мы можем оценивать громкость в любой момент, чувствовать какое давление наши пальцы оказывают на предметы и т.п. Иными словами, практически вся информация, которая может возникать в природе имеет аналоговый вид. Передавать подобную информацию проще всего аналоговыми сигналами, которые являются непрерывными и определены в любой момент времени.

Чтобы понять, как выглядит аналоговый электрический сигнал, можно представить себе график, на котором будет отображена амплитуда по вертикальной оси и время по горизонтальной оси. Если мы, к примеру, замеряем изменение температуры, то на графике появится непрерывная линия, отображающая ее значение в каждый момент времени. Чтобы передать такой сигнал с помощью электрического тока, нам надо сопоставить значение температуры со значением напряжения. Так, например, 35.342 градуса по Цельсию могут быть закодированы как напряжение 3.5342 В.

Аналоговые сигналы раньше использовались во всех видах связи. Чтобы избежать помех такой сигнал нужно усиливать. Чем выше уровень шума, то есть помех, тем сильнее надо усиливать сигнал, чтобы его можно было принять без искажения. Такой метод обработки сигнала затрачивает много энергии на выделение тепла. При этом усиленный сигнал может сам стать причиной помех для других каналов связи.

Сейчас аналоговые сигналы еще применяются в телевидении и радио, для преобразования входного сигнала в микрофонах. Но, в целом, этот тип сигнала повсеместно вытеснен или вытесняется цифровыми сигналами.

Цифровой сигнал

Цифровой сигнал представлен последовательностью цифровых значений. Чаще всего сейчас применяются двоичные цифровые сигналы, так как они используются в двоичной электронике и легче кодируются.

В отличие от предыдущего типа сигнала цифровой сигнал имеет два значения «1» и «0». Если мы вспомним наш пример с измерением температуры, то тут сигнал будет сформирован иначе. Если напряжение, которое подается аналоговым сигналом соответствует значению измеряемой температуры, то в цифровом сигнале для каждого значения температуры будет подаваться определенное количество импульсов напряжения. Сам импульс напряжения тут будет равен «1», а отсутствие напряжения – «0». Приемная аппаратура будет декодировать импульсы и восстановит исходные данные.

Представив, как будет выглядеть цифровой сигнал на графике, мы увидим, что переход от нулевого значения к максимальному производится резко. Именно эта особенность позволяет принимающей аппаратуре более четко «видеть» сигнал. Если возникают какие-либо помехи, приемнику проще декодировать сигнал, нежели чем при аналоговой передаче.

Однако цифровой сигнал с очень большим уровнем шума восстановить невозможно, тогда как из аналогового типа при большом искажении еще есть возможность «выудить» информацию. Это связано с эффектом обрыва. Суть эффекта в том, что цифровые сигналы могут передаваться на определенные расстояния, а затем просто обрываются. Этот эффект возникает повсеместно и решается простой регенерацией сигнала. Там, где сигнал обрывается, нужно вставить повторитель или уменьшить длину линии связи. Повторитель не усиливает сигнал, а распознает его изначальный вид и выдает его точную копию и может использоваться сколь угодно в цепи. Такие способы повторения сигнала активно применяются в сетевых технологиях.

Помимо всего прочего аналоговый и цифровой сигнал различается и возможность кодирования и шифрования информации. Это является одной из причин перехода мобильной связи на «цифру».

Аналоговый и цифровой сигнал и цифро-аналоговое преобразования

Следует еще немного рассказать о том, как аналоговая информация передается по цифровым каналам связи. Вновь прибегнем к примерам. Как уже говорилось звук – это аналоговый сигнал.

Что происходит в мобильных телефонах, которые передают информацию по цифровым каналам

Звук, попадая в микрофон подвергается аналого-цифровому преобразованию (АЦП). Этот процесс состоит из 3 ступеней. Берутся отдельные значения сигнала через одинаковые отрезки времени, этот процесс называется дискретизация. По теореме Котельникова о пропускной способности каналов, частота взятия этих значений должна быть вдвое выше, чем самая высокая частота сигнала. То есть, если в нашем канале стоит ограничение на частоту в 4 кГц, то частота дискретизации будет составлять 8 кГц. Далее все выбранные значения сигнала округляются или, иначе говоря, квантуются. Чем больше уровней при этом будет создано, тем выше будет точность восстановленного сигнала на приемнике. Затем все значения преобразуются в двоичный код, который передается на базовую станцию и затем доходит до другого абонента, являющегося приемником. В телефоне приемника происходит процедура цифро-аналогового преобразования (ЦАП). Это обратная процедура, цель которой на выходе получить сигнал как можно более идентичный исходному. Далее уже аналоговый сигнал выходит в виде звука из динамика телефона.

Любой сигнал, аналоговый или цифровой — это электромагнитные колебания, которые распространяются с определенной частотой, в зависимости от того, какой сигнал передается, устройство, принимающее данный сигнал, переводит его в текстовую, графическую или звуковую информацию, удобную для восприятия пользователя или самого устройства. Для примера, телевизионный или радиосигнал, вышка или радиостанция может передавать и аналоговый и, на даный момент, цифровой сигнал. Приемное устройство, получая данный сигнал, преобразует его в изображение или звук, дополняя текстовой информацией (современные радиоприемники).

Звук передается в аналоговой форме и уже через приемное устройство преобразуется в электромагнитные колебания, а как уже говорилось, колебания распространяются с определенной частотой. Чем выше будет частота звука, тем выше будут колебания, а значит звук на выходе будет громче. Говоря общими словами, аналоговый сигнал распространяется непрерывно, цифровой сигнал — прерывисто (дискретно).

Так как аналоговый сигнал распространяется постоянно, то колебания суммируются и на выходе возникает несущая частота, которая в данном случае является основной и на нее осуществляется настройка приемника. В самом приемнике происходит отделение данной частоты от других колебаний, которые уже преобразуются в звук. К очевидным недостаткам передачи при помощи аналогового сигнала относятся — большое количество помех, невысокая безопасность передаваемого сигнала, а также большой объем передаваемой информации, часть из которой явлляется лишней.

Если говорить о цифровом сигнале, где данные передаются дискретно, стоит выделить его явные преимущества:

  • высокий уровень защиты передаваемой информации за счет ее шифрования;
  • легкость приема цифрового сигнала;
  • отсутствие постороннего «шума»;
  • цифровое вещание способно обеспечить огромное количество каналов;
  • высокое качество передачи — цифровой сигнал обеспечивает фильтрацию принимаемых данных;

Для преобразования аналогового сигнала в цифровой и наоборот испльзуются специальные устройства — аналого-цифровой преобразователь (АЦП) и цифро-аналоговый преобразователь (ЦАП). АЦП устанавливается в передатчике, ЦАП установлен в приемнике и преобразует дискретный сигнал в аналоговый.

Что касается безопасности, почему цифровой сигнал является более защищенным, чем аналоговый. Цифровой сигнал передается в зашифрованном виде и устройство, которое принимает сигнал, должно иметь код для расшифровки сигнала. Также стоит отметить, что АЦП может передавать и цифровой адрес приемника, если сигнал будет перехвачен, то полностью расшифровать его будет невозможно, тка как отсутствует часть кода — такой подход широко используется в мобильной связи.

Подведем итог, основное различие между аналоговым и цифровым сигналом заключается в структуре передаваемого сигнала. Аналоговые сигналы представляют из себя непрерывный поток колебаний с изменяющимися амплитудой и частотой. Цифровой сигнал представляет из себя дискретные колебания, значения которых зависят от передающей среды.

Цифровая электроника в настоящее время все более и более вы-тесняет традиционную аналоговую. Ведущие фирмы, произво-дящие самую разную электронную аппаратуру, все чаще заяв-ляют о полном переходе на цифровую технологию.

Успехи в технологии производства электронных микросхем обеспечили бурное развитие цифровой техники и устройств. Использование цифровых методов обработки и передачи сигналов позволяет существенно повысить качество линий связи. Цифровые методы обработки и коммутации сигналов в телефонии позволяют в несколько раз сократить массогабаритные характеристики устройств коммутации, повысить надежность связи, ввести дополнительные функциональные возможности.

Появление быстродействующих микропроцессоров, микросхем оперативной памяти больших объемов, малогабаритных устройств хранения информации на жестких носителях больших объемов позволило создать достаточно недорогие универсальные персональные электронные вычислительные машины (компьютеры), нашедшие очень широкое применение в быту и производстве.

Цифровая техника незаменима в системах телесигнализации и телеуправления, применяемых в автоматизированных производствах, управлении удаленными объектами, например, космическими кораблями, газоперекачивающими станциями и т. п. Цифровая техника также заняла прочное место в электро-радиоизмерительных системах. Современные устройства регистрации и воспроизведения сигналов также немыслимы без применения цифровых устройств. Цифровые устройства широко используются для управления в бытовых приборах.

Очень вероятно, что в будущем цифровые устройства займут доминирующее положение на рынке электроники.

Для начала дадим несколько базовых определений .

Сигнал — это любая физическая величина (например, тем-пература, давление воздуха, интенсивность света, сила тока и т. д.), изменяющаяся со временем. Именно благодаря этому изменению во времени сигнал может нести в себе какую-то ин-формацию.

Электрический сигнал — это электрическая величина (на-пример, напряжение, ток, мощность), изменяющаяся со време-нем. Вся электроника в основном работает с электрическими сигналами, хотя в последнее время все больше используются световые сигналы, которые представляют собой изменяющуюся во времени интенсивность света.

Аналоговый сигнал — это сигнал, который может прини-мать любые значения в определенных пределах (например, на-пряжение может плавно изменяться в пределах от нуля до деся-ти вольт). Устройства, работающие только с аналоговыми сиг-налами, называются аналоговыми устройствами.


Цифровой сигнал — это сигнал, который может принимать только два значения (иногда — три значения). Причем разреше-ны некоторые отклонения от этих значений (рис. 1.1). Напри-мер, напряжение может принимать два значения: от 0 до 0,5 В (уровень нуля) или от 2,5 до 5 В (уровень единицы). Устройства, работающие исключительно с цифровыми сигналами, называ-ются цифровыми устройствами.

В природе практически все сигналы аналоговые, то есть они изменяются непрерывно в некоторых пределах. Именно поэто-му первые электронные устройства были аналоговыми. Они преобразовывали физические величины в пропорциональные им напряжение или ток, выполняли над ними какие-то операции и затем выполняли обратные преобразования в физические вели-чины. Например, голос человека (колебания воздуха) с помощью микрофона преобразуется в электрические колебания, затем эти электрические сигналы усиливаются электронным усилителем и с помощью акустической системы снова преобразуются в колебания воздуха, в более громкий звук.

Рис. 1.1. Электрические сигналы: аналоговый (слева) и цифровой (справа).

Все операции, производимые электронными устройства-ми над сигналами, можно условно разделить на три большие группы:

Обработка (или преобразование);

Передача;

Хранение.

Во всех этих случаях полезные сигналы искажаются пара-зитными сигналами — шумами, помехами, наводками. Кроме того, при обработке сигналов (например, при усилении, фильт-рации) еще искажается и их форма из-за несовершенст-ва, неидеальности электронных устройств. А при передаче на большие расстояния и при хранении сигналы к тому же ослаб-ляются.

Рис. 1.2. Искажение шумами и наводками аналогового сигнала (слева) и циф-рового сигнала (справа).

В случае аналоговых сигналов все это существенно ухуд-шает полезный сигнал, так как все его значения разрешены (рис. 1.2). Поэтому каждое преобразование, каждое промежу-точное хранение, каждая передача по кабелю или эфиру ухуд-шает аналоговый сигнал, иногда вплоть до его полного унич-тожения. Надо еще учесть, что все шумы, помехи и наводки принципиально не поддаются точному расчету, поэтому точноописать поведение любых аналоговых устройств абсолютно не-возможно. К тому же со временем параметры всех аналоговых устройств изменяются из-за старения элементов, поэтому харак-теристики этих устройств не остаются постоянными.

В отличие от аналоговых, цифровые сигналы, имеющие все-го два разрешенных значения, защищены от действия шумов, наводок и помех гораздо лучше. Небольшие отклонения от разрешенных значений никак не искажают цифровой сигнал, так как всегда существуют зоны допустимых отклонений (рис. 1.2). Именно поэтому цифровые сигналы допускают гораздо более сложную и многоступенчатую обработку, гораздо более дли-тельное хранение без потерь и гораздо более качественную передачу, чем аналоговые. К тому же поведение цифровых устройств всегда можно абсолютно точно рассчитать и пред-сказать. Цифровые устройства гораздо меньше подвержены старению, так как небольшое изменение их параметров никак не отражается на их функционировании. Кроме того, цифро-вые устройства проще проектировать и отлаживать. Понятно, что все эти преимущества обеспечивают бурное развитие циф-ровой электроники.

Однако у цифровых сигналов есть и крупный недостаток. Дело в том, что на каждом из своих разрешенных уровней циф-ровой сигнал должен оставаться хотя бы в течение какого-то минимального временного интервала, иначе его невозможно будет распознать. А аналоговый сигнал может принимать любое свое значение бесконечно малое время. Можно сказать и иначе: аналоговый сигнал определен в непрерывном времени (то есть в любой момент времени), а цифровой — в дискретном времени (то есть только в выделенные моменты времени). Поэтому мак-симально достижимое быстродействие аналоговых устройств всегда принципиально больше, чем цифровых устройств. Ана-логовые устройства могут работать с более быстро меняющи-мися сигналами, чем цифровые. Скорость обработки и передачи информации аналоговым устройством всегда может быть сде-лана выше, чем скорость ее обработки и передачи цифровым устройством.

Кроме того, цифровой сигнал передает информацию только двумя уровнями и изменением одного своего уровня на другой, а аналоговый передает информацию еще и каждым текущим значением своего уровня, то есть он более емкий с точки зрения передачи информации. Поэтому для передачи того объема по-лезной информации, который содержится в одном аналоговом сигнале, чаще всего приходится использовать несколько цифро-вых сигналов (обычно от 4 до 16).

К тому же, как уже отмечалось, в природе все сигналы ана-логовые, то есть для преобразования их в цифровые сигналы и для обратного преобразования требуется применение специальной аппаратуры (аналого-цифровых и цифро-аналоговых преоб-разователей). Так что ничто не дается даром, и плата за пре-имущества цифровых устройств может порой оказаться непри-емлемо большой.

Очень часто мы слышим такие определения, как «цифровой» или «дискретный» сигнал, в чем его отличие от «аналогового»?

Суть различия в том, что аналоговый сигнал непрерывный во времени (голубая линия), в то время как цифровой сигнал состоит из ограниченного набора координат (красные точки). Если все сводить к координатам, то любой отрезок аналогового сигнала состоит из бесконечного количества координат.

У цифрового сигнала координаты по горизонтальной оси расположены через равные промежутки времени, в соответствии с частотой дискретизации. В распространенном формате Audio-CD это 44100 точек в секунду. По вертикали точность высоты координаты соответствует разрядности цифрового сигнала, для 8 бит это 256 уровней, для 16 бит = 65536 и для 24 бит = 16777216 уровней. Чем выше разрядность (количество уровней), тем ближе координаты по вертикали к исходной волне.

Аналоговыми источниками являются: винил и аудиокассеты. Цифровыми источниками являются: CD-Audio, DVD-Audio, SA-CD (DSD) и файлы в WAVE и DSD форматах (включая производные APE, Flac, Mp3, Ogg и т.п.).

Преимущества и недостатки аналогового сигнала

Преимуществом аналогового сигнала является то, что именно в аналоговом виде мы воспринимаем звук своими ушами. И хотя наша слуховая система переводит воспринимаемый звуковой поток в цифровой вид и передает в таком виде в мозг, наука и техника пока не дошла до возможности именно в таком виде подключать плееры и другие источники звука напрямик. Подобные исследования сейчас активно ведутся для людей с ограниченными возможностями, а мы наслаждаемся исключительно аналоговым звуком.

Недостатком аналогового сигнала являются возможности по хранению, передаче и тиражированию сигнала. При записи на магнитную ленту или винил, качество сигнала будет зависеть от свойств ленты или винила. Со временем лента размагничивается и качество записанного сигнала ухудшается. Каждое считывание постепенно разрушает носитель, а перезапись вносит дополнительные искажения, где дополнительные отклонения добавляет следующий носитель (лента или винил), устройства считывания, записи и передачи сигнала.

Делать копию аналогового сигнала, это все равно, что для копирования фотографии ее еще раз сфотографировать.

Преимущества и недостатки цифрового сигнала

К преимуществам цифрового сигнала относится точность при копировании и передачи звукового потока, где оригинал ничем не отличается от копии.

Основным недостатком можно считать то, что сигнал в цифровом виде является промежуточной стадией и точность конечного аналогового сигнала будет зависеть от того, насколько подробно и точно будет описана координатами звуковая волна. Вполне логично, что чем больше будет точек и чем точнее будут координаты, тем более точной будет волна. Но до сих пор нет единого мнения, какое количество координат и точность данных является достаточным для того, что бы сказать, что цифровое представление сигнала достаточно для точного восстановления аналогового сигнала, неотличимого от оригинала нашими ушами.

Если оперировать объемами данных, то вместимость обычной аналоговой аудиокассеты составляет всего около 700-1,1 Мб, в то время как обычный компакт диск вмещает 700 Мб. Это дает представление о необходимости носителей большой емкости. И это рождает отдельную войну компромиссов с разными требованиями по количеству описывающих точек и по точности координат.

На сегодняшний день считается вполне достаточным представление звуковой волны с частотой дискретизации 44,1 кГц и разрядности 16 бит. При частоте дискретизации 44,1 кГц можно восстановить сигнал с частотой до 22 кГц. Как показывают психоакустические исследования, дальнейшее повышение частоты дискретизации мало заметно, а вот повышение разрядности дает субъективное улучшение.

Как ЦАП строят волну

ЦАП – это цифро-аналоговый преобразователь, элемент, переводящий цифровой звук в аналоговый. Мы рассмотрим поверхностно основные принципы. Если по комментариям будет виден интерес более подробно рассмотреть ряд моментов, то будет выпущен отдельный материал.

Мультибитные ЦАП

Очень часто волну представляют в виде ступенек, что обусловлено архитектурой первого поколения мультибитных ЦАП R-2R, работающих аналогично переключателю из реле.

На вход ЦАП поступает значение очередной координаты по вертикали и в каждый свой такт он переключает уровень тока (напряжения) на соответствующий уровень до следующего изменения.

Хотя считается, что ухо человека слышит не выше 20 кГц, и по теории Найквиста можно восстановить сигнал до 22 кГц, остается вопрос качества этого сигнала после восстановления. В области высоких частот форма полученной «ступенчатой» волны обычно далека от оригинальной. Самый простой выход из ситуации – это увеличивать частоту дискретизации при записи, но это приводит к существенному и нежелательному росту объема файла.

Альтернативный вариант – искусственно увеличить частоту дискретизации при воспроизведении в ЦАП, добавляя промежуточные значения. Т.е. мы представляем путь непрерывной волны (серая пунктирная линия), плавно соединяющий исходные координаты (красные точки) и добавляем промежуточные точки на этой линии (темно фиолетовые).

При увеличении частоты дискретизации обычно необходимо повышать и разрядность, чтобы координаты были ближе к аппроксимированной волне.

Благодаря промежуточным координатам удается уменьшить «ступеньки» и построить волну ближе к оригиналу.

Когда вы видите функцию повышения частоты с 44.1 до 192 кГц в плеере или внешнем ЦАП, то это функция добавления промежуточных координат, а не восстановления или создание звука в области выше 20 кГц.

Изначально это были отдельные SRC микросхемы до ЦАП, которые потом перекочевали непосредственно в сами микросхемы ЦАП. Сегодня можно встретить решения, где к современным ЦАП добавляется такая микросхема, это сделано для того, чтобы обеспечить альтернативу встроенным алгоритмам в ЦАП и порой получить еще более лучший звук (как например это сделано в Hidizs AP100).

Основной отказ в индустрии от мультибитных ЦАП произошел из-за невозможности дальнейшего технологического развития качественных показателей при текущих технологиях производства и более высокой стоимости против «импульсных» ЦАП-ов с сопоставимыми характеристиками. Тем не менее, в Hi-End продуктах предпочтение отдают зачастую старым мультибитным ЦАП-ам, нежели новым решениям с технически более хорошими характеристиками.

Импульсные ЦАП

В конце 70-тых широкое распространение получил альтернативный вариант ЦАП-ов, основанный на «импульсной» архитектуре – «дельта-сигма». Технология импульсных ЦАП-ов стала возможной появлению сверх-быстрых ключей и позволила использовать высокую несущую частоту.

Амплитуда сигнала является средним значением амплитуд импульсов (зеленым показаны импульсы равной амплитуды, а белым итоговая звуковая волна).

Например последовательность в восемь тактов пяти импульсов даст усредненную амплитуду (1+1+1+0+0+1+1+0)/8=0,625. Чем выше несущая частота, тем больше импульсов попадает под сглаживание и получается более точное значение амплитуды. Это позволило представить звуковой поток в однобитном виде с широким динамическим диапазоном.

Усреднение возможно делать обычным аналоговым фильтром и если такой набор импульсов подать напрямую на динамик, то на выходе мы получим звук, а ультра высокие частоты не будут воспроизведены из-за большой инертности излучателя. По этому принципу работают ШИМ усилители в классе D, где плотность энергии импульсов создается не их количеством, а длительностью каждого импульса (что проще в реализации, но невозможно описать простым двоичным кодом).

Мультибитный ЦАП можно представить как принтер, способный наносить цвет пантоновыми красками. Дельта-Сигма – это струйный принтер с ограниченным набором цветов, но благодаря возможности нанесению очень мелких точек (в сравнении с пантовым принтером), за счет разной плотности точек на единицу поверхности дает больше оттенков.

На изображении мы обычно не видим отдельных точек из-за низкой разрешающей способности глаза, а только средний тон. Аналогично и ухо не слышит импульсов по отдельности.

В конечном итоге при текущих технологиях в импульсных ЦАП можно получить волну, близкую к той, что теоретически должна получится при аппроксимации промежуточных координат.

Надо отметить, что после появления дельта-сигма ЦАП исчезла актуальность рисовать «цифровую волну» ступеньками, т.к. так ступеньками волну современные ЦАП не строят. Правильно дискретный сигнал строить точками соединенной плавной линией.

Являются ли идеальными импульсные ЦАП?

Но на практике не все безоблачно, и существует ряд проблем и ограничений.

Т.к. подавляющее количество записей сохранено в многоразрядном сигнале, то перевод в импульсный сигнал по принципу «бит в бит» требует излишне высокую несущую частоту, которую современные ЦАП не поддерживают.

Основной функцией современных импульсных ЦАП является перевод многоразрядного сигнала в однобитный с относительно невысокой несущей частотой с прореживанием данных. В основном именно эти алгоритмы и определяют конечное качество звучания импульсных ЦАП-ов.

Чтобы уменьшить проблему высокой несущей частоты, звуковой поток разбивается на несколько однобитных потоков, где каждый поток отвечает за свою группу разряда, что эквивалентно кратному увеличению несущей частоты от числа потоков. Такие ЦАП называются мультибитными дельта-сигма.

Сегодня импульсные ЦАП-ы получили второе дыхание в быстродействующих микросхемах общего назначения в продуктах компаний NAD и Chord за счет возможности гибко программировать алгоритмы преобразования.

Формат DSD

После широкого распространения дельта-сигма ЦАП-ов вполне логичным было и появления формата записи двоичного кода напрямую дельта-сигма кодировке. Этот формат получил название DSD (Direct Stream Digital).

Широкого распространения формат не получил по нескольким причинам. Редактирование файлов в этом формате оказалось излишне ограниченным: нельзя микшировать потоки, регулировать громкость и применять эквализацию. А это значит, что без потери качества можно лишь архивировать аналоговые записи и производить двухмикрофонную запись живых выступлений без последующей обработки. Одним словом – денег толком не заработать.

В борьбе с пиратством диски формата SA-CD не поддерживались (и не поддерживаются до сих пор) компьютерами, что не позволяет делать их копии. Нет копий – нет широкой аудитории. Воспроизвести DSD аудиоконтент можно было только с отдельного SA-CD проигрывателя с фирменного диска. Если для PCM формата есть стандарт SPDIF для цифровой передачи данных от источника к отдельному ЦАП, то для DSD формата стандарта нет и первые пиратские копии SA-CD дисков были оцифровками с аналоговых выходов SA-CD проигрывателей (хоть ситуация и кажется глупой, но на деле некоторые записи выходили только на SA-CD, либо та же запись на Audio-CD специально была сделана некачественно для продвижения SA-CD).

Переломный момент произошел с выходом игровых приставок SONY, где SA-CD диск до воспроизведения автоматически копировался на жесткий диск приставки. Этим воспользовались поклонники формата DSD. Появление пиратских записей простимулировало рынок на выпуск отдельных ЦАП для воспроизведения DSD потока. Большинство внешних ЦАП с поддержкой DSD на сегодняшний день поддерживает передачу данных по USB используя формат DoP в виде отдельного кодирования цифрового сигнала через SPDIF.

Несущие частоты для DSD сравнительно небольшие, 2.8 и 5.6 МГц, но этот звуковой поток не требует никаких преобразований с прореживанием данных и вполне конкурентно-способен с форматами высокого разрешения, такими как DVD-Audio.

На вопрос что лучше, DSP или PCM однозначного ответа нет. Все упирается в качество реализации конкретного ЦАП и таланта звукорежиссера при записи конечного файла.

Общий вывод

Аналоговый звук – это то, что мы слышим и воспринимаем, как окружающий мир глазами. Цифровой звук, это набор координат, описывающих звуковую волну, и который мы напрямую услышать не можем без преобразования в аналоговый сигнал.

Аналоговый сигнал, записанный напрямую на аудиокассету или винил нельзя без потери качества перезаписать, в то время как волну в цифровом представлении можно копировать бит в бит.

Цифровые форматы записи являются постоянным компромиссом между количеством точностью координат против объема файла и любой цифровой сигнал является лишь приближением к исходному аналоговому сигналу. Однако при этом разный уровень технологий записи и воспроизведения цифрового сигнала и хранения на носителях для аналогового сигнала дают больше преимуществ цифровому представлению сигнала, аналогично цифровой фотокамере против пленочного фотоаппарата.