Сайт о телевидении

Сайт о телевидении

» » 101 1 из двоичной в десятичную. Правила переводов из одной системы в другую. Перевод целых десятичных чисел в любую другую систему счисления

101 1 из двоичной в десятичную. Правила переводов из одной системы в другую. Перевод целых десятичных чисел в любую другую систему счисления

Чтобы быстро переводить числа из десятичной системы счисления в двоичную, нужно хорошо знать числа "2 в степени". Например, 2 10 =1024 и т.д. Это позволит решать некоторые примеры на перевод буквально за секунды. Одной из таких задач является задача A1 из демо ЕГЭ 2012 года . Можно, конечно, долго и нудно делить число на "2". Но лучше решать по-другому, экономя драгоценное время на экзамене.

Метод очень простой. Суть его такая: если число, которое нужно перевести из десятичной системы, равно числу "2 в степени", то это число в двоичной системе содержит количество нулей, равное степени. Впереди этих нулей добавляем "1".

  • Переведем число 2 из десятичной системы. 2=2 1 . Поэтому в двоичной системе число содержит 1 нуль . Впереди ставим "1" и получаем 10 2 .
  • Переведем 4 из десятичной системы. 4=2 2 . Поэтому в двоичной системе число содержит 2 нуля . Впереди ставим "1" и получаем 100 2.
  • Переведем 8 из десятичной системы. 8=2 3 . Поэтому в двоичной системе число содержит 3 нуля . Впереди ставим "1" и получаем 1000 2.


Аналогично и для других чисел "2 в степени".

Если число, которое нужно перевести, меньше числа "2 в степени" на 1, то в двоичной системе это число состоит только из единиц, количество которых равно степени.

  • Переведем 3 из десятичной системы. 3=2 2 -1. Поэтому в двоичной системе число содержит 2 единицы . Получаем 11 2.
  • Переведем 7 из десятичной системы. 7=2 3 -1. Поэтому в двоичной системе число содержит 3 единицы . Получаем 111 2.

На рисунке квадратиками обозначено двоичное представление числа, а слева розовым цветом-десятичное.


Аналогичен перевод и для других чисел "2 в степени-1".

Понятно, что перевод чисел от 0 до 8 можно сделать быстро или делением, или просто знать наизусть их представление в двоичной системе. Я привела эти примеры, чтобы Вы поняли принцип данного метода и использовали его для перевода более "внушительных чисел", например, для перевода чисел 127,128, 255, 256, 511, 512 и т.д.

Можно встретить такие задачи, когда нужно перевести число, не равное числу "2 в степени", но близкое к нему. Оно может быть больше или меньше числа "2 в степени". Разница между переводимым числом и числом "2 в степени" должна быть небольшая. Например, до 3. Представление чисел от 0 до 3 в двоичной системе надо просто знать без перевода.

Если число больше , то решаем так:

Переводим сначала число "2 в степени" в двоичную систему. А потом прибавляем к нему разницу между числом "2 в степени" и переводимым числом.

Например, переведем 19 из десятичной системы. Оно больше числа "2 в степени" на 3.

16=2 4 . 16 10 =10000 2 .

3 10 =11 2 .

19 10 =10000 2 +11 2 =10011 2 .

Если число меньше числа "2 в степени", то удобнее пользоваться числом "2 в степени-1". Решаем так:

Переводим сначала число "2 в степени-1" в двоичную систему. А потом вычитаем из него разницу между числом "2 в степени-1" и переводимым числом.

Например, переведем 29 из десятичной системы. Оно больше числа "2 в степени-1" на 2. 29=31-2.

31 10 =11111 2 .

2 10 =10 2 .

29 10 =11111 2 -10 2 =11101 2

Если разница между переводимым числом и числом "2 в степени" больше трех , то можно разбить число на составляющие, перевести каждую часть в двоичную систему и сложить.

Например, перевести число 528 из десятичной системы. 528=512+16. Переводим отдельно 512 и 16.
512=2 9 . 512 10 =1000000000 2 .
16=2 4 . 16 10 =10000 2 .
Теперь сложим столбиком:

| 6 классы | Планирование уроков на учебный год | Перевод двоичных чисел в десятичную систему счисления

Урок 5
Перевод двоичных чисел в десятичную систему счисления
Работа с приложением Калькулятор





Перевод целых десятичных чисел в двоичный код

Способ 1

Попробуем представить число 1409 в виде суммы членов второго ряда.

Воспользуемся методом разностей. Возьмем ближайший к исходному числу, но не превосходящий его член второго ряда и составим разность:

1409 - 1024 = 385.

Возьмем ближайший к полученной разности, но не превосходящий ее член второго ряда и составим разность:

385 - 256 = 129.

Аналогично составим разность: 129 - 128 = 1.

В итоге получим:

1409 = 1024 + 256 + 128 + 1 = 1 1024 + 0 512 + 1 256 + + 1 128 + 0 64 + 0 32 + 0 16 + 0 8 + 0 4 + 0 2 + 1 1.

Мы видим, что каждый член второго ряда может либо не входить в сумму, либо входить в нее только один раз.


Числа 1 и 0, на которые умножаются члены второго ряда, также составляют исходное число 1409, но в его другой, двоичной записи: 10110000001.

Результат записывают так:

1409 10 = 10110000001 2 .

Исходное число мы записали с помощью 0 и 1, другими словами, получили двоичный код этого числа, или представили число в двоичной системе счисления.

Способ 2

Этот способ получения двоичного кода десятичного числа основан на записи остатков от деления исходного числа и получаемых частных на 2, продолжаемого до тех пор, пока очередное частное не окажется равным 0.

Пример:


В первую ячейку верхней строки записано исходное число, а в каждую следующую - результат целочисленного деления предыдущего числа на 2.

В ячейках нижней строки записаны остатки от деления стоящих в верхней строке чисел на 2.

Последняя ячейка нижней строки остается пустой. Двоичный код исходного десятичного числа получается при последовательной записи всех остатков, начиная с последнего: 1409 10 = 10110000001 2 .

Первые 20 членов натурального ряда в двоичной системе счисления записываются так: 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011,1100, 1101,1110,1111, 10000. 10001. 10010. 10011. 10100. 

Перевод целых чисел из двоичной системы счисления в десятичную

Способ 1

Пусть имеется число 111101 2 . Его можно представить так:

Способ 2

Возьмем то же число 111101 2 . Переведем единицу 6-го разряда (первая слева в записи числа) в единицы 5-го разряда, для чего 1 умножим на 2, ибо единица 6-го разряда в двоичной системе содержит 2 единицы 5-го разряда.

К полученным 2 единицам 5-го разряда прибавим имеющуюся единицу 5-го разряда. Переведем эти 3 единицы 5-го разряда в 4-й разряд и прибавим имеющуюся единицу 4-го разряда: 3 2 + 1 = 7.

Переведем 7 единиц 4-го разряда в 3-й разряд и прибавим имеющуюся единицу 3-го разряда: 7 2 + 1 = 15.

Переведем 15 единиц 3-го разряда во 2-й разряд: 15 2 = 30. В исходном числе во 2-м разряде единиц нет.

Переведем 30 единиц 2-го разряда в 1-й разряд и прибавим имеющуюся там единицу: 30 2 + 1 = 61. Мы получили, что исходное число содержит 61 единицу 1-го разряда.

Письменные вычисления удобно располагать так:

Переводить целые числа из десятичной системы счисления в двоичную систему счисления и обратно можно с помощью приложения Калькулятор .

Проведем небольшой эксперимент .

1. Запустите приложение Калькулятор и выполните команду [Вид-Инженерный] . Обратите внимание на группу переключателей, определяющих систему счисления :

2. Убедитесь, что Калькулятор настроен на работу в десятичной системе счисления. С помощью клавиатуры или мыши введите в поле ввода произвольное двузначное число. Активизируйте переключатель Bin и проследите за изменениями в окне ввода. Вернитесь в десятичную систему счисления. Очистите поле ввода.

3. Повторите пункт 2 несколько раз для других десятичных чисел.

4. Настройте Калькулятор на работу в двоичной системе счисления. Обратите внимание на то, какие кнопки Калькулятора и цифровые клавиши клавиатуры вам доступны. Поочередно введите двоичные коды 5-го, 10-го и 15-го членов натурального ряда и с помощью переключателя Dec переведите их в десятичную систему счисления.

Результат уже получен!

Системы счисления

Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:

Тогда число 6372 можно представить в следующем виде:

6372=6000+300+70+2 =6·10 3 +3·10 2 +7·10 1 +2·10 0 .

Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.

Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:

Тогда число 1287.923 можно представить в виде:

1287.923 =1000+200+80 +7+0.9+0.02+0.003 = 1·10 3 +2·10 2 +8·10 1 +7·10 0 +9·10 -1 +2·10 -2 +3·10 -3 .

В общем случае формулу можно представить в следующем виде:

Ц n ·s n +Ц n-1 ·s n-1 +...+Ц 1 ·s 1 +Ц 0 ·s 0 +Д -1 ·s -1 +Д -2 ·s -2 +...+Д -k ·s -k

где Ц n -целое число в позиции n , Д -k - дробное число в позиции (-k), s - система счисления.

Несколько слов о системах счисления.Число в десятичной системе счисления состоит из множества цифр {0,1,2,3,4,5,6,7,8,9}, в восьмеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7}, в двоичной системе счисления - из множества цифр {0,1}, в шестнадцатеричной системе счисления - из множества цифр {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, где A,B,C,D,E,F соответствуют числам 10,11,12,13,14,15.В таблице Таб.1 представлены числа в разных системах счисления.

Таблица 1
Система счисления
10 2 8 16
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Перевод чисел из одной системы счисления в другую

Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.

Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:

1 ·2 6 +0 ·2 5 +1 ·2 4 +1 ·2 3 +1 ·2 2 +0 ·2 1 +1 ·2 0 +0 ·2 -1 +0 ·2 -2 +1 ·2 -3 =64+16+8+4+1+1/8=93.125

Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:

Пример 3 . Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:

Здесь A -заменен на 10, B - на 11, C - на 12, F - на 15.

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.

Целую часть числа переводится из десятичной СС в другую систему счисления - последовательным делением целой части числа на основание системы счисления (для двоичной СС - на 2, для 8-ичной СС - на 8, для 16-ичной - на 16 и т.д.) до получения целого остатка, меньше, чем основание СС.

Пример 4 . Переведем число 159 из десятичной СС в двоичную СС:

159 2
158 79 2
1 78 39 2
1 38 19 2
1 18 9 2
1 8 4 2
1 4 2 2
0 2 1
0

Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111 . Следовательно можно записать:

159 10 =10011111 2 .

Пример 5 . Переведем число 615 из десятичной СС в восьмеричную СС.

615 8
608 76 8
7 72 9 8
4 8 1
1

При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147 (см. Рис. 2). Следовательно можно записать:

615 10 =1147 8 .

Пример 6 . Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.

19673 16
19664 1229 16
9 1216 76 16
13 64 4
12

Как видно из рисунка Рис.3, последовательным делением числа 19673 на 16 получили остатки 4, 12, 13, 9. В шестнадцатеричной системе счисления числе 12 соответствует С, числе 13 - D. Следовательно наше шестнадцатеричное число - это 4CD9.

Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).

Рассмотрим вышеизложенное на примерах.

Пример 7 . Переведем число 0.214 из десятичной системы счисления в двоичную СС.

0.214
x 2
0 0.428
x 2
0 0.856
x 2
1 0.712
x 2
1 0.424
x 2
0 0.848
x 2
1 0.696
x 2
1 0.392

Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0.0011011 .

Следовательно можно записать:

0.214 10 =0.0011011 2 .

Пример 8 . Переведем число 0.125 из десятичной системы счисления в двоичную СС.

0.125
x 2
0 0.25
x 2
0 0.5
x 2
1 0.0

Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:

0.125 10 =0.001 2 .

Пример 9 . Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.

0.214
x 16
3 0.424
x 16
6 0.784
x 16
12 0.544
x 16
8 0.704
x 16
11 0.264
x 16
4 0.224

Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:

0.214 10 =0.36C8B4 16 .

Пример 10 . Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.

0.512
x 8
4 0.096
x 8
0 0.768
x 8
6 0.144
x 8
1 0.152
x 8
1 0.216
x 8
1 0.728

Получили:

0.512 10 =0.406111 8 .

Пример 11 . Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:

159.125 10 =10011111.001 2 .

Пример 12 . Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим.

Запишите число в двоичной системе счисления, а степени двойки справа налево. Например, мы хотим преобразовать двоичное число 10011011 2 в десятичное. Сначала запишем его. Затем запишем степени двойки справа налево. Начнем с 2 0 , что равно "1". Увеличиваем степень на единицу для каждого следующего числа. Останавливаемся, когда число элементов в списке равно числу цифр в двоичном числе. Наше число для примера, 10011011, включает в себя восемь цифр, поэтому список из восьми элементов будет выглядеть так: 128, 64, 32, 16, 8, 4, 2, 1

Запишите цифры двоичного числа под соответствующими степенями двойки. Теперь просто запишите 10011011 под числами 128, 64, 32, 16, 8, 4, 2, и 1, с тем чтобы каждая двоичная цифра соответствовала своей степени двойки. Самая правая "1" двоичного числа должна соответствовать самой правой "1" из степеней двоек, и так далее. Если вам удобнее, вы можете записать двоичное число над степенями двойки. Самое важное – чтобы они соответствовали друг другу.

Соедините цифры в двоичном числе с соответствующими степенями двойки. Нарисуйте линии (справа налево), которые соединяют каждую последующую цифру двоичного числа со степенью двойки, находящейся над ней. Начните построение линий с соединения первой цифры двоичного числа с первой степенью двойки над ней. Затем нарисуйте линию от второй цифры двоичного числа ко второй степени двойки. Продолжайте соединять каждую цифру с соответствующей степенью двойки. Это поможет вам визуально увидеть связь между двумя различными наборами чисел.

Запишите конечное значение каждой степени двойки. Пройдитесь по каждой цифре двоичного числа. Если эта цифра 1, запишите соответствующую степень двойки под цифрой. Если эта цифра 0, запишите под цифрой 0.

  • Так как "1" соответствует "1", она остается "1". Так как "2" соответствует "1", она остается "2". Так как "4" соответствует "0", она становится "0". Так как "8" соответствует "1", она становится "8", и так как "16" соответствует "1" она становится "16". "32" соответствует "0" и становится "0", "64" соответствует "0" и поэтому становится "0", в то время как "128" соответствует "1" и становится 128.
  • Сложите получившиеся значения. Теперь сложите получившиеся под линией цифры. Вот что вы должны сделать: 128 + 0 + 0 + 16 + 8 + 0 + 2 + 1 = 155. Это десятичный эквивалент двоичного числа 10011011.

    Запишите ответ вместе с нижним индексом, равным системе счисления. Теперь все, что вам осталось сделать – это записать 155 10 , чтобы показать, что вы работаете с десятичным ответом, который оперирует степенями десятки. Чем больше вы будете преобразовывать двоичные числа в десятичные, тем проще вам будет запомнить степени двойки, и тем быстрее вы сможете выполнять данную задачу.

  • Используйте данный метод, чтобы преобразовать двоичное число с десятичной точкой в десятичную форму. Вы можете использовать данный метод даже если вы хотите преобразовать двоичное число, такое как 1.1 2 в десятичное. Все, что вам необходимо знать – это то, что число в левой части десятичного числа – это обычное число, а число в правой части десятичного числа – это число "делений надвое", или 1 x (1/2).

    • "1" слева от десятичного числа соответствует 2 0 , или 1. 1 справа от десятичного числа соответствует 2 -1 , или.5. Сложите 1 и.5 и вы получите 1.5, которое является эквивалентом 1.1 2 в десятичном виде.
  • Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

    епозиционные системы счисления.

    Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

    К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

    I 1 (один)
    V 5 (пять)
    X 10 (десять)
    L 50 (пятьдесят)
    C 100 (сто)
    D 500 (пятьсот)
    M 1000 (тысяча)

    Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

    IL 49 (50-1=49)
    VI 6 (5+1=6)
    XXI 21 (10+10+1=21)
    MI 1001 (1000+1=1001)

    озиционные системы счисления.

    Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

    Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

    Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

      Например:
    • Двоичная - позиционная система счисления с основанием 2.
    • Четверичная - позиционная система счисления с основанием 4.
    • Пятиричная - позиционная система счисления с основанием 5.
    • Восьмеричная - позиционная система счисления с основанием 8.
    • Шестнадцатиричная - позиционная система счисления с основанием 16.

    Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

    10 с/с 2 с/с 8 с/с 16 с/с
    0 0 0 0
    1 1 1 1
    2 10 2 2
    3 11 3 3
    4 100 4 4
    5 101 5 5
    6 110 6 6
    7 111 7 7
    8 1000 10 8
    9 1001 11 9
    10 1010 12 A
    11 1011 13 B
    12 1100 14 C
    13 1101 15 D
    14 1110 16 E
    15 1111 17 F
    16 10000 20 10

    Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

    К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

    Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

    Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

    Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

    равила перевода из одной системы счисления в другую.

    1 Перевод целых десятичных чисел в любую другую систему счисления.

    Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

    Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


    Таким образом, 173 10 =255 8

    2 Перевод правильных десятичных дробей в любую другую систему счисления.

    Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

    Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.