Сайт о телевидении

Сайт о телевидении

» » 1 двухъядерный процессор. Двухъядерные процессоры. Виртуальная многоядерность, или Hyper-Threading

1 двухъядерный процессор. Двухъядерные процессоры. Виртуальная многоядерность, или Hyper-Threading

Введение

Начинаем знакомство с двухъядерными процессорами для настольных компьютеров. В этом обзоре вы найдёте всё о процессоре с двумя ядрами от AMD: общую информацию, тестирование производительности, разгон и сведения о энергопотреблении и тепловыделении.

Время двухъядерных процессоров пришло. В самое ближайшее время процессоры, оснащённые двумя вычислительными ядрами, начнут активное проникновение в настольные компьютеры. К концу следующего года большинство новых PC должно быть основано именно на CPU с двумя ядрами.
Столь сильное рвение производителей по внедрению двухъядерных архитектур объясняется тем, что иные методы для наращивания производительности себя уже исчерпали. Рост тактовых частот даётся очень тяжело, а увеличение скорости шины и размера кэш-памяти не приводит к ощутимому результату.
В то же время совершенствование 90 нм технологического процесса дошло да той точки, когда производство гигантских кристаллов с площадью порядка 200 кв. мм стало рентабельным. Именно этот факт дал возможность производителям CPU начать кампанию по внедрению двухъядерных архитектур.

Итак, сегодня, 9 мая 2005 года, вслед за компанией Intel, предварительно представляет свои двухъядерные процессоры для настольных систем и компания AMD. Впрочем, как и в случае с двухъядерными процессорами Smithfield (Intel Pentium D и Intel Extreme Edition), речь о начале поставок пока не идёт, они начнутся несколько позднее. В данный момент AMD даёт нам возможность лишь предварительно познакомиться со своими перспективными предложениями.
Линейка двухъядерных процессоров от AMD получила название Athlon 64 X2. Это наименование отражает как тот факт, что новые двухъядерные CPU имеют архитектуру AMD64, так и то, что в них присутствует два вычислительных ядра. Вместе с названием, процессоры с двумя ядрами для настольных систем получили и собственный логотип:


Семейство Athlon 64 X2 на момент его появления на прилавках магазинов будет включать четыре процессора с рейтингами 4200+, 4400+, 4600+ и 4800+. Эти процессоры можно будет приобрести по цене от $500 до $1000 в зависимости от их производительности. То есть, свою линейку Athlon 64 X2 AMD ставит несколько выше обычных Athlon 64.
Однако прежде чем начинать судить о потребительских качествах новых CPU, давайте подробнее познакомимся с особенностями этих процессоров.

Архитектура Athlon 64 X2

Следует отметить, что реализация двухъядерности в процессорах AMD несколько отличается от реализации Intel. Хотя, как и Pentium D и Pentium Extreme Edition, Athlon 64 X2 по сути представляет собой два процессора Athlon 64, объединённых на одном кристалле, двухъядерный процессор от AMD предлагает несколько иной способ взаимодействия ядер между собой.
Дело в том, что подход Intel заключается в простом помещении на один кристалл двух ядер Prescott. При такой организации двухъядерности процессор не имеет никаких специальных механизмов для осуществления взаимодействия между ядрами. То есть, как и в обычных двухпроцессорных системах на базе Xeon, ядра в Smithfield общаются (например, для решения проблем с когерентностью кэшей) посредством системной шины. Соответственно, системная шина разделяется между ядрами процессора и при работе с памятью, что приводит к увеличению задержек при обращении к памяти обоих ядер одновременно.
Инженеры AMD предусмотрели возможность создания многоядерных процессоров ещё на этапе разработки архитектуры AMD64. Благодаря этому, в двухъядерных Athlon 64 X2 некоторые узкие места удалось обойти. Во-первых, дублированы в новых процессорах AMD далеко не все ресурсы. Хотя каждое из ядер Athlon 64 X2 обладает собственным набором исполнительных устройств и выделенной кэш-памятью второго уровня, контроллер памяти и контроллер шины Hyper-Transport на оба ядра общий. Взаимодействие каждого из ядер с разделяемыми ресурсами осуществляется посредством специального Crossbar-переключателя и очереди системных запросов (System Request Queue). На этом же уровне организовано и взаимодействие ядер между собой, благодаря чему вопросы когерентности кэшей решаются без дополнительной нагрузки на системную шину и шину памяти.


Таким образом, единственное узкое место, имеющееся в архитектуре Athlon 64 X2 – это пропускная способность подсистемы памяти 6.4 Гбайт в секунду, которая делится между процессорными ядрами. Впрочем, в будущем году AMD планирует перейти на использование более скоростных типов памяти, в частности двухканальной DDR2-667 SDRAM. Этот шаг должен положительно сказаться на увеличении производительности именно двухъядерных CPU.
Отсутствие поддержки современных типов памяти с высокой пропускной способностью новыми двухъядерными процессорами объясняется тем, что AMD в первую очередь стремилась сохранить совместимость Athlon 64 X2 с существующими платформами. В результате, эти процессоры могут использоваться в тех же самых материнских платах, что и обычные Athlon 64. Поэтому, Athlon 64 X2 имеют Socket 939 корпусировку, двухканальный контроллер памяти с поддержкой DDR400 SDRAM и работают с шиной HyperTransport с частотой до 1 ГГц. Благодаря этому единственное, что требуется для поддержки двухъядерных CPU от AMD современными Socket 939 материнскими платами, – это обновление BIOS. В этой связи отдельно следует отметить, что, к счастью, инженерам AMD удалось вписать в ранее установленные рамки и энергопотребление Athlon 64 X2.

Таким образом, в части совместимости с существующей инфраструктурой двухъядерные процессоры от AMD оказались лучше конкурирующих продуктов Intel. Smithfield совместим лишь с новыми чипсетами i955X и NVIDIA nFroce4 (Intel Edition), а также предъявляет повышенные требования к конвертеру питания материнской платы.
В основе процессоров Athlon 64 X2 использованы ядра с кодовыми именами Toledo и Manchester степпинга E, то есть по своему функционалу (за исключением возможности обработки двух вычислительных потоков одновременно) новые CPU подобны Athlon 64 на базе ядер San Diego и Venice. Так, Athlon 64 X2 поддерживают набор инструкций SSE3, а также имеют усовершенствованный контроллер памяти. Среди особенностей контроллера памяти Athlon 64 X2 следует упомянуть возможность использования разномастных модулей DIMM в различных каналах (вплоть до установки в оба канала памяти модулей разного объёма) и возможность работы с четырьмя двухсторонними модулями DIMM в режиме DDR400.
Процессоры Athlon 64 X2 (Toledo), содержащие два ядра с кэш-памятью второго уровня по 1 Мбайту на каждое ядро, состоят из примерно 233.2 млн. транзисторов и имеет площадь около 199 кв. мм. Таким образом, как того и следовало ожидать, кристалл и сложность двухъядерного процессора оказывается примерно вдвое больше кристалла соответствующего одноядерного CPU.

Линейка Athlon 64 X2

Линейка процессоров Athlon 64 X2 включает в себя четыре модели CPU c рейтингами 4800+, 4600+, 4400+ и 4200+. В их основе могут использоваться ядра с кодовыми именами Toledo и Manchester. Различия между ними заключаются в размере кэш-памяти второго уровня. Процессоры с кодовым именем Toledo, которые обладают рейтингами 4800+ и 4400+, имеют два L2 кэша (на каждое из ядер) объёмом 1 Мбайт. CPU же с кодовым именем Manchester располагают вдвое меньшим объёмом кэш-памяти: два раза по 512 Кбайт.
Частоты двухъядерных процессоров AMD достаточно высоки и равны 2.2 или 2.4 ГГц. То есть, тактовая частота старшей модели двухъядерного процессора AMD соответствует частоте старшего процессора в линейке Athlon 64. Это означает, что даже в приложениях, не поддерживающих многопоточность, Athlon 64 X2 сможет демонстрировать очень хороший уровень производительности.
Что же касается электрических и тепловых характеристик, то, несмотря на достаточно высокие частоты Athlon 64 X2, они мало отличаются от соответствующих характеристик одноядерных CPU. Максимальное тепловыделение новых процессоров с двумя ядрами составляет 110 Вт против 89 Вт у обычных Athlon 64, а ток питания возрос до 80А против 57.4А. Впрочем, если сравнивать электрические характеристики Athlon 64 X2 с спецификациями Athlon 64 FX-55, то рост максимального тепловыделения составит всего лишь 6Вт, а предельный ток и вовсе не изменится. Таким образом, можно говорить о том, что процессоры Athlon 64 X2 предъявляют к конвертеру питания материнских плат примерно такие же требования, как и Athlon 64 FX-55.

Целиком характеристики линейки процессоров Athlon 64 X2 выглядят следующим образом:


Следует отметить, что AMD позиционирует Athlon 64 X2 как совершенно независимую линейку, отвечающую своим целям. Процессоры этого семейства предназначаются той группе продвинутых пользователей, для которой важна возможность использования нескольких ресурсоёмких приложений одновременно, либо применяющих в повседневной работе приложения для создания цифрового контента, большинство из которых эффективно поддерживает многопоточность. То есть, Athlon 64 X2 представляется неким аналогом Athlon 64 FX, но не для игроков, а для энтузиастов, использующих PC для работы.


При этом выпуск Athlon 64 X2 не отменяет существование остальных линеек: Athlon 64 FX, Athlon 64 и Sempron. Все они продолжат мирно сосуществовать на рынке.
Но, отдельно следует отметить тот факт, что линейки Athlon 64 X2 и Athlon 64 имеют унифицированную систему рейтингов. Это значит, что процессоры Athlon 64 с рейтингами выше 4000+ на рынке не появятся. В то же время семейство одноядерных процессоров Athlon 64 FX будет продолжать развиваться, поскольку данные CPU востребованы геймерами.
Цены Athlon 64 X2 таковы, что, судя по ним, эту линейку можно считать дальнейшим развитием обычных Athlon 64. Фактически, так оно и есть. По мере того, как старшие модели Athlon 64 будут переходить в среднюю ценовую категорию, верхние модели в этой линейке будут заменяться на Athlon 64 X2.
Появление процессоров Athlon 64 X2 в продаже ожидается в июне. Рекомендованные AMD розничные цены выглядят следующим образом:

AMD Athlon 64 X2 4800+ - $1001;
AMD Athlon 64 X2 4600+ - $803;
AMD Athlon 64 X2 4400+ - $581;
AMD Athlon 64 X2 4200+ - $537.

Athlon 64 X2 4800+: первое знакомство

Нам удалось получить на тестирование образец процессора AMD Athlon 64 X2 4800+, являющегося старшей моделью в линейке двухъядерных CPU от AMD. Данный процессор по своему внешнему виду оказался очень похож на своих прародителей. Фактически, отличается он от обычных Athlon 64 FX и Athlon 64 для Socket 939 только лишь маркировкой.


Несмотря на то, что Athlon 64 X2 – это типичный Socket 939 процессор, который должен быть совместим с большинством материнских плат с 939-контактным процессорным гнездом, на данный момент его функционирование с многими платами затруднено в виду отсутствия необходимой поддержки со стороны BIOS. Единственной материнской платой, на которой данный CPU смог заработать в двухъядерном режиме в нашей лаборатории, оказалась ASUS A8N SLI Deluxe, для которой существует специальный технологический BIOS с поддержкой Athlon 64 X2. Впрочем, очевидно, что с появлением двухъядерных процессоров AMD в широкой продаже данный недостаток будет ликвидирован.
Следует отметить, что без необходимой поддержки со стороны BIOS, Athlon 64 X2 в любой материнской плате превосходно работает в одноядерном режиме. То есть, без обновлённой прошивки наш Athlon 64 X2 4800+ работал как Athlon 64 4000+.
Популярная утилита CPU-Z пока выдаёт о Athlon 64 X2 неполную информацию, хотя и распознаёт его:


Несмотря на то, что CPU-Z детектирует два ядра, вся отображаемая информация о кеш-памяти относится лишь к одному из ядер CPU.
Предваряя тесты производительности полученного процессора, в первую очередь мы решили исследовать его тепловые и электрические характеристики. Для начала мы сравнили температуру Athlon 64 X2 4800+ с температурой других Socket 939 процессоров. Для этих опытов мы применяли единый воздушный кулер AVC Z7U7414001; прогрев процессоров осуществлялся утилитой S&M 1.6.0, которая оказалась совместима с двухъядерным Athlon 64 X2.


В состоянии покоя температура Athlon 64 X2 оказывается несколько выше температуры процессоров Athlon 64 на ядре Venice. Однако, несмотря на наличие в нём двух ядер, этот CPU не горячее чем одноядерные процессоры, производимые по 130 нм технологическому процессу. Причём, такая же картина наблюдается и при максимальной нагрузке CPU работой. Температура Athlon 64 X2 при 100-процентной загрузке оказывается меньше температуры Athlon 64 и Athlon 64 FX, в которых используются 130 нм ядра. Таким образом, благодаря пониженному напряжению питания и использованию ядра ревизии E инженерам AMD действительно удалось добиться приемлемого тепловыделения своих двухъядерных процессоров.
Исследуя энергопотребление Athlon 64 X2, мы решили сравнить его не только с соответствующей характеристикой одноядерных Socket 939 CPU, но и с энергопотреблением старших процессоров Intel.


Как это ни покажется удивительным, но энергопотребление Athlon 64 X2 4800+ оказывается ниже энергопотребления Athlon 64 FX-55. Объясняется это тем, что в основе Athlon 64 FX-55 лежит старое 130 нм ядро, так что в этом нет ничего странного. Основной же вывод заключается в другом: те материнские платы, которые были совместимы с Athlon 64 FX-55, способны (с точки зрения мощности конвертера питания) поддерживать и новые двухъядерные процессоры AMD. То есть, AMD совершенно права, говоря о том, что вся необходимая для внедрения Athlon 64 X2 инфраструктура уже практически готова.

Естественно, мы не упустили и возможность проверки разгонного потенциала Athlon 64 X2 4800+. К сожалению, технологический BIOS для ASUS A8N-SLI Deluxe, поддерживающий Athlon 64 X2, не позволяет изменять ни напряжение на CPU, ни его множитель. Поэтому, эксперименты по оверклокингу выполнялись на штатном для процессора напряжении путём увеличения частоты тактового генератора.
В процессе экспериментов нам удалось увеличить частоту тактового генератора до 225 МГц, при этом процессор продолжал сохранять способность к стабильному функционированию. То есть, в результате разгона у нас получилось поднять частоту нового двухъядерного CPU от AMD до 2.7 ГГц.


Итак, при оверклокинге Athlon 64 X2 4800+ позволил увеличить свою частоту на 12.5%, что, как нам кажется, для двухъядерного CPU не так уж и плохо. По крайней мере, можно говорить о том, что частотный потенциал ядра Toledo близок к потенциалу других ядер ревизии E: San Diego, Venice и Palermo. Так что достигнутый при разгоне результат даёт нам надежду на появление ещё более скоростных процессоров в семействе Athlon 64 X2 до внедрения следующего технологического процесса.

Как мы тестировали

В рамках этого тестирования мы сравнили производительность двухъядерного процессора Athlon 64 X2 4800+ с быстродействием старших процессоров с одноядерной архитектурой. То есть, в соперниках у Athlon 64 X2 выступили Athlon 64, Athlon 64 FX, Pentium 4 и Pentium 4 Extreme Edition.
К сожалению, сегодня мы не можем представить сравнение нового двухъядерного процессора от AMD с конкурирующим решением от Intel, CPU с кодовым именем Smithfield. Однако в самое ближайшее время наши результаты тестов будут дополнены результатами Pentium D и Pentium Extreme Edition, так что следите за обновлениями.
Пока же в тестировании приняло участие несколько систем, состояли которые из перечисленного ниже набора комплектующих:

Процессоры:

AMD Athlon 64 X2 4800+ (Socket 939, 2.4 ГГц, 2 x 1024KB L2, ревизия ядра E6 - Toledo);
AMD Athlon 64 FX-55 (Socket 939, 2.6 ГГц, 1024KB L2, ревизия ядра CG - Clawhammer);
AMD Athlon 64 4000+ (Socket 939, 2.4 ГГц, 1024KB L2, ревизия ядра CG - Clawhammer);
AMD Athlon 64 3800+ (Socket 939, 2.4 ГГц, 512KB L2, ревизия ядра E3 - Venice);
Intel Pentium 4 Extreme Edition 3.73 ГГц (LGA775, 3.73 ГГц, 2MB L2);
Intel Pentium 4 660 (LGA775, 3.6 ГГц, 2MB L2);
Intel Pentium 4 570 (LGA775, 3.8 ГГц, 1MB L2);

Материнские платы:

ASUS A8N SLI Deluxe (Socket 939, NVIDIA nForce4 SLI);
NVIDIA C19 CRB Demo Board (LGA775, nForce4 SLI (Intel Edition)).

Память:

1024MB DDR400 SDRAM (Corsair CMX512-3200XLPRO, 2 x 512MB, 2-2-2-10);
1024MB DDR2-667 SDRAM (Corsair CM2X512A-5400UL, 2 x 512MB, 4-4-4-12).

Графическая карта: - PowerColor RADEON X800 XT (PCI-E x16).
Дисковая подсистема: - Maxtor MaXLine III 250GB (SATA150).
Операционная система: - Microsoft Windows XP SP2.

Производительность

Офисная работа

Для исследования производительности в офисных приложениях мы воспользовались тестами SYSmark 2004 и Business Winstone 2004.


Тест Business Winstone 2004 моделирует работу пользователя в распространённых приложениях: Microsoft Access 2002, Microsoft Excel 2002, Microsoft FrontPage 2002, Microsoft Outlook 2002, Microsoft PowerPoint 2002, Microsoft Project 2002, Microsoft Word 2002, Norton AntiVirus Professional Edition 2003 и WinZip 8.1. Полученный же результат достаточно закономерен: все эти приложения многопоточность не используют, а потому Athlon 64 X2 оказывается лишь чуть-чуть быстрее своего одноядерного аналога Athlon 64 4000+. Небольшое преимущество же объясняется скорее усовершенствованным контроллером памяти ядра Toledo, нежели наличием второго ядра.
Впрочем, в повседневной офисной работе частенько несколько приложений работает одновременно. Насколько эффективными в этом случае оказываются двухъядерные процессоры AMD, показано ниже.


В данном случае измеряется скорость работы в Microsoft Outlook и Internet Explorer, в то время как в фоновом режиме выполняется копирование файлов. Однако, как показывает приведённая диаграмма, копирование файлов – это не столь сложная задача и выигрыша двухъядерная архитектура тут не даёт.


Этот тест несколько сложнее. Здесь в фоновом режиме выполняется архивация файлов посредством Winzip, в то время как на переднем плане пользователь работает в Excel и Word. И в данном случае мы получаем вполне осязаемый дивиденд от двухъядерности. Athlon 64 X2 4800+, работающий на частоте 2.4 ГГц, обгоняет не только Athlon 64 4000+, но и одноядерный Athlon 64 FX-55 с частотой 2.6 ГГц.


По мере усложнения задач, работающих в фоновом режиме, прелести двухъядерной архитектуры начинают проявляться всё сильнее. В данном случае моделируется работа пользователя в приложениях Microsoft Excel, Microsoft Project, Microsoft Access, Microsoft PowerPoint, Microsoft FrontPage и WinZip, в то время как в фоновом режиме происходит антивирусная проверка. В данном тесте работающие приложения оказываются способными как следует загрузить оба ядра Athlon 64 X2, результат чего не заставляет себя ждать. Двухъядерный процессор поставленные задачи решает в полтора раза быстрее аналогичного одноядерного.


Здесь моделируется работа пользователя, получающего письмо в Outlook 2002, которое содержит набор документов в zip-архиве. Пока полученные файлы сканируются на вирусы при помощи VirusScan 7.0, пользователь просматривает e-mail и вносит пометки в календарь Outlook. Затем пользователь просматривает корпоративный веб-сайт и некоторые документы при помощи Internet Explorer 6.0.
Данная модель работы пользователя предусматривает использование многопоточности, поэтому Athlon 64 X2 4800+ демонстрирует более высокое быстродействие, нежели одноядерные процессоры от AMD и Intel. Заметим, что процессоры Pentium 4 с технологией «виртуальной» многопоточности Hyper-Threading не могут похвастать столь же высокой производительностью, как Athlon 64 X2, в котором находится два настоящих независимых процессорных ядра.


В данном бенчмарке гипотетический пользователь редактирует текст в Word 2002, а также использует Dragon NaturallySpeaking 6 для преобразования аудио-файла в текстовый документ. Готовый документ преобразуется в pdf-формат с использованием Acrobat 5.0.5. Затем, пользуясь сформированным документом, создается презентация в PowerPoint 2002. И в данном случае Athlon 64 X2 вновь оказывается на высоте.


Здесь модель работы такова: пользователь открывает базу данных в Access 2002 и выполняет ряд запросов. Документы архивируются с использованием WinZip 8.1. Результаты запросов экспортируются в Excel 2002, и на их основании строится диаграмма. Хотя в этом случае положительный эффект от двухъядерности также присутствует, процессоры семейства Pentium 4 справляются с такой работой несколько быстрее.
В целом, относительно оправданности использования двухъядерных процессоров в офисных приложениях можно сказать следующее. Сами по себе приложения такого типа редко оптимизированы для создания многопоточной нагрузки. Поэтому, получить выигрыш при работе в одном конкретном приложении на двухъядерном процессоре тяжело. Однако, если модель работы такова, что какие-то из ресурсоёмких задач выполняются в фоне, то процессоры с двумя ядрами могут дать весьма ощутимый прирост в быстродействии.

Создание цифрового контента

В этом разделе мы вновь воспользуемся комплексными тестами SYSmark 2004 и Multimedia Content Creation Winstone 2004.


Бенчмарк моделирует работу в следующих приложениях: Adobe Photoshop 7.0.1, Adobe Premiere 6.50, Macromedia Director MX 9.0, Macromedia Dreamweaver MX 6.1, Microsoft Windows Media Encoder 9 Version 9.00.00.2980, NewTek LightWave 3D 7.5b, Steinberg WaveLab 4.0f. Поскольку большинство приложений, предназначенных для создания и обработки цифрового контента, поддерживают многопоточность, совершенно неудивителен успех Athlon 64 X2 4800+ в данном тесте. Причём, заметим, что преимущество этого двухъядерного CPU проявляется даже тогда, когда параллельная работа в нескольких приложениях не используется.


Когда же несколько приложений работает одновременно, двухъядерные процессоры способны показать ещё более впечатляющие результаты. Например, в этом тесте в пакете 3ds max 5.1 рендерится в bmp файл изображение, и, в это же время, пользователь готовит web-страницы в Dreamweaver MX. Затем пользователь рендерит в векторном графическом формате 3D анимацию.


В этом случае моделируется работа в Premiere 6.5 пользователя, который создает видео-ролик из нескольких других роликов в raw-формате и отдельных звуковых треков. Ожидая окончания операции, пользователь готовит также изображение в Photoshop 7.01, модифицируя имеющуюся картинку и сохраняя ее на диске. После завершения создания видео-ролика, пользователь редактирует его и добавляет специальные эффекты в After Effects 5.5.
И снова мы видим гигантское преимущество двухъядерной архитектуры от AMD как над обычными Athlon 64 и Athlon 64 FX, так и над Pentium 4 с технологией «виртуальной» многоядерности Hyper-Threading.


А вот и ещё одно проявление триумфа двухъядерной архитектуры AMD. Его причины такие же, как и в предыдущем случае. Они кроются в использованной модели работы. Здесь гипотетический пользователь разархивирует контент веб-сайта из архива в zip-формате, одновременно используя Flash MX для открытия экспортированного 3D векторного графического ролика. Затем пользователь модифицирует его путем включения других картинок и оптимизирует для более быстрой анимации. Итоговый ролик со специальными эффектами сжимается с использованием Windows Media Encoder 9 для транслирования через Интернет. Затем создаваемый веб-сайт компонуется в Dreamweaver MX, а параллельно система сканируется на вирусы с использованием VirusScan 7.0.
Таким образом, необходимо признать, что для приложений, работающих с цифровым контентом, двухъядерная архитектура очень выгодна. Практически любые задачи такого типа умеют эффективно загружать оба ядра CPU одновременно, что приводит к сильному увеличению скорости работы системы.

PCMark04, 3DMark 2001 SE, 3DMark05

Отдельно мы решили посмотреть на скорость Athlon 64 X2 в популярных синтетических бенчмарках от FutureMark.






Как мы уже неоднократно отмечали ранее, тест PCMark04 оптимизирован для многопоточных систем. Именно поэтому процессоры Pentium 4 с технологией Hyper-Threading показывали в нём лучшие результаты, нежели CPU семейства Athlon 64. Однако, теперь ситуация сменилась. Два настоящих ядра в Athlon 64 X2 4800+ позволили этому процессору оказаться наверху диаграммы.






Графические тесты семейства 3DMark многопоточность не поддерживают ни в каком виде. Поэтому, результаты Athlon 64 X2 здесь мало отличаются от показателей обычных Athlon 64 с частотой 2.4 ГГц. Небольшое преимущество же над Athlon 64 4000+ объясняется наличием в ядре Toledo усовершенствованного контроллера памяти, а над Athlon 64 3800+ - большим объёмом кеш-памяти.
Впрочем, в составе 3DMark05 есть пара тестов, которые могут задействовать многопоточность. Это – тесты CPU. В этих бенчмарках на центральный процессор возлагается нагрузка по программной эмуляции вершинных шейдеров, а, кроме того, вторым потоком, выполняется обсчёт физики игровой среды.






Результаты вполне закономерны. Если приложение в состоянии задействовать два ядра, то двухъядерные процессоры работают намного быстрее одноядерных.

Игровые приложения















К сожалению, современные игровые приложения многопоточность не поддерживают. Несмотря на то, что технология «виртуальной» многоядерности Hyper-Threading появилась очень давно, разработчики игр не спешат делить вычисления, производимые игровым движком, на несколько потоков. И дело, скорее всего, не в том, что для игр это сделать тяжело. По всей видимости, рост вычислительных возможностей процессора для игр не так уж и важен, поскольку основная нагрузка в задачах этого типа ложится на видеокарту.
Впрочем, появление на рынке двухъядерных CPU даёт некоторую надежду на то, что производители игр станут сильнее нагружать центральный процессор расчётами. Результатом этого может явиться появление нового поколения игр с продвинутым искусственным интеллектом и реалистичной физикой.

Пока же в применении двухъядерных CPU в игровых системах никакого смысла нет. Поэтому, кстати, AMD не собирается прекращать развитие своей линейки процессоров ориентированной специально на геймеров, Athlon 64 FX. Эти процессоры характеризуются более высокими таковыми частотами и наличием единственного вычислительного ядра.

Сжатие информации


К сожалению, WinRAR не поддерживает многопоточность, поэтому результат Athlon 64 X2 4800+ практически не отличается от результата обычного Athlon 64 4000+.


Однако существуют архиваторы, которые могут эффективно задействовать двухъядерность. Например, 7zip. При тестировании в нём результаты Athlon 64 X2 4800+ вполне оправдывают стоимость этого процессора.

Кодирование аудио и видео


Популярный mp3 кодек Lame до недавнего времени многопоточность не поддерживал. Однако вновь появившаяся версия 3.97 alpha 2 этот недостаток исправила. В результате, процессоры Pentium 4 стали кодировать аудио быстрее, чем Athlon 64, а Athlon 64 X2 4800+, хотя и обгоняет своих одноядерных собратьев, всё же несколько отстаёт от старших моделей семейства Pentium 4 и Pentium 4 Extreme Edition.


Хотя кодек Mainconcept может задействовать два вычислительных ядра, скорость Athlon 64 X2 оказывается не на много выше быстродействия, демонстрируемого одноядерными собратьями. Причём, отчасти это преимущество объясняется не только двухъядерной архитектурой, но и поддержкой команд SSE3, а также усовершенствованным контроллером памяти. В результате, Pentium 4 с одним ядром в Mainconcept работают заметно быстрее, чем Athlon 64 X2 4800+.


При кодировании MPEG-4 популярным кодеком DiVX, картина складывается совершенно иная. Athlon 64 X2, благодаря наличию второго ядра, получает хорошую прибавку к скорости, которая позволяет ему обойти даже старшие модели Pentium 4.


Кодек XviD также поддерживает многопоточность, однако добавление второго ядра в этом случае даёт гораздо меньший прирост в скорости, чем в эпизоде с DiVX.


Очевидно, что из кодеков Windows Media Encoder оптимизирован для многоядерных архитектур лучше всего. Например, Athlon 64 X2 4800+ справляется с кодированием с использованием этого кодека в 1.7 раз быстрее, чем одноядерный Athlon 64 4000+, работающий на аналогичной тактовой частоте. В результате, говорить о каком бы то ни было соперничестве одноядерных и двухъядерных процессоров в WME просто бессмысленно.
Как и приложения для обработки цифрового контента, подавляющее большинство кодеков уже давно оптимизировано для Hyper-Threading. В результате, и двухъядерные процессоры, позволяющие выполнять два вычислительных потока одновременно, выполняют кодирование быстрее, чем одноядерные. То есть, использование систем с CPU с двумя ядрами для кодирования аудио и видео контента вполне оправдано.

Редактирование изображений и видео









Популярные продукты Adobe для обработки видео и редактирования изображений хорошо оптимизированы под многопроцессорные системы и Hyper-Threading. Поэтому, в Photoshop, After Effects и Premiere двухъядерный процессор от AMD демонстрирует чрезвычайно высокую производительность, значительно превышающую быстродействие не только Athlon 64 FX-55, но и более быстрых в задачах этого класса процессоров Pentium 4.

Распознавание текста


Достаточно популярная программа для оптического распознавания текстов ABBYY Finereader, хотя и имеет оптимизацию для процессоров с технологией Hyper-Threading, на Athlon 64 X2 работает только лишь одним потоком. Налицо ошибка программистов, которые детектируют возможность распараллеливания вычислений по наименованию процессора.
К сожалению, подобные примеры неправильного программирования встречаются и в наши дни. Будем надеяться, что на сегодня число приложений, подобных ABBYY Finereader, минимально, а в ближайшем будущем их количество сократится до нуля.

Математические вычисления






Как это не покажется странным, но популярные математические пакеты MATLAB и Mathematica в варианте для операционной системы Windows XP многопоточность не поддерживают. Поэтому, в этих задачах Athlon 64 X2 4800+ выступает примерно на одном уровне с Athlon 64 4000+, опережая его лишь за счёт лучше оптимизированного контроллера памяти.


Зато многие задачи математического моделирования позволяют организовать распараллеливание вычислений, которое даёт неплохой прирост производительности в случае использования двухъядерных CPU. Это и подтверждается тестом ScienceMark.

3D-рендеринг






Финальный рендеринг относится к задачам, которые могут легко и эффективно быть распараллелены. Поэтому, совершенно неудивительно, что применение при работе в 3ds max процессора Athlon 64 X2, оснащённого двумя вычислительными ядрами, позволяет получить очень неплохой прирост в быстродействии.






Аналогичная картина наблюдается и в Lightwave. Таким образом, использование двухъядерных процессоров при финальном рендеринге не менее выгодно, чем и в приложениях для обработки изображений и видео.

Общие впечатления

Перед тем, как сформулировать общие выводы по итогам нашего тестирования, пару слов следует сказать и о том, что осталось за кадром. А именно о комфорте использования систем, оснащённых двухъядерными процессорами. Дело в том, что в системе с одним одноядерным процессором, например, Athlon 64, в каждый момент времени может исполняться лишь один вычислительный поток. Это значит, что если в системе работает несколько приложений одновременно, то планировщик OC вынужден с большой частотой переключать процессорные ресурсы между задачами.

За счёт того, что современные процессоры очень быстры, переключение между задачами обычно остаётся незаметным на взгляд пользователя. Однако существуют и приложения, прервать которые для передачи процессорного времени другим задачам в очереди достаточно сложно. В этом случае операционная система начинает подтормаживать, что нередко вызывает раздражение у человека, сидящего за компьютером. Также, нередко можно наблюдать и ситуацию, когда приложение, забрав ресурсы процессора, «зависает», и такое приложение бывает очень тяжело снять с выполнения, поскольку оно не отдаёт процессорные ресурсы даже планировщику операционной системы.

Подобные проблемы возникают в системах, оснащённых двухъядерными процессорами, на порядок реже. Дело в том, процессоры с двумя ядрами способны выполнять одновременно два вычислительных потока, соответственно, для функционирования планировщика появляется в два раза больше свободных ресурсов, которые можно разделять между работающими приложениями. Фактически, для того, чтобы работа в системе с двухъядерным процессором стала некомфортной, необходимо одновременное пересечение двух процессов, пытающихся захватить в безраздельное пользование все ресурсы CPU.

В заключение мы решили провести небольшой эксперимент, показывающий, как влияет на производительность системы с одноядерным и двухъядерным процессором параллельное исполнение большого количества ресурсоёмких приложений. Для этого мы измеряли число fps в Half-Life 2, запуская в фоне несколько копий архиватора WinRAR.


Как видим, при использовании в системе процессора Athlon 64 X2 4800+, производительность в Half-Life 2 остаётся на приемлемом уровне гораздо дольше, нежели в системе с одноядерным, но более высокочастотным процессором Athlon 64 FX-55. Фактически, в системе с одноядерным процессором запуск одного фонового приложения уже приводит к двукратному падению скорости. При дальнейшем увеличении числа задач, работающих в фоне, производительность падает до неприличного уровня.
В системе же с двухъядерным процессором сохранять высокую производительность приложения, работающего на переднем плане, удаётся гораздо дольше. Запуск одной копии WinRAR проходит практически незамеченным, добавление большего числа фоновых приложений, хотя и оказывает влияние на задачу переднего плана, приводит к гораздо меньшему снижению производительности. Следует заметить, что падение скорости в данном случае вызвано не столько нехваткой процессорных ресурсов, сколько разделением ограниченной по пропускной способности шины памяти между работающими приложениями. То есть, если фоновые задачи не будут активно работать с памятью, приложение переднего плана вряд ли сильно будет реагировать на увеличение фоновой нагрузки.

Выводы

Сегодня состоялось наше первое знакомство с двухъядерными процессорами от AMD. Как показали проведённые испытания, идея объединения двух ядер в одном процессоре продемонстрировала свою состоятельность на практике.
Использование двухъядерных процессоров в настольных системах, способно значительно увеличить скорость работы целого ряда приложений, эффективно использующих многопоточность. Ввиду того, что технология виртуальной многопоточности, Hyper-Threading присутствует в процессорах семейства Pentium 4 уже очень продолжительно время, разработчики программного обеспечения к настоящему времени предлагают достаточно большое число программ, способных получить выигрыш от двухъядерной архитектуры CPU. Так, среди приложений, скорость работы которых на двухъядерных процессорах будет увеличена, следует отметить утилиты для кодирования видео и аудио, системы 3D моделирования и рендеринга, программы для редактирования фото и видео, а также профессиональные графические приложения класса САПР.
При этом существует и большое количество программного обеспечения, которое многопоточность не использует или использует её крайне ограниченно. Среди ярких представителей таких программ – офисные приложения, веб-браузеры, почтовые клиенты, медиа-проигрыватели, а также игры. Однако даже при работе в таких приложениях двухъядерная архитектура CPU способна оказать положительное влияние. Например, в тех случаях, когда несколько приложений выполняется одновременно.
Резюмируя вышесказанное, на графике ниже мы просто приводим численное выражение преимущества двухъядерного процессора Athlon 64 X2 4800+ над одноядерным Athlon 64 4000+, работающим на той же частоте 2.4 ГГц.


Как видно по графику, Athlon 64 X2 4800+ оказывается во многих приложениях значительно быстрее старшего CPU в семействе Athlon 64. И, если бы не баснословно высокая стоимость Athlon 64 X2 4800+, превышающая $1000, то этот CPU смело можно было бы назвать весьма выгодным приобретением. Тем более что ни в одном приложении он не отстаёт от своих одноядерных собратьев.
Учитывая же цену Athlon 64 X2, следует признать, что на сегодня эти процессоры наравне с Athlon 64 FX могут являться разве только ещё одним предложением для обеспеченных энтузиастов. Те из них, для кого в первую очередь важна не игровая производительность, а скорость работы в других приложениях, обратят внимание на линейку Athlon 64 X2. Экстремальные же геймеры, очевидно, останутся приверженцами Athlon 64 FX.

Рассмотрение двухъядерных процессоров на нашем сайте на этом не заканчивается. В ближайшие дни ждите второй части эпопеи, в которой речь пойдёт о двухъядерных CPU от Intel.

История процессоров AMD | AMD K8: последовательное усовершенствование


В 2004 году AMD представила новую 90-нм технологию изготовления транзисторов, которая позволила компании увеличить производительность процессора Athlon 64, а также снизить потребляемую мощность. В общей сложности AMD выпустила на рынок настольных процессоров четыре модели Athlon 64 с 90-нм литографией.

Venice стал последним процессором Athlon 64 для сокета AMD Socket 754 и являлся самым высокопроизводительным чипом для данной платформы. AMD San Diego работал на сходных тактовых частотах, но предназначался для платформы Socket 939 и имел кэш-память L2 объёмом 1 Мбайт.

Параллельно AMD нацелилась на более энергоэффективные системы и с этой целью представила ядро Winchester с более низким тепловым пакетом 67 Вт. Winchester был самым эффективным ядром на протяжении нескольких лет вплоть до появления Orleans (62 Вт) в 2006 г. и Lima (65 нм, 45 Вт) в 2007 г.


AMD Athlon 64 Winchester, Venice, San Diego, Orleans и Lima
Кодовое название Winchester/Venice/San Diego Orleans/Lima
Дата выпуска 2004 (Winchester)/2005 (Venice и San Diego) июнь 05
Архитектура 64 бита 64 бита
Шина данных 64 бита 64 бита
Шина адреса 64 бита 64 бита
Макс. объём памяти 1 Тбайт 1 Тбайт
Кэш L1 64 Кбайт + 64 Кбайт 64 Кбайт + 64 Кбайт
Кэш L2 512 Кбайт ((полная скорость - Winchester и Venice)/ 1 Мбайт (полная скорость - San Diego) 512 Кбайт (полная скорость - Orleans и Lima), 1 Мбайт (полная скорость - Lima)
Кэш L3 Нет Нет
Тактовая частота 1,8-2,2 ГГц (Winchester)/ 1,8-2,4 ГГц (Venice) / 2,6 ГГц (San Diego) 1,8-2,6 ГГц (Orleans)/ 2-ь,8 ГГц (Lima)
Контроллер памяти Одноканальный DDR 400 МГц (Venice)/ двухканальный DDR 400 МГц (Winchester and San Diego) Двухканальный DDR2
HyperTransport 800 МГц (Venice)/ 1000 МГц (Winchester и San Diego) 800-1000 МГц
SIMD MMX, Enhanced 3DNow!, SSE, SSE2, SSE3
Техпроцесс 90 нм 90 нм (Orleans)/ 65 нм (Lima)
Число транзисторов н/д н/д
Энергопотребление 64 Вт TDP (Winchester)/ 89 Вт TDP (Venice и San Diego) 62 Вт (Orleans)/ 45 Вт (Lima)
Напряжение 1,35 - 1,4 В 1,25 - 1,4 В
Площадь кристалла н/д н/д
Разъём Socket 754 (Venice)/ Socket 939 (Winchester и San Diego) Socket AM2

История процессоров AMD | AMD K8: Sempron


Наряду с выпуском процессоров Athlon K8, компания AMD обновила линейку чипов Sempron с новой архитектурой K8. Как и первые процессоры Sempron эти ЦП по сравнению с Athlon имели меньше кэша и работали на пониженных частотах.

AMD K8 Sempron

AMD K8 Sempron
Кодовое название Paris, Palermo, Manila, Sparta
Дата выпуска 2004 - 2007
Архитектура 64 бита
Шина данных 64 бита
Шина адреса 64 бита
Макс. объём памяти 1 Тбайт
Кэш L1 64 Кбайт + 64 Кбайт
Кэш L2 128-512 Кбайт (полная скорость)
Кэш L3 Нет
Тактовая частота 1,4 - 2,3 ГГц
Контроллер памяти Одноканальный DDR /двухканальный DDR/ двухканальный DDR2
HyperTransport 800 МГц / 1000 МГц
SIMD MMX, Enhanced 3DNow!, SSE, SSE2, SSE3
Техпроцесс 130-65 нм
Число транзисторов н/д
Энергопотребление н/д
Напряжение 1,2 - 1,4 В
Площадь кристалла н/д
Разъём Socket 754 / Socket 939 / Socket AM2

История процессоров AMD | AMD K8: Athlon 64 X2


В 2005 году AMD снова всколыхнула общественность, представив потребительский вариант , основанного на архитектуре K8. Хотя эти ядра не умели работать над одним потоком параллельно, второе ядро ЦП могло выполнять другие задачи, и повышало производительность в условиях многозадачности.

Всего AMD создала шесть конфигураций ЦП в линейке Athlon 64 X2, но первые пять были похожи друг на друга и отличались только объёмом кэша L2 и тактовой частотой. Шестой вариант Athlon 64 X2 благодаря переходу на 65-нм транзисторы был самым быстрым и энергоэффективным в линейке.

AMD Athlon 64 X2

AMD Athlon 64 X2
Кодовое название Manchester - Windsor Brisbane
Дата выпуска 2005 - 2006 2006
Архитектура 64 бита 64 бита
Шина данных 64 бита 64 бита
Шина адреса 64 бита 64 бита
Макс. объём памяти 1 Тбайт 1 Тбайт
Кэш L1 64 Кбайт + 64 Кбайт 64 Кбайт + 64 Кбайт
Кэш L2 512 Кбайт на ядро (полная скорость)
Кэш L3 Нет
Тактовая частота 2-3,2 ГГц 1,9-3,1 ГГц
Контроллер памяти Двухканальный DDR/DDR2 Двухканальный DDR2
HyperTransport 1000 МГц 1000 МГц
SIMD MMX, Enhanced 3DNow!, SSE, SSE2, SSE3 MMX, Enhanced 3DNow!, SSE, SSE2, SSE3
Техпроцесс 90 нм 65 нм
Число транзисторов н/д н/д
Энергопотребление 35-125 Вт 65-89 Вт
Напряжение 1,25-1,4 В 1,25-1,35 В
Площадь кристалла н/д 126 мм2
Разъём Socket 939, Socket AM2 Socket AM2

История процессоров AMD | AMD K8: Turion и Turion X2


В 2005 году AMD представила новую линейку мобильных процессоров под названием . Эти процессоры использовали микроархитектуру настольных чипов AMD, но благодаря тщательному отбору ядер, они могли работать с меньшим энергопотреблением. Кроме того, AMD их представила двухъядерные версии под названием Turion X2.

AMD K8 Turion и Turion X2

AMD K8 Turion и Turion X2
Кодовое название Turion (Lancaster, Richmond, Sable) Turion X2
Дата выпуска 2005 - 2008 2006 - 2008
Архитектура 64 бита 64 бита
Шина данных 64 бита 64 бита
Шина адреса 64 бита 64 бита
Макс. объём памяти 1 Тбайт 1 Тбайт
Кэш L1 64 Кбайт + 64 Кбайт 64 Кбайт + 64 Кбайт
Кэш L2 512 Кбайт-1 Мбайт (полная скорость) 256 Кбайт-1 Мбайт на ядро (полная скорость)
Кэш L3 Нет Нет
Тактовая частота 1,6 - 2,4 ГГц 1,6 - 2,5 ГГц
Контроллер памяти Одноканальный DDR/двухканальный DDR2 Двухканальный DDR2
HyperTransport 800/1000 МГц 800 - 1000 МГц
SIMD MMX, Enhanced 3DNow!, SSE, SSE2, SSE3 MMX, Enhanced 3DNow!, SSE, SSE2, SSE3
Техпроцесс 65-90 нм 65-90 нм
Число транзисторов н/д н/д
Энергопотребление 25-35 Вт 31-35 Вт
Напряжение 0,8-1,35 В н/д
Площадь кристалла н/д н/д
Разъём Socket 754 / Socket S1 Socket S1

История процессоров AMD | AMD K10: четырёхъядерный Phenom


Следующая архитектура AMD под названием K10 была довольно амбициозной. Она была тесно связана с K8, но имела ряд улучшений в ядре, кэш-памяти и контроллере оперативной памяти. По сравнению с K8, повысился показатель IPC, но главным преимуществом K10 являлся четырёхъядерный процессорный дизайн, позволивший легко обогнать двухъядерные ЦП на базе K8 в многопоточных приложениях.

К сожалению, K10 в самом начале выпуска столкнулся с проблемами. Первые процессоры с архитектурой K10 были основаны на конфигурации Barcelona и продавались в качестве серверных ЦП под брендом Opteron. Но дефект конфигурации Barcelona (известный, как ошибка TLB) мог заблокировать процессор. Чтобы устранить ошибку TLB, AMD выпустила программный патч, но он сильно снижал производительность. Поскольку параллельная работа нескольких ядер ЦП предъявляла высокие требования к питанию, процессоры K10 Phenom с трудом достигали высоких тактовых частот. Самый быстрый четырёхъядерный чип достигал 2,6 ГГц, тогда как двухъядерные процессоры K10 под брендом Athlon могли работать на частоте 2,8 ГГц.

Следует отметить, что все процессоры K10 первого поколения использовали кристалл Agena, на котором часть ядра была недоступна. Toliman - трёхъядерная версия чипа, фактически является кристаллом Agena с одним отключённым ядром. Двухъядерный кристалл носил кодовое имя Kuma и, по сути, представлял собой кристалл Agena уже с двумя отключёнными ядрами. Конфигурация Barcelona также была идентична кристаллу Agena, за исключением того, что в Agena AMD исправила ошибку TLB до выпуска чипов в продажу. Эти процессоры продавались под брендами "Phenom", "Opteron" и "Athlon".

AMD Phenom

AMD Phenom
Кодовое название Agena Toliman
Дата выпуска нояб.07 март 08
Архитектура 64 бита 64 бита
Шина данных 64 бита 64 бита
Шина адреса 64 бита 64 бита
Макс. объём памяти 1 Тбайт 1 Тбайт
Кэш L1 64 Кбайт + 64 Кбайт 64 Кбайт + 64 Кбайт
Кэш L2 512 Кбайт (полная скорость) 512 Кбайт (полная скорость)
Кэш L3 (общий) 2 Мбайт (на частоте HyperTransport)
Тактовая частота 1,8-2,6 ГГц 1,9-2,5 ГГц
Контроллер памяти Двухканальный DDR2-1066 Двухканальный DDR2-1066
HyperTransport 2000 МГц 2000 МГц
Число ядер 4 3
SIMD MMX, Enhanced 3DNow!, SSE, SSE2, SSE3, SSE4a
Техпроцесс 65 нм 65 нм
Число транзисторов 450 млн. 450 млн.
Энергопотребление 65-140 Вт (TDP) 65-95 Вт (TDP)
Напряжение 1,25-1,3 В 1,25 В
Площадь кристалла 285 мм2 285 мм2
Разъём Socket AM2/AM2+ Socket AM2+

История процессоров AMD | AMD K10: Phenom II


AMD удалось исправить недостатки Phenom в процессорах . Переход к техпроцессу 45 нм значительно снизил потребляемую мощность и тепловыделение ЦП, позволив AMD увеличить тактовую частоту. Четырёхъядерные процессоры Phenom II на первом ядре Deneb достигали как 3,7 ГГц. Поскольку кристалл был значительно меньше, чем Agena, AMD смогла утроить размер кэша L3. Deneb, наконец, получил контроллер памяти DDR3, имеющий обратную совместимость с DDR2.

AMD Phenom II X4

AMD Phenom II X4
Кодовое название Deneb
Дата выпуска янв.09
Архитектура 64 бита
Шина данных 64 бита
Шина адреса 64 бита
Макс. объём памяти 1 Тбайт
Кэш L1 64 Кбайт + 64 Кбайт
Кэш L2 512 Кбайт (полная скорость)
Кэш L3 (общий)
Тактовая частота 2,6 - 3,7 ГГц
Контроллер памяти
HyperTransport 2000 МГц
Число ядер 4
SIMD MMX, Enhanced 3DNow!, SSE, SSE2, SSE3, SSE4a
Техпроцесс 45 нм
Число транзисторов 758 млн.
Энергопотребление 65 - 140 Вт (TDP)
Напряжение 1,4 В
Площадь кристалла 243 мм2
Разъём Socket AM2+/AM3

История процессоров AMD | AMD K10: Phenom II X2 и X3


Аналогично первому поколению процессоров Phenom, AMD дефектные четырёхъядерный кристаллы ЦП для создания трёх- и двухъядерных чипов. Эти процессоры имели полноценные 6 Мбайт кэша L3, но, как правило, работали на более низких тактовых частотах. Эти процессоры были популярны среди энтузиастов, поскольку иногда им удавалось оживить отключённые ядра.

AMD Phenom II X2 и X3

AMD Phenom II X2 и X3
Кодовое название Heka Callisto
Дата выпуска февр.09 июнь 09
Архитектура 64 бита 64 бита
Шина данных 64 бита 64 бита
Шина адреса 64 бита 64 бита
Макс. объём памяти 1 Тбайт 1 Тбайт
Кэш L1 64 Кбайт + 64 Кбайт 64 Кбайт + 64 Кбайт
Кэш L2 512 Кбайт (полная скорость) 512 Кбайт (полная скорость)
Кэш L3 (общий) 6 Мбайт (на частоте HyperTransport) 6 Мбайт (на частоте HyperTransport)
Тактовая частота 2,8 - 3,2 ГГц 2,8 - 3,5 ГГц
Контроллер памяти Двухканальный DDR2-1066, двухканальный DDR3-1333 Двухканальный DDR2-1066, двухканальный DDR3-1333
HyperTransport 2000 МГц 2000 МГц
Число ядер 3 2
SIMD MMX, Enhanced 3DNow!, SSE, SSE2, SSE3, SSE4a MMX, Enhanced 3DNow!, SSE, SSE2, SSE3, SSE4a
Техпроцесс 45 нм 45 нм
Число транзисторов 758 млн. 758 млн.
Энергопотребление 65-95 Вт (TDP) 80 Вт (TDP)
Напряжение 1,4 В 1,4 В
Площадь кристалла 243 мм2 243 мм2
Разъём Socket AM2+/AM3 Socket AM2+/AM3

Компания AMD - это один из лидеров современного рынка микроэлектроники для компьютеров, но в основном они специализируются именно на микропроцессорах. Акции AMD уже давно держат высокую планку, несмотря на постоянную конкуренцию с гигантами Nvidia и Intel. Однако стоит обратить внимание на события прошлого века, когда компьютеры только зарождались, и тогда станет понятно, когда началась история успеха AMD.

Обзор

Advanced Micro Devices была основана Джерри Сандерсом 1 мая 1969 года. До этого он в течение восьми лет работал в Кремниевой долине, а деньги для своего стартапа собирал вместе с друзьями. Восьмерым молодым людям удалось набрать около ста тысяч долларов, которые они вложили в производство первой продукции. Первый офис находился в квартире одного из друзей Сандерса, однако очень скоро они арендовали новое помещение в Саннивейл (штат Калифорния). К слову, штаб-квартира AMD до сих пор находится там же.

Многим известно, что AMD продемонстрировала первый двухъядерный процессор, однако до этого момента компания прошла большой путь. Решающую роль, вероятно, сыграл именно опыт Сандерса в маркетинге. Основатели "Интел" в первую очередь были инженерами, и именно на это делали упор, а Джерри Сандерс смог помимо этого сформировать отличную бизнес-идею. К тому же он действительно умел продавать, что важно для любого рынка, в том числе в сфере IT. Под четким руководством своего основателя AMD пользовалась успешными маркетинговыми ходами, например, стратегией торговли в убыток. Суть ее заключалась в продаже высокотехнологичных продуктов по низким ценам: хотя торговля и шла в убыток, компания завоевывала рынок, а инженеры в это время трудились над тем, чтобы удешевить производство. Эта же система использовалась, когда компания AMD продемонстрировала первый двухъядерный процессор.

Лицензия от Intel

Интересный факт: компания AMD в первые годы работала не только над собственной продукцией, но и выпускала процессоры по лицензии. В 1975 году они подписали соглашение с "Интел", решив выпустить свой первый процессор для персонального компьютера. Их аналог Intel 8080, разработанный методом обратной инженерии, по набору команд был полностью совместим с оригиналом, но был на 40% быстрее.

Компания быстро освоила выпуск оригинальных продуктов, потратив на подобные разработки немалые средства. В том же году выпускается первая плата ОЗУ - Am1902, начинается выпуск микропроцессорной серии Am2900. Прогрессивные технологии, использовавшиеся в разработках, сделали чип коммерчески успешным. Он выгодно отличался от аналогов скоростью работы, программируемыми инструкциями, пониженным тепловыделением. Но более покупателей привлекала доступная цена.

Развитие компании

Восьмидесятые годы прошлого века ознаменованы активным входом персональных компьютеров в повседневную жизнь. AMD по-прежнему выпускает микропроцессоры по лицензии от компании "Интел", которая вступает с молодой компанией в конкурентную борьбу за рынок и рекордные прибыли в многообещающей IT-сфере. Однако все попытки убрать с рынка компанию AMD не оказались успешными. Большую роль сыграла подписанная обеими корпорациями кросс-лицензия, которая предоставляла каждой стороне право использовать интеллектуальную собственность другой стороны.

Когда убрать конкурента не удалось, "Интел" решили, что лучший вариант в этом случае - продолжение сотрудничества, поэтому в 1982 году договор о перекрестном лицензировании был расширен, а AMD получили право на производство всех процессоров семейства x86. Несмотря на то, что "Интел" удалось потеснить, настоящий шаг вперед был сделан тогда, когда компания AMD продемонстрировала первый двухъядерный процессор.

Свои продукты

Еще несколько лет AMD не занималась разработкой собственных микропроцессоров, однако в 1991 году представила Am 386 - аналог Intel 80386, а специалисты занялись разработкой собственного микрокода. Это помогло компании, когда Intel через суд добились запрета на использование микрокодов процессоров 80386 и 80486.
К этому времени AMD, заработавшая славу производителя надежных процессоров, приобрела своих постоянных клиентов и начала развитие собственной линейки.

До того времени, когда компания AMD продемонстрировала первый двухъядерный процессор, было еще несколько неплохих продуктов, составивших конкуренцию товарам "Интел", однако ключевым моментом является 1999 год, когда был выпущен процессор AMD Athlon, полностью поддерживающий Windows и превосходящий по производительности Intel Pentium. Он быстро завоевал популярность, особенно полюбившись геймерам. Многие компании выпустили чипсеты и материнские платы специально под Athlon от AMD.

Первый двухъядерный процессор

  1. В 2000 году это семейство микрочипов Mobile AMDK6-2+, которые использовались в ноутбуках и позволяли увеличить время автономной работы.
  2. В 2001 г. осваивает технологию 0,17 микрон.
  3. В 2002 году выпускает Au1100 - процессор для бизнеса, сразу нашедший применение в технологиях корпоративной коммуникации и мобильной сфере.
  4. В этом же году создает для армии США суперкомпьютеры Cray, на которых проводятся виртуальные испытания оружия.

Таким образом, к тому времени, когда компания AMD продемонстрировала первый двухъядерный процессор, на ее счету было уже несколько революционных разработок. В 2004 году AMD с анонсом чипа Athlon 64 x2 оставляет позади "Интел".

С этого момента престиж компании вырос настолько, что AMD из молодой компании, работающей на бюджетном рынке, превратилась в желанного партнера для многих корпораций и стран.

Многие люди при покупке процессора стараются выбрать что-нибудь покруче, с несколькими ядрами и большой тактовой частотой. Но при этом мало кто знает, на что влияет количество ядер процессора в действительности. Почему, например, обычный и простенький двухъядерник может оказаться быстрее четырехядерника или тот же "проц" с 4 ядрами будет быстрее "проца" с 8 ядрами. Это довольно интересная тема, в которой определенно стоит разобраться более детально.

Вступление

Прежде чем начать разбираться, на что влияет количество ядер процессора, хотелось бы сделать небольшое отступление. Еще несколько лет назад разработчики ЦП были уверены в том, что технологии производства, которые так стремительно развиваются, позволят выпускать "камни" с тактовыми частотами до 10 Ггц, что позволит пользователям забыть о проблемах с плохой производительностью. Однако успех достигнут не был.

Как бы ни развивался техпроцесс, что "Интел", что "АМД" уперлись в чисто физические ограничения, которые попросту не позволяли выпускать "процы" с тактовой частотой до 10 Ггц. Тогда и было принято решение сфокусироваться не на частотах, а на количестве ядер. Таким образом, началась новая гонка по производству более мощных и производительных процессорных "кристаллов", которая продолжается и по сей день, но уже не столь активно, как это было на первых порах.

Процессоры Intel и AMD

На сегодняшний день "Интел" и "АМД" являются прямыми конкурентами на рынке процессоров. Если посмотреть на выручку и продажи, то явное преимущество будет на стороне "синих", хотя в последнее время "красные" стараются не отставать. У обоих компаний имеется хороший ассортимент готовых решений на все случаи жизни - от простого процессора с 1-2 ядрами до настоящих монстров, у которых количество ядер переваливает за 8. Обычно подобные "камни" используются на специальных рабочих "компах", которые имеют узкую направленность.

Intel

Итак, на сегодняшний день у компании Intel успехом пользуются 5 видов процессоров: Celeron, Pentium, и i7. Каждый из этих "камней" имеет разное количество ядер и предназначенные для разных задач. Например, Celeron имеет всего 2 ядра и используется в основном на офисных и домашних компьютерах. Pentium, или, как его еще называют, "пенек", также используется в дому, но уже имеет гораздо лучшую производительность, в первую очередь за счет технологии Hyper-Threading, которая "добавляет" физическим двум ядрам еще два виртуальных ядра, которые называют потоками. Таким образом, двухъядерный "проц" работает как самый бюджетный четырехъядерник, хотя это не совсем корректно сказано, но основная суть именно в этом.

Что же касается линейки Core, то тут примерно схожая ситуация. Младшая модель с цифрой 3 имеет 2 ядра и 2 потока. Линейка постарше - Core i5 - имеет уже полноценные 4 или 6 ядер, но лишена функции Hyper-Threading и дополнительных потоков не имеет, кроме как 4-6 стандартных. Ну и последнее - core i7 - это топовые процессоры, которые, как правило, имеют от 4 до 6 ядер и в два раза больше потоков, т. е., например, 4 ядра и 8 потоков или 6 ядер и 12 потоков.

AMD

Теперь стоит сказать про AMD. Список "камушков" от данной компании огромен, смысла перечислять все нет, поскольку большинство из моделей уже попросту устарели. Стоит, пожалуй, отметить новое поколение, которое в некотором смысле "копирует" "Интел" - Ryzen. В данной линейке также присутствуют модели с номерами 3, 5 и 7. Главное отличие от "синих" у Ryzen заключается в том, что самая младшая модель уже сразу предоставляет полноценные 4 ядра, а у старшей их не 6, а целых восемь. Кроме этого, и количество потоков меняется. Ryzen 3 - 4 потока, Ryzen 5 - 8-12 (в зависимости от кол-ва ядер - 4 или 6) и Ryzen 7 - 16 потоков.

Стоит упомянуть и о еще одной линейке "красных" - FX, которая появилась в 2012 году, и, по сути, данная платформа уже считается устаревшей, но благодаря тому, что сейчас все больше и больше программ и игр начинает поддерживать многопоточность, линейка Vishera вновь обрела популярность, которая наряду с низкими ценами только растет.

Ну а что касается споров касательно частоты процессора и количества ядер, то, по сути, правильнее смотреть в сторону второго, поскольку с тактовыми частотами уже давно все определились, и даже топовые модели от "Интел" работают на номинальных 2. 7, 2. 8, 3 Ггц. Помимо этого, частоту всегда можно поднять при помощи оверклокинга, но в случае с двухъядерником это не даст особого эффекта.

Как узнать сколько ядер

Если кто-то не знает, как определить количество ядер процессора, то сделать это можно легко и просто даже без скачивания и установки отдельных специальных программ. Достаточно лишь зайти в "Диспетчер устройств" и нажать на маленькую стрелочку рядом с пунктом "Процессоры".

Получить более подробную информацию о том, какие технологии поддерживает ваш "камень", какая у него тактовая частота, номер его ревизии и многое другое можно при помощи специальной и маленькой программки CPU-Z. Скачать ее можно бесплатно на официальном сайте. Есть версия, которая не требует установки.

Преимущество двух ядер

В чем может быть преимущество двухъядерного процессора? Много в чем, например, в играх или приложениях, при разработке которых основным приоритетом была однопоточная работа. Взять хотя бы для примера игру Wold of Tanks. Самые обычные двухъядерники типа Pentium или Celeron будут выдавать вполне приличный результат по производительности, в то время как какой-нибудь FX от AMD или INTEL Core задействуют гораздо больше своих возможностей, а итог будет примерно таким же.

Чем лучше 4 ядра

Чем 4 ядра могут быть лучше двух? Лучшей производительностью. Четырехъядерные "камни" рассчитаны уже на более серьезную работу, где простые "пеньки" или "селероны" попросту не справятся. Отличным примером тут послужит любая программа по работе с 3D-графикой, например 3Ds Max или Cinema4D.

Во время процесса рендеринга данные программы задействуют максимум ресурсов компьютера, включая оперативную память и процессор. Двухъядерные ЦП будут очень сильно отставать по времени обработки рендера, и чем сложнее будет сцена, тем больше времени им потребуется. А вот процессоры с четырьмя ядрами справятся с данной задачей гораздо быстрее, поскольку им на помощь придут еще и дополнительные потоки.

Конечно, можно взять и какой-нибудь бюджетный "процик" из семейства Core i3, например, модель 6100, но 2 ядра и 2 дополнительных потока все равно будут уступать полноценному четырехядернику.

6 и 8 ядер

Ну и последний сегмент многоядерников - процессоры с шестью и восемью ядрами. Их основное предназначение, в принципе, точно такое же, как и у ЦП выше, только вот нужны они там, где обычные "четверки" не справляются. Кроме этого, на базе "камней" с 6 и 8 ядрами строят полноценные профильные компьютеры, которые будут "заточены" под определенную деятельность, например, монтаж видео, 3Д-программы для моделирования, рендеринг готовых тяжелых сцен с большим количеством полигонов и объектов и т. д.

Помимо этого, такие многоядерники очень хорошо себя показывают в работе с архиваторами или в приложениях, где нужны хорошие вычислительные возможности. В играх, которые оптимизированы под многопоточность, равных таких процессорам нет.

На что влияет количество ядер процессора

Итак, на что же еще может влиять количество ядер? В первую очередь на повышение энергопотребления. Да, как бы это ни прозвучало удивительно, но это так и есть. Особо переживать не стоит, потому как в повседневной жизни данная проблема, если можно так выразиться, заметна не будет.

Второе - это нагрев. Чем больше ядер, тем лучше нужна система охлаждения. Поможет измерить температуру процессора программа, которая называется AIDA64. При запуске нужно нажать на "Компьютер", а затем выбрать "Датчики". Следить за температурой процессора нужно, потому как если он будет постоянно перегреваться или работать на слишком высоких температурах, то через какое-то время он просто сгорит.

Двухъядерники незнакомы с такой проблемой, потому как не обладают слишком высокой производительностью и тепловыделением соответственно, а вот многоядерники - да. Самыми "горячими" считаются камни от AMD, особенно серии FX. Например, возьмем модель FX-6300. Температура процессора в программе AIDA64 находится в отметке около 40 градусов и это в режиме простоя. При нагрузке цифра будет расти и если случится перегрев, то комп выключится. Так что, покупая многоядерник, нужно не забывать о кулере.

На что влияет количество ядер процессора еще? На многозадачность. Двухъядерные"процы" не смогут обеспечить стабильную производительность при работе в двух, трех и более программ одновременно. Самый простой пример - стримеры в интернете. Помимо того, что они играют в какую-нибудь игру на высоких настройках, у них параллельно запущена программа, которая позволяет транслировать игровой процесс в интернет в режиме онлайн, работает и интернет-браузер с несколькими открытыми страницами, где игрок, как правило, читает комментарии смотрящих его людей и следит за прочей информацией. Обеспечить должную стабильность может даже далеко не каждый многоядерник, не говоря уже о двух- и одноядерных процессорах.

Также стоит сказать пару слов о том, что у многоядерных процессоров есть очень полезная вещь, которая называется "Кеш третьего уровня L3". Этот кеш имеет определенный объем памяти, в который постоянно записывается различная информация о запущенных программах, выполненных действиях и т. д. Нужно это все для того, чтобы увеличить скорость работы компьютера и его быстродействие. Например, если человек часто пользуется фотошопом, то эта информация сохранится в памяти каша, и время на запуск и открытие программы значительно сократиться.

Подведение итогов

Подводя итог разговора о том, на что влияет количество ядер процессора, можно прийти к одному простому выводу: если нужна хорошая производительность, быстродействие, многозадачность, работа в тяжелых приложениях, возможность комфортно играть в современные игры и т. д., то ваш выбор - процессор с четырьмя ядрами и больше. Если же нужен простенький "комп" для офиса или домашнего пользования, который будет использоваться по минимуму, то 2 ядра - это то что нужно. В любом случае, выбирая процессор, в первую очередь нужно проанализировать все свои потребности и задачи, и только после этого рассматривать какие-либо варианты.

Корпорация AMD объявила о проведении демонстрации первого в отрасли двухъядерного процессора класса x86. На демонстрации, состоявшейся в офисе корпорации в Остине, был представлен сервер HP ProLiant DL585 с четырьмя двухъядерными процессорами AMD Opteron(tm), изготовленными по технологии "кремний на диэлектрике" с нормой проектирования 90 нм.

Переход в новую, более эффективную среду вычислительной обработки, основанную на существующей инфраструктуре систем AMD и стандартной архитектуре, осуществляется достаточно просто, и корпоративные клиенты могут рассчитывать на увеличение вычислительных мощностей без каких-либо издержек в виде повышенного энергопотребления или тепловыделения. Ожидается, что двухъядерный процессор AMD Opteron для серверов и рабочих станций, планируемый к широкому выпуску в середине 2005 г., будет обладать наилучшей производительностью в расчете на ватт мощности среди аналогичных продуктов на рынке.

Это объявление следует за целым рядом впечатляющих новаторских достижений AMD. Она первой из всех компанией приступила к поставкам высокопроизводительных продуктов, поддерживающих одновременно 32-разрядные и 64-разрядные вычисления на базе x86, и тем самым инициировала переход всей отрасли к повсеместному внедрению 64-разрядной технологии. Кроме того, AMD стала первой компанией, реализовавшей 64-разрядную обработку и усовершенствованную антивирусную защиту (на базе пакета обновлений Windows(r) Service Pack 2) в процессорах для настольных систем и мобильных ПК с низким энергопотреблением.

Поддержка отрасли

Опираясь на мощную партнерскую поддержку, AMD по-прежнему возглавляет процесс технологического обновления отрасли x86, демонстрируя технологию, которая сделает возможным переход на двухъядерные продукты.

"Технологии процессоров с двумя и более ядрами для серверов, отвечающих отраслевым стандартам, изменит наше представление об оптимальных показателях масштабируемости, производительности и коммерческой ценности для крупных корпораций и клиентов из сферы малого бизнеса, - говорит Пол Миллер (Paul Miller), вице-президент по маркетингу в подразделении HP Industry Standard Servers. - Демонстрация первых в отрасли двухъядерных процессоров x86 от AMD, работающих на серверах HP ProLiant, свидетельствует об эффективности сотрудничества HP с AMD и о нашей неизменной приверженности интересам клиентов, которых мы стараемся как можно быстрее снабжать самыми лучшими новыми технологиями".

Инновации лидера отрасли

По прогнозам AMD, готовящийся к выпуску двухъядерный процессор AMD Opteron, построенный на базе существующей инфраструктуры Socket-940, обеспечит повышение быстродействия серверов и рабочих станций практически во всех режимах работы за счет объединения двух процессорных ядер на одном кристалле. Требования к форм-фактору, уровню энергопотребления и производительности заставляют искать новаторские решения для современных компьютерных микросхем. Технология процессора с двумя ядрами обеспечит пользователям более сбалансированную производительность на базе системной архитектуры, полностью соответствующей отраслевым стандартам.

Двухъядерные процессоры представляют собой естественное расширение технологии AMD64 с архитектурой прямых соединений. AMD не только первой среди всех компаний удалось устранить узкие места в работе внешней шины, характерные для архитектуры x86, но она также первой успешно объединила два ядра на одном кристалле вместе с контроллером памяти, подсистемой ввода-вывода и другими процессорами - что позволит улучшить общесистемную производительность и повысить эффективность обработки.

Сроки выпуска

В середине 2005 г. AMD планирует представить полную линейку двухъядерных процессоров на базе Socket 940 для 1-/8-сокетных серверов и рабочих станций. За ними во второй половине 2005 г. должны последовать двухъядерные процессоры для рынка клиентских систем.