Сайт о телевидении

Сайт о телевидении

» » Язык программирования arduino самоучитель. Язык программирования Arduino

Язык программирования arduino самоучитель. Язык программирования Arduino

Arduino, на самом деле, - это разработка уникальных проектов на все случаи жизни. Как я уже писал, представляет собой Arduino своеобразную плату с размещенным на ней микроконтроллером, которую можно без проблем программировать.

Конечной целью данных манипуляций является обеспечение легкого управления многочисленными внешними устройствами . С внешним миром, данная плата взаимодействует посредством множества дополнений:

  • датчики,
  • светодиоды,
  • двигатели,
  • сеть Интернет
  • и т.п.

Это позволит сделать ее достаточно универсальной платформой для множества проектов само разного уровня. В настоящее время довольно много самых разных микроконтроллеров, среди которых Arduino пользуется особенной популярностью, что связано с активным размещением в сети самых невероятных проектов и разработок.

Для того, чтобы запросто реализовать одну из миллионов идей легко можно использовать самую актуальную информацию, которая доступна самостоятельно на многих сайтах. Ниже пример реализации одной из таких идей - рождественский колокольчик, которым можно управлять:

Как его сделать мы разберем на одном из следующих уроков.

В том случае, если нет даже незначительного опыта работы с микроконтроллерами (программирования и настройки), благодаря особенностям можно запросто научиться самостоятельно, проведя сравнительно непродолжительные эксперименты. Ниже как раз предлагаю проанализировать некоторые возможности Ардуино, примеры того, где лучше всего использовать это уникальный конструктор.

Скетчи Arduino

Собственно, программа для микроконтроллера данного типа называется sketch . Состоит любая такая программа непосредственно из двух главных функций.

Setup

Setup() – предусмотрено, что внутри данной функции, пользователь сможет задавать все ключевые настройки.

К примеру, определяется, какие выводы будут в дальнейшем работать на выход или вход, определение подключения конкретных библиотек, даже инициализация переменных, все это определяется посредством использования данного функционала.

Запуск осуществляется строго один раз в течение всего скетча, когда отмечается сам старт выполнения данной программы.

Loop

Loop() – представляет собой основную функцию, которая осуществляется непосредственно после запуска (как раз в этом случае используется setup() ).

Фактически, это и есть сама программа, данная функция будет выполняться в бесконечном режиме, пока пользователь не выключит питание устройства.

Примеры скетчей

Можно рассмотреть некоторые примеры скетчей, которые станут ориентиром при последующей работе оборудования. Каждый из примеров я постараюсь реализовать в следующих материалах. Сегодня же мы просто поговорим о возможностях.

Пример 1

Одним из интересных скетчей можно отображать само время работы контроллера, в дальнейшем принятие команды «blink», она предусмотрена для инициализации процедуры мигания светодиодных элементов.

Фактически, ничего особенно полезного в скетче нет, но в нем организована и возможность случайного вывода некоторой фразы «Data Received», она может использоваться в дальнейшем непосредственно для тестирования и анализа установленных правил работы модульного элемента.

Пример 2

Подключение специального датчика текущего уровня воды , датчика дождя. Для реализации конкретного проекта необходимо наличие:

Самого датчика воды,
- контроллера Arduino,
- комплекта соединительных проводов,
- компьютера с кабелями и программой IDE, соответствующей макетной платы.

В результате, благодаря сравнительно простой настройке микроконтроллера, обеспечивается создание оптимальных условий для работы датчика.

Пример 3

Отдельного внимания заслуживает возможность осуществления вывода символов , последующая установка шрифтов на LCD5110, что позволит обеспечить максимально легкий и надежный контроль над состоянием самого оборудования.

Вывод и изменение шрифтов осуществляется посредством использования возможностей Arduino. Потребуется в этом случае использовать готовую библиотеку данных, а также исходный код.

Примеры использования Arduino

Рассматривая многочисленные примеры Ардуино, можно только удивиться творческому подходу разработчиков проектов и неординарной фантазии. Фактически, можно создать самые невероятные вещи, к примеру, тот же самый музыкальный проигрыватель с набором светодиодов .

Подобная разработка будет высоко оценена любителями музыки, позволяя создать не просто оригинальное звуковое сопровождение, но и дать возможность насладиться ярким, неординарным цветовым сочетанием.

Оценить проекты смогут даже домашние питомцы, к примеру, кошки. Поводом послужит автоматическая кормушка для котов , которая может быть разработана на основе обычного CD-плеера, например, и не только.

Среди преимуществ данного оборудования нужно отметить возможность дозированной подачи корма животному, теперь нет необходимости регулярно проверять количество еды в мисочке. Настраивается время открытия, после чего котик будет получать питательные продукты строго по установленному графику, наслаждаясь оригинальной задумкой своего хозяина.

Если говорить о совершенно необычных проектах, можно выделить автоматическое оснащение для цветка , который теперь сможет передавать информацию о своем текущем состоянии непосредственно в Твиттер. Делается все это посредством использования возможностей микроконтроллера Ардуино, который позволит передавать данные, непосредственно используя для этого подключение к сети Интернет. Как можно заметить, примеры могут быть самыми разными, на каждый из них я постараюсь обратить внимание в следующих статьях.

Доброго времени суток, Хабр. Запускаю цикл статей, которые помогут Вам в знакомстве с Arduino. Но это не значит, что, если Вы не новичок в этом деле – Вы не найдёте ничего для себя интересного.

Введение

Было бы не плохо начать со знакомства с Arduino. Arduino – аппаратно-программные средства для построения систем автоматики и робототехники. Главным достоинством есть то, что платформа ориентирована на непрофессиональных пользователей. То есть любой может создать своего робота вне зависимости от знаний программирования и собственных навыков.

Начало

Создание проекта на Arduino состоит из 3 главных этапов: написание кода, прототипирование (макетирование) и прошивка. Для того, чтоб написать код а потом прошить плату нам необходима среда разработки. На самом деле их есть немало, но мы будем программировать в оригинальной среде – Arduino IDE. Сам код будем писать на С++, адаптированным под Arduino. Скачать можно на официальном сайте . Скетч (набросок) – программа, написанная на Arduino. Давайте посмотрим на структуру кода:


main(){ void setup(){ } void loop(){ } }

Важно заметить, что обязательную в С++ функцию main() процессор Arduino создаёт сам. И результатом того, что видит программист есть:


void setup(){ } void loop(){ }

Давайте разберёмся с двумя обязательными функциями. Функция setup() вызывается только один раз при старте микроконтроллера. Именно она выставляет все базовые настройки. Функция loop() - циклическая. Она вызывается в бесконечном цикле на протяжении всего времени работы микроконтроллера.

Первая программа

Для того, чтоб лучше понять принцип работы платформы, давайте напишем первую программу. Эту простейшую программу (Blink) мы выполним в двух вариантах. Разница между ними только в сборке.


int Led = 13; // объявляем переменную Led на 13 пин (выход) void setup(){ pinMode(Led, OUTPUT); // определяем переменную } void loop(){ digitalWrite(Led, HIGH); // подаём напряжение на 13 пин delay(1000); // ожидаем 1 секунду digitalWrite(Led, LOW); // не подаём напряжение на 13 пин delay(1000); // ожидаем 1 секунду }

Принцип работы этой программы достаточно простой: светодиод загорается на 1 секунду и тухнет на 1 секунду. Для первого варианта нам не понадобиться собирать макет. Так как в платформе Arduino к 13 пину подключён встроенный светодиод.

Прошивка Arduino

Для того, чтоб залить скетч на Arduino нам необходимо сначала просто сохранить его. Далее, во избежание проблем при загрузке, необходимо проверить настройки программатора. Для этого на верхней панели выбираем вкладку «Инструменты». В разделе «Плата», выберете Вашу плату. Это может быть Arduino Uno, Arduino Nano, Arduino Mega, Arduino Leonardo или другие. Также в разделе «Порт» необходимо выбрать Ваш порт подключения (тот порт, к которому вы подключили Вашу платформу). После этих действий, можете загружать скетч. Для этого нажмите на стрелочку или во вкладке «Скетч» выберете «Загрузка» (также можно воспользоваться сочетанием клавиш “Ctrl + U”). Прошивка платы завершена успешно.

Прототипирование/макетирование

Для сборки макета нам необходимы следующие элементы: светодиод, резистор, проводки (перемычки), макетная плата(Breadboard). Для того, чтоб ничего не спалить, и для того, чтоб всё успешно работало, надо разобраться со светодиодом. У него есть две «лапки». Короткая – минус, длинная – плюс. На короткую мы будем подключать «землю» (GND) и резистор (для того, чтоб уменьшить силу тока, которая поступает на светодиод, чтоб не спалить его), а на длинную мы будем подавать питание (подключим к 13 пину). После подключения, загрузите на плату скетч, если вы ранее этого не сделали. Код остаётся тот же самый.


На этом у нас конец первой части. Спасибо за внимание.

Начать свой путь в IT бывает очень сложно хотя бы просто потому, что глядя на окружающие технологии невозможно отделить «железный» интерес от программного. С одной стороны - желание создать устройство с безупречным внешним видом, множеством датчиков и безграничными возможностями, с другой - таинство обработки данных, стремление максимально увеличить быстродействие, не пренебрегая функциональностью. Arduino - первый шаг к большим изобретениям, не требующий ни глубоких знаний схемотехники, ни опыта в программировании.

Что такое Arduino

Если называть вещи своими именами, то Arduino - это конструктор для тех, кому надоело созидать бесполезные образы и захотелось хоть немного наделить их жизнью. В самом простейшем случае Arduino - печатная плата, на которой расположен контроллер, кварцевый генератор, АЦП/ЦАП, несколько разъёмов, диодов и кнопок. Остальное - дело рук хозяина: хотите - создавайте робота, хотите - программно-аппаратную платформу для «умного» дома, ну или забудьте про практическую пользу и развлекайтесь .

Конечно, в зависимости от того. насколько далеко вы хотите зайти в своих экспериментах, хотите ли вы получать фильтрованное удовольствие или сделать из Arduino платформу для собственного заработка, вам придётся совершенствоваться и в проектировании железа, и в изучении языков программирования. О последнем сегодня чуть подробнее.

Arduino достаточно ограниченная платформа в плане возможностей программирования, особенно в сравнении с Raspberry Pi. В силу того, что порог входа неприлично низкий (базовый Tutorial занимает 3 листа формата A4), то рассчитывать на изобилие языков без подключения дополнительных модулей не приходится. За основу здесь принят C/C++ , но с использованием различных IDE и библиотек вы получите доступ к оперированию Python, C#, Go, а также таким детским развлечениям, как Snap! и ArduBlock. О том как, когда и кому их использовать, поговорим далее.

C/C++

Базовый язык платформы Arduino, который с некоторыми доработками и упрощениями используется в стандартной программной оболочке. Найти все доступные команды «для новичка» можно , но никто не мешает вам воспользоваться исходными возможностями языка C++, никаких надстроек не потребуетс. Если же есть желание поиграть с «чистым» C, то к вашим услугам программа , предназначенная, как следует из названия, для взаимодействия ОС Windows и МК серии AVR, которые и используются на Arduino. Более подробное руководство можете прочитать вот .

Ardublock

Временно отойдем от языков взрослых к любимому ребятней языку Scratch, а вернее к его адаптации - Ardublock. Здесь всё тоже самое, но с адаптацией к вашей платформе: цветные блоки, конструктор, русские названия, простейшая логика. Такой вариант здорово подойдет даже тем, кто с программированием не знаком вовсе. Подобно тому, как в языке Logo вы можете перемещать виртуальную черепашку по виртуальной плоскости, здесь с помощью нехитрых операций вы можете заинтересовать ребенка реальной интерпретацией его программных действий.

Да, кстати, для использования необходимо на вашу стандартную среду Arduino IDE установить . Последние версии лучше не хватать, они довольно сложные, для начала подойдет датированная концом 2013 года. Для установки скачанный файл переименовываем в «ardublock-all» и запихиваем в папку «Мои документы/Arduino/tools/ArduBlockTool/tool». Если её не существует - создаем. Если что-то не поняли, то вот более подробно.

Snap!

По сравнению с Ardublock, Snap! имеет расширенные возможности в виде дополнительных блоков, возможности использования списков и функций. То есть Snap! в общем и целом уже похож на взрослый язык программирования, не считая, что вам по прежнему необходимо играть в конструктор кода.

Для того, чтобы использовать этот язык, придется сходить на сайт snap4arduino.org и скачать необходимые компоненты для вашей ОС. Инструкции по установке, использованию и видеопримеры ищите здесь же.

Python

Формально программировать на Arduino вы можете используя хоть язык Piet, просто потому что при должном упорстве вы скомпилируете в машинный код что угодно. Но в силу того, что Python - один из наиболее популярных языков с практически оптимальным сочетанием сложность\возможности, то обойти стороной его применяемость в Arduino было бы нелепо. Начать изучение Python вы можете с нашего бесплатного

Итак, у вас есть процессор. Вы наверняка понимаете, что процессор можно как-то запрограммировать, чтобы он делал то, что вы хотите. Для того, чтобы была выполнена полезная работа необходимо (а) написать полезную программу и (б) отдать её процессору для исполнения.

В целом, не важно какой именно у вас процессор: последний Intel Pentium в вашем ноутбуке или микроконтроллер на плате Arduino. Принципы написания программы, т.е. программирования , в обоих случаях одни и те же. Различается лишь быстродействие и объём возможностей по работе с другими устройствами.

Что такое программа и куда её писать

Процессор несмотря на всю сложность производства, по сути своей, довольно простая и прямолинейная вещь. Думать он не умеет. Он умеет лишь слепо, байт за байтом исполнять инструкции, которые ему подсунули. Можно привести грубый пример последовательности инструкций:

Байт инструкции Что он означает для процессора
00001001 означает: взять следующий байт и запомнить его в ячейке №1
00000110 …это как раз следующий байт, который мы запоминаем в ячейке №1: число 5
00011001 означает: отнять от значения в ячейке №1 единицу и оставить там обновлённый результат
00101001 означает: сравнить значение в ячейке №1 с нулём и если оно ноль - перепрыгнуть через столько байт, сколько указано в следующем байте
00000100 …если результат был ноль, мы хотим прыгнуть через 4 байта, к предпоследней инструкции
10000011
01000001 …букве «A» как раз соответствует этот код
00101000 означает, что мы хотим прыгнуть назад на столько байт, сколько указано в следующем байте
00000110 …прыгать будем на 6 байт назад, к инструкции №3
10000011 означает, что мы хотим вывести на экран символ, код которого записан в следующем байте
00100001 …знаку «!» как раз соответствует этот код

В результате исполнения такой последовательности инструкций на экран будет выведена паническая фраза «АААА!».

Довольно много кода для такой простой цели! Понятно, что если бы все программы писались вот так, непосредственно, разработка сложных продуктов занимала бы века.

Зачем нужны языки программирования

Для упрощения задачи в миллион раз были придуманы языки программирования. Их очень много и даже из тех, что постоянно на слуху можно быстро вспомнить десяток-другой: Assembler, C, C++, C#, Java, Python, Ruby, PHP, Scala, JavaScript.

Программы на этих языках гораздо ближе к естественному языку человека. А следовательно их проще, быстрее и приятнее писать, а что самое главное, их гораздо проще читать : вам сразу после написания, вам через год или вашему коллеге.

Проблема в том, что такие языки не понятны процессору и перед тем как отдать ему эту программу, её нужно скомпилировать : перевести с естественного языка в те самые инструкции в виде нулей и единиц. Этим занимаются программы, которые называются компиляторами . У каждого языка, если только он не остался на уровне фантазий, есть свой компилятор. Для популярных языков их обычно несколько на выбор, от разных производителей и для разных платформ. Большинство из них свободно доступно в интернете.

Итак, есть программы на вполне понятном человеку языке: их ещё называют «исходным кодом», просто «кодом» или «исходниками». Они пишутся в простые текстовые файлы с помощью любого текстового редактора, хоть с помощью notepad. Затем они превращаются в понятные процессору наборы нулей и единиц с помощью компилятора: компилятор получает на вход исходный код, а на выходе создаёт бинарный исполняемый файл , тот самый, понятный процессору.

Бинарные файлы не пригодны для чтения и предназначены, в общем, лишь для исполнения процессором. Они могут иметь разный тип в зависимости от того для чего получены: .exe - это программы для Windows, .hex - программы для исполнения микроконтроллером типа Arduino и т.п.

Почему же существует столько языков программирования и в чём разница?

    Почему? Потому что на Земле много людей и компаний, и многие считали, что могут сделать лучше всех: удобнее, понятнее, быстрее, стройнее.

    В чём разница: разные языки - это разный баланс скорости написания, понятности при чтении и скорости исполнения.

Посмотрим на одну и ту же программу, которая выводит на экран песенку про 99 бутылок пива на разных языках программирования.

Например, язык Perl. Пишется быстро; понять, что имел в виду программист невозможно; исполняется медленно:

sub b{ $n = 99 - @_ - $_ || No; "$n bottle" . "s" x!!-- $n . " of beer" } ; $w = " on the wall" ; die map { b. "$w,\n " . b. ",\n Take one down, pass it around,\n " . b(0 ) . "$w.\n \n " } 0 .. 98

Язык Java. Пишется относительно долго; читается просто; исполняется довольно быстро, но занимает много памяти:

class bottles { public static void main(String args ) { String s = "s" ; for (int beers= 99 ; beers>- 1 ; ) { System .out .print (beers + " bottle" + s + " of beer on the wall, " ) ; System .out .println (beers + " bottle" + s + " of beer, " ) ; if (beers== 0 ) { System .out .print ("Go to the store, buy some more, " ) ; System .out .println ("99 bottles of beer on the wall.\n " ) ; System .exit (0 ) ; } else System .out .print ("Take one down, pass it around, " ) ; s = (-- beers == 1 ) ? "" : "s" ; System .out .println (beers + " bottle" + s + " of beer on the wall.\n " ) ; } } }

Язык Assembler. Пишется долго; читается сложно; исполняется очень быстро:

code segment assume cs : code , ds : code org 100h start : ; Main loop mov cx , 99 ; bottles to start with loopstart: call printcx ; print the number mov dx , offset line1 ; print the rest of the first line mov ah , 9 ; MS-DOS print string routine int 21h call printcx ; print the number mov dx , offset line2_3 ; rest of the 2nd and 3rd lines mov ah , 9 int 21h dec cx ; take one down call printcx ; print the number mov dx , offset line4 ; print the rest of the fourth line mov ah , 9 int 21h cmp cx , 0 ; Out of beer? jne loopstart ; if not, continue int 20h ; quit to MS-DOS ; subroutine to print CX register in decimal printcx: mov di , offset numbufferend ; fill the buffer in from the end mov ax , cx ; put the number in AX so we can divide it printcxloop: mov dx , 0 ; high-order word of numerator - always 0 mov bx , 10 div bx ; divide DX:AX by 10. AX=quotient, DX=remainder add dl , "0" ; convert remainder to an ASCII character mov [ ds : di ] , dl ; put it in the print buffer cmp ax , 0 ; Any more digits to compute? je printcxend ; if not, end dec di ; put the next digit before the current one jmp printcxloop ; loop printcxend: mov dx , di ; print, starting at the last digit computed mov ah , 9 int 21h ret ; Data line1 db " bottles of beer on the wall," , 13 , 10 , "$" line2_3 db " bottles of beer," , 13 , 10 , "Take one down, pass it around," , 13 , 10 , "$" line4 db " bottles of beer on the wall." , 13 , 10 , 13 , 10 , "$" numbuffer db 0 , 0 , 0 , 0 , 0 numbufferend db 0 , "$" code ends end start

На чём программируется Arduino

Если говорить об Arduino или о микроконтроллерах от компании Atmel, на каком языке можно писать программы для них? Теоретический ответ: на любом. Но на практике, выбор ограничивается языками Assembler, C и C++. Это связанно с тем, что в сравнении с настольным компьютером у них очень ограниченные ресурсы. Килобайты памяти, а не гигабайты. Мегагерцы на процессоре, а не гигагерцы. Это плата за дешевизну и энергоэффективность.

Поэтому нужен язык, который может компилироваться и исполняться эффективно. То есть переводиться в те самые нули и единицы из инструкций как можно оптимальнее, без расходов драгоценных инструкций и памяти в пустую. Подобной эффективностью как раз и обладают названные языки. Используя их даже в узких рамках ресурсов микроконтроллера, можно писать богатые возможностями программы, которые работают быстро.

Assembler, как вы видели, нельзя назвать самым простым и элегантным и, как результат, флагманским языком для Arduino является C/C++.

Во многих источниках говорится, что Arduino программируется на языке Arduino, Processing, Wiring. Это не совсем корректное утверждение. Arduino программируется на C/C++, а то, что называется этими словами - это просто удобный «обвес», который позволяет решать многие типичные задачи, не изобретая велосипед каждый раз.

Почему C и C++ упоминаются в одном предложении? C++ - это надстройка над C. Всякая программа на C является корректной программой для C++, но не наоборот. Вы можете пользоваться и тем и другим. Чаще всего вы даже не будете задумываться о том, что используете, решая текущую задачу.

Ближе к делу: первая программа

Давайте напишем первую программу для Arduino и заставим плату её исполнять. Вам необходимо создать текстовый файл с исходным кодом, скомпилировать его и подсунуть полученный бинарный файл микроконтроллеру на плате.

Пойдём по порядку. Напишем исходный код. Можно написать его в блокноте или любом другом редакторе. Однако для того, чтобы работа была удобной, существуют так называемые среды разработки (IDE: Integrated Development Environment). Они в виде единого инструмента предоставляют и текстовый редактор с подсветкой и подсказками, и компилятор, запускаемый по кнопке, и много других радостей. Для Arduino такая среда называется Arduino IDE. Она свободно доступна для скачивания на официальном сайте.

Установите среду и запустите её. В появившемся окне вы увидите: большая часть места отдана текстовому редактору. В него и пишется код. Код в мире Arduino ещё называют скетчем .

Итак, давайте напишем скетч, который ничего не делает. То есть минимально возможную правильную программу на C++, которая просто прожигает время.

void setup() { } void loop() { }

Не будем пока заострять внимание на значении написанного кода. Скомпилируем его. Для этого в Arduino IDE, на панели инструментов есть кнопка «Verify». Нажмите её и через несколько секунд бинарный файл будет готов. Об этом возвестит надпись «Done compiling» под текстовым редактором.

В результате, у нас получился бинарный файл с расширением.hex , который может исполнять микроконтроллер.

Теперь необходимо подсунуть его Arduino. Этот процесс называется загрузкой, прошивкой или заливкой. Для выполнения загрузки в Arduino IDE, на панели инструментов есть кнопка «Upload». Соедините Arduino с компьютером через USB-кабель, нажмите «Upload» и через несколько мгновений программа будет загружена в Arduino. При этом программа, которая была там ранее будет стёрта.

Об успешной прошивке возвестит надпись «Done Uploading».

Если при попытке загрузки вы столкнулись с ошибкой убедитесь, что:

    В меню Tools → Board выбран тот порт, к которому действительно подключена Arduino. Можете повставлять и повынимать USB-кабель, чтобы понять какой порт появляется и исчезает: это и есть Arduino.

    Вы установили необходимые драйверы для Arduino. Это необходимо для Windows, не требуется под Linux и необходимо только для старых плат до Arduino Duemilanove на MacOS.

Поздравляем! Вы прошли весь путь от чистого листа до работающей программы в Arduino. Пусть она ничего и не делает, но это уже успех.

Исторически так сложилось, что программная часть Arduino состоит из интегрированной программной среды (IDE), позволяющей писать, компилировать, а также загружать написанный код в аппаратную часть. Cреда ArduinoIDE, и сам язык Wiring основаны, в первую очередь, на Processing, косвенно – на С/C++. По сути, Arduino IDE являет собой большую сборную солянку, не смеха ради, а удобства для.

Даже внешне и Arduino IDE и Processing похожи


Из чего состоит программа (скетч)?
Каждая программа, какой сложной она не казалась бы, состоит из отдельных наборов блоков кода, который обозначается фигурными скобками {} . Для минимальной программы требуется всего 2 блока: setup и loop . Их присутствие обязательно в любой программе на C++ для Arduino, иначе на стадии компиляции можно получить ошибку.
void setup() { } void loop() { }
В функции setup() происходят начальные установки переменных, регистров. После завершения setup() управление переходит к функции loop() , которая являет собой бесконечный цикл, записанный в теле (между { } ). Именно эти команды и совершают все алгоритмические действия контроллера.

Аппаратный « Hello , world !» - мигание светодиодом.
То, с чего начинается первое знакомство с Arduino на стыке программной и аппаратной части - это мигание светодиодом.


Сперва необходимо дополнить минимальную программу. У Arduino (например UNO), к 12 пину и GND подключим светодиод (цвет самого светодиода выбирается из личных предпочтений).

Void setup() { pinMode(12, OUTPUT); } void loop() { digitalWrite(12, HIGH); delay(100); digitalWrite(12, LOW); delay(900); }
Делаем Ctrl+C -> Ctrl+V, компилируем, загружаем, властвуем. Видим светопредставление, длящееся не более секунды. Разбираемся, почему происходит именно так.

В ранее пустые блоки мы добавили несколько выражений . Они были размещены между фигурными скобками функций setup и loop .
Каждое выражение – инструкция для процессора. Выражения в рамках одного блока исполняются друг за другом, строго по порядку без всяких пауз и переключений. То есть, если мы говорим об одном конкретном блоке кода, его можно читать сверху вниз, чтобы понять, что делается.

Что же происходит между { } ?
Как известно, пины Arduino могут работать как на выход так и на вход. Когда мы хотим чем-то управлять, то нам нужно перевести управляющий пин в состояние работы на выход. Это делается выражением в функции setup :
pinMode(12, OUTPUT); В данной ситуации в выражении осуществляется вызов функции . В pinMode устанавливается заданный по номеру пин в заданный режим (INPUT или OUTPUT). О каком пине и о каком режиме идёт речь, указывается в круглых скобках, через запятую. В нашем случае мы хотим, чтобы 12-й пин работал как выход. OUTPUT означает выход, INPUT - вход. Уточняющие значения, такие как 12 и OUTPUT называются аргументами функции . Сколько у функции аргументов зависит от сути функции и воли ее создателя. Функции могут быть без аргументов вовсе, как это происходит на примере setup и loop.

Далее переходим к блоку loop, по порядку:
-вызов встроенной функции digitalWrite. Она предназначена для подачи на заданный пин логического нуля (LOW, 0 вольт) или логической единицы (HIGH, 5 вольт) В функцию digitalWrite передаётся 2 аргумента: номер пина и логическое значение.
-вызов функции delay. Это, опять же, встроенная функция, которая заставляет процессор «уснуть» на определённое время. Она принимает всего один аргумент: время в миллисекундах, которое следует спать. В нашем случае это 100 мс. Как только 100 мс истекают, процессор просыпается и тут же переходит к следующему выражению.
- вызов встроенной функции digitalWrite. Только на этот раз вторым аргументом является LOW. То есть устанавливаем на 12-м пине логический ноль -> подаём 0 вольт -> гасим светодиод.
- вызов функции delay. На этот раз «спим» чуть подольше – 900 мс.

Как только выполнена последняя функция, блок loop завершается и все происходит снова и снова. На самом деле условия, представленные в примере, достаточно вариативны, и вы можете поиграться со значениями delay, подключить несколько светодиодов и сделать подобие светофора или полицейской мигалки (все зависит от фантазии и воли создателя).

Вместо заключения, немного о чистоте.
На самом деле все пробелы, переносы строк, символы табуляции не имеют большого значения для компилятора. Там, где стоит пробел, может быть перенос строки и наоборот. На самом деле 10 пробелов подряд, 2 переноса строки и ещё 5 пробелов - это всё эквивалент одного пробела.


С помощью пустого пространства можно сделать программу понятной и наглядной, или же наоборот изуродовать до неузнаваемости. Например, программу, указанную в качестве примера можно изменить так:

void setup() { pinMode(12, OUTPUT); } void loop () { digitalWrite(12,HIGH); delay(100) ; digitalWrite(12,LOW); delay(900); }

Чтобы при чтении ни у кого не начала течь кровь из глаз, можно следовать нескольким простым правилам:


1. Всегда, при начале нового блока между { и } увеличивайте отступ. Обычно используют 2 или 4 пробела. Выберите одно из значений и придерживайтесь его всюду.

Void loop() { digitalWrite(12, HIGH); delay(100); digitalWrite(12, LOW); delay(900); }
2. Как и в обычном языке: ставьте пробел после запятых.

digitalWrite(12, HIGH);
3. Размещайте символ начала блока { на новой строке на текущем уровне отступа или в конце предыдущей. А символ конца блока } на отдельной строке на текущем уровне отступа:

void setup() { pinMode(12, OUTPUT); } void setup() { pinMode(12, OUTPUT); }
4. Используйте пустые строки для разделения смысловых блоков:

void loop() { digitalWrite(12, HIGH); delay(100); digitalWrite(12, LOW); delay(900); digitalWrite(12, HIGH); delay(100); digitalWrite(12, LOW); delay(900); }
5. Для того, чтобы Ваше детище было приятно читать существуют так называемые комментарии. Это конструкции в программном коде, которые полностью игнорируются компилятором и имеют значение только для того, кто это читает. Комментарии могут быть многострочными или однострочными:

/* это многострочный комментарий */ // это однострочный