Сайт о телевидении

Сайт о телевидении

» » Введение в динамическое программирование. Понятие динамического программирования

Введение в динамическое программирование. Понятие динамического программирования

) , выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.

Метод динамического программирования сверху - это простое запоминание результатов решения тех подзадач, которые могут повторно встретиться в дальнейшем. Динамическое программирование снизу включает в себя переформулирование сложной задачи в виде рекурсивной последовательности более простых подзадач.

Энциклопедичный YouTube

  • 1 / 5

    Словосочетание «динамическое программирование» впервые было использовано в -х годах Р. Беллманом для описания процесса нахождения решения задачи, где ответ на одну задачу может быть получен только после решения задачи, «предшествующей» ей. В г. он уточнил это определение до современного. Первоначально эта область была основана, как системный анализ и инжиниринг, которая была признана IEEE . Вклад Беллмана в динамическое программирование был увековечен в названии уравнения Беллмана , центрального результата теории динамического программирования, который переформулирует оптимизационную задачу в рекурсивной форме.

    Слово «программирование» в словосочетании «динамическое программирование» в действительности к «традиционному» программированию (написанию кода) почти никакого отношения не имеет и имеет смысл как в словосочетании «математическое программирование », которое является синонимом слова «оптимизация». Поэтому слово «программа» в данном контексте скорее означает оптимальную последовательность действий для получения решения задачи. К примеру, определенное расписание событий на выставке иногда называют программой. Программа в данном случае понимается как допустимая последовательность событий.

    Идея динамического программирования

    Оптимальная подструктура в динамическом программировании означает, что оптимальное решение подзадач меньшего размера может быть использовано для решения исходной задачи. К примеру, кратчайший путь в графе из одной вершины (обозначим s) в другую (обозначим t) может быть найден так: сначала считаем кратчайший путь из всех вершин, смежных с s, до t, а затем, учитывая веса ребер, которыми s соединена со смежными вершинами, выбираем лучший путь до t (через какую вершину лучше всего пойти). В общем случае мы можем решить задачу, в которой присутствует оптимальная подструктура, проделывая следующие три шага.

    1. Разбиение задачи на подзадачи меньшего размера.
    2. Нахождение оптимального решения подзадач рекурсивно, проделывая такой же трехшаговый алгоритм .
    3. Использование полученного решения подзадач для конструирования решения исходной задачи.

    Подзадачи решаются делением их на подзадачи ещё меньшего размера и т. д., пока не приходят к тривиальному случаю задачи, решаемой за константное время (ответ можно сказать сразу). К примеру, если нам нужно найти n!, то тривиальной задачей будет 1! = 1 (или 0! = 1).

    Перекрывающиеся подзадачи в динамическом программировании означают подзадачи, которые используются для решения некоторого количества задач (не одной) большего размера (то есть мы несколько раз проделываем одно и то же). Ярким примером является вычисление последовательности Фибоначчи , F 3 = F 2 + F 1 {\displaystyle F_{3}=F_{2}+F_{1}} и F 4 = F 3 + F 2 {\displaystyle F_{4}=F_{3}+F_{2}} - даже в таком тривиальном случае вычисления всего двух чисел Фибоначчи мы уже посчитали дважды. Если продолжать дальше и посчитать , то F 2 {\displaystyle F_{2}} посчитается ещё два раза, так как для вычисления F 5 {\displaystyle F_{5}} будут нужны опять F 3 {\displaystyle F_{3}} и F 4 {\displaystyle F_{4}} . Получается следующее: простой рекурсивный подход будет расходовать время на вычисление решения для задач, которые он уже решал.

    Чтобы избежать такого хода событий мы будем сохранять решения подзадач, которые мы уже решали, и когда нам снова потребуется решение подзадачи, мы вместо того, чтобы вычислять его заново, просто достанем его из памяти. Этот подход называется мемоизацией . Можно проделывать и дальнейшие оптимизации - например, если мы точно уверены, что решение подзадачи нам больше не потребуется, можно выкинуть его из памяти, освободив её для других нужд, или если процессор простаивает и мы знаем, что решение некоторых, ещё не посчитанных подзадач, нам понадобится в дальнейшем, мы можем решить их заранее.

    Подводя итоги вышесказанного можно сказать, что динамическое программирование пользуется следующими свойствами задачи:

    • перекрывающиеся подзадачи;
    • оптимальная подструктура;
    • возможность запоминания решения часто встречающихся подзадач.

    Динамическое программирование обычно придерживается двух подходов к решению задач:

    • нисходящее динамическое программирование: задача разбивается на подзадачи меньшего размера, они решаются и затем комбинируются для решения исходной задачи. Используется запоминание для решений часто встречающихся подзадач.
    • восходящее динамическое программирование: все подзадачи, которые впоследствии понадобятся для решения исходной задачи просчитываются заранее и затем используются для построения решения исходной задачи. Этот способ лучше нисходящего программирования в смысле размера необходимого стека и количества вызова функций, но иногда бывает нелегко заранее выяснить, решение каких подзадач нам потребуется в дальнейшем.

    Языки программирования могут запоминать результат вызова функции с определенным набором аргументов (мемоизация), чтобы ускорить «вычисление по имени». В некоторых языках такая возможность встроена (например, Scheme , Common Lisp , Clojure , Perl), а в некоторых требует дополнительных расширений (C++).

    Известны сериальное динамическое программирование, включённое во все учебники по исследованию операций , и несериальное динамическое программирование (НСДП), которое в настоящее время слабо известно, хотя было открыто в 1960-х годах.

    Обычное динамическое программирование является частным случаем несериального динамического программирования, когда граф взаимосвязей переменных - просто путь. НСДП, являясь естественным и общим методом для учета структуры задачи оптимизации, рассматривает множество ограничений и/или целевую функцию как рекурсивно вычислимую функцию. Это позволяет находить решение поэтапно, на каждом из этапов используя информацию, полученную на предыдущих этапах, причём эффективность этого алгоритма прямо зависит от структуры графа взаимосвязей переменных. Если этот граф достаточно разрежен, то объём вычислений на каждом этапе может сохраняться в разумных пределах.

    Одним из основных свойств задач, решаемых с помощью динамического программирования, является аддитивность . Неаддитивные задачи решаются другими методами. Например, многие задачи по оптимизации инвестиций компании являются неаддитивными и решаются с помощью сравнения стоимости компании при проведении инвестиций и без них.

    Классические задачи динамического программирования

    • Задача о наибольшей общей подпоследовательности : даны две последовательности, требуется найти самую длинную общую подпоследовательность.
    • Задача поиска наибольшей увеличивающейся подпоследовательности : дана последовательность, требуется найти самую длинную возрастающую подпоследовательность.
    • Задача о редакционном расстоянии (расстояние Левенштейна) : даны две строки, требуется найти минимальное количество стираний, замен и добавлений символов, преобразующих одну строку в другую.
    • Задача о порядке перемножения матриц : даны матрицы A 1 {\displaystyle A_{1}} , …, A n {\displaystyle A_{n}} , требуется минимизировать количество скалярных операций для их перемножения.
    • Задача о выборе траектории
    • Задача последовательного принятия решения
    • Задача об использовании рабочей силы
    • Задача управления запасами

    Раздел Динамическое программирование представлен следующими калькуляторами:

    1. Задача распределения инвестиций . Для реконструкции и модернизации производства на четырех предприятиях выделены денежные средства С = 80 ден. ед. По каждому предприятию известен возможный прирост f i (х) (i = 1, 4) выпуска продукции в зависимости от выделенной суммы.

    В задачах динамического программирования экономический процесс зависит от времени (или от нескольких периодов времени), поэтому находится ряд оптимальных решений (последовательно для каждого этапа), обеспечивающих оптимальное развитие всего процесса в целом. Динамическое программирование представляет собой математический аппарат, позволяющий осуществлять оптимальное планирование управляемых процессов и процессов, зависящих от времени. Поэтапное проведение оптимизации называется многошаговым процессом принятия решения. Экономический процесс называется управляемым, если можно влиять на ход его развития.

    В основе метода динамического программирования (ДП) лежит принцип последовательной оптимизации: решение исходной задачи оптимизации большой размерности заменяется решением последовательности задач оптимизации малой размерности. Основным условием применимости метода ДП является возможность разбиения процесса принятия решений на ряд однотипных шагов или этапов, каждый из которых планируется отдельно, но с учетом результатов, полученных на других шагах. Например, деятельность отрасли промышленности в течение ряда хозяйственных лет или же последовательность тестов, применяемых при контроле аппаратуры, и т. д. Некоторые процессы (операции) расчленяются на шаги естественно, но существуют такие операции, которые приходится делить на этапы искусственно, например процесс наведения ракеты на цель.
    Этот принцип гарантирует, что управление, выбранное на любом шаге, является не локально лучшим, а лучшим с точки зрения процесса в целом, так как это управление выбирается с учетом последствий на предстоящих шагах.

    Рассмотрим общее описание задачи динамического программирования .
    Пусть многошаговый процесс принятия решений разбивается на n шагов. Обозначим через ε 0 – начальное состояние системы, через ε 1 , ε 2 , … ε n – состояния системы после первого, второго, n -го шага. В общем случае состояние ε k – вектор (ε k 1 , …, ε k s ).
    Управлением в многошаговом процессе называется совокупность решений (управляющих переменных) u k = (u k 1 , ..., u k r ), принимаемых на каждом шаге k и переводящих систему из состояния ε k -1 = (ε k- 1 1 , …, ε k -1 s ) в состояние ε k = (ε k 1 , …, ε k s ).
    В экономических процессах управление заключается в распределении и перераспределении средств на каждом этапе. Например, выпуск продукции любым предприятием – управляемый процесс, так как он определяется изменением состава оборудования, объемом поставок сырья, величиной финансирования и т. д. Совокупность решений, принимаемых в начале года, планируемого периода, по обеспечению предприятия сырьем, замене оборудования, размерам финансирования и т. д. является управлением. Казалось бы, для получения максимального объема выпускаемой продукции проще всего вложить максимально возможное количество средств и использовать на полную мощность оборудование. Но это привело бы к быстрому изнашиванию оборудования и, как следствие, к уменьшению выпуска продукции. Следовательно, выпуск продукции надо спланировать так, чтобы избежать нежелательных эффектов. Необходимо предусмотреть мероприятия, обеспечивающие пополнение оборудования по мере изнашивания, т. е. по периодам времени. Последнее хотя и приводит к уменьшению первоначального объема выпускаемой продукции, но обеспечивает в дальнейшем возможность расширения производства. Таким образом, экономический процесс выпуска продукции можно считать состоящим из нескольких этапов (шагов), на каждом из которых осуществляется влияние на его развитие.
    Началом этапа (шага) управляемого процесса считается момент принятия решения (о величине капитальных вложений, о замене оборудования определенного вида и т. д.). Под этапом обычно понимают хозяйственный год.
    Обычно на управление на каждом шаге u k накладываются некоторые ограничения. Управления, удовлетворяющие этим ограничениям, называются допустимыми.
    Предполагая, что показатель эффективности k -го шага процесса зависит от начального состояния на этом шаге k -1 и от управления на этом шаге u k , получим целевую функцию всего многошагового процесса в виде:
    .

    Сформулируем теперь задачу динамического программирования : «Определить совокупность допустимых управлений (u 1 , …, u n ), переводящих систему из начального состояния ε 0 в конечное состояние ε n и максимизирующих или минимизирующих показатель эффективности F ».
    Управление, при котором достигается максимум (минимум) функции F называется оптимальным управлением u * = (u 1* ,…, u n *).
    Если переменные управления u k принимают дискретные значения, то модель ДП называется дискретной . Если переменные u k изменяются непрерывно, то модель ДП называется непрерывной .
    В зависимости от числа параметров состояния s и числа управляющих переменных r различают одномерные и многомерные задачи ДП.
    Число шагов в задаче может быть конечным или бесконечным .

    Прикладные задачи динамического программирования

    1. задача о планировании строительства объектов.

    На уроке будет рассмотрено понятие динамического программирования и исторический аспект его появления. Рассмотрены задачи динамического программирования и некоторые примеры их решения


    Само понятие «динамическое программирование» впервые было использовано в 1940-х годах Ричардом Беллманом для описания процесса нахождения решения задачи, где ответ на одну задачу может быть получен только после решения другой задачи, «предшествующей» ей.
    Таким образом, американский математик и один из ведущих специалистов в области математики и вычислительной техникиРичард Эрнст Беллман — стал прородителем динамического программирования.

    Позднее формулировка понятия была доработана и усовершенствованна до современного вида самим же Беллманом.

    Слово «программирование» в контексте «динамическое программирование» на самом деле к классическому пониманию программирования (написанию кода на языке программирования) практически никакого отношения не имеет . Слово «Программирование» имеет такой же смысл как в словосочетании «математическое программирование», которое является синонимом слова «оптимизация».

    Поэтому программы будут использоваться в качестве оптимальной последовательности действий для получения решения задачи.

    В общем же для начала, неформальное определение понятия динамического программирования может звучать так:

    Динамическое программирование — это техника или метод, которая позволяет решать некоторые задачи комбинаторики, оптимизации и другие задачи, обладающие определенным свойством (свойством сооптимальности у подзадач).

    Задачи оптимизации , как правило, связаны с задачей максимизации или минимизации той или иной целевой функции (например, максимизировать вероятность того, что система не сломается, максимизировать мат. ожидание получения прибыли и т.д.).

    Задачи комбинаторики , как правило, отвечают на вопрос, сколько существует объектов, обладающих теми или иными свойствами, или сколько существует комбинаторных объектов, обладающих заданными свойствами.

    То есть, ДП решает не все задачи, а лишь некоторые, определенный класс подзадач. Но этот класс подзадачи используется во многих областях знаний: программирование, математика, лингвистика, статистика, теория игр, экономика, в компьютерных науках и т.п.

    Задачи, решаемые при помощи динамического программирования, должны обладать свойством сооптимальности , о котором будет сказано в дальнейших уроках.

    Неформальное объяснение свойства оптимальности у подзадач может быть продемонстрировано с помощью диаграммы:
    Есть задача, которую мы хотим решить при помощи ДП, т.е. найти какой-то план ее решения. Допустим эта задача сложна и сразу решить мы ее не можем. Мы берем малую подзадачу и решаем сначала ее (для x1). Затем используя это малое решение x1 , и не меняя структуру этого решения, решаем следующую задачу уже с x1 и x2 . И т.д.

    Рис. 1.1. Неформальное объяснение свойства оптимальности у подзадач

    Более подробно неформальное объяснение рассматривается .

    Примеры, решаемых при помощи динамического программирования задач

    Сначала рассмотрим задачи оптимизации (задачи 1-5):

    1. Маршрут оптимальной длины
    2. Пример: Есть некоторая карта дорог, представленная в виде графа. Наша цель: добраться из пункта А в пункт Б . Это сделать надо так, чтобы минимизировать расстояние или потраченное топливо.

      Целевой функцией здесь является расстояние от А до Б . Т.е. наша цель — минимизировать расстояние.

      А что является переменной выбора ? Для того, чтобы найти кратчайший путь, надо каждый раз принимать решения. Т.е. в каждой точке или на каждом перекрестке необходимо принимать решения: куда повернуть или ехать прямо.

      Важно: Из этой задачи уже можно увидеть общую структуру задач, решаемых при помощи динамического программирования: в каждой задаче есть целевая функция и переменная выбора .

    3. Замена машины (минимизация расходов)
    4. Пример: Каждый год мы принимаем решение, ездить ли на старой машине еще год и понести при этом издержки на поддержку и обслуживание старой машины или же продать эту машину и купить новую (и понести при этом издержки на покупку).

      Целевая функция: минимизация расходов (либо на издержки на поддержку старого автомобиля, либо на покупку нового).

      Переменная выбора: каждый год принимать решение продать машину или оставить.

    5. Биржевой портфель
    6. Пример: Игра на бирже, приобретение акций каких-либо компаний


      Целевая функция: максимизация средних доходов, т.к. на бирже доход получается вероятностным путем, т.е. это статистический процесс, вероятностный.

      Переменная выбора: то, какой портфель вложений будет: сколько акций и какой фирмы нам необходимо купить.

    7. Составление плана оптимального производства (логистика)
    8. Пример: Есть завод, изготавливающий мебель. На заводе работает определенное количество работников, которые могут изготовить соответствующее кол-во определенной мебели (стулья, столы, шкафы и т.п.)


      Целевая функция : максимизация прибыли.

      Переменная выбора: выбор того, сколько необходимо изготовить стульев или столов, чтобы хватило рабочей силы.

    9. Игры (вероятностные или не вероятностные)
    10. Пример: Участие в различных играх


      Целевая функция: максимизация вероятности выигрыша или максимизация среднего выигрыша и т.д.

      Переменная выбора здесь зависит от конкретной игры.

      Задачи 1 — 5 — это примеры задач оптимизации.

      Комбинаторика:

    11. Графы и деревья
    12. Пример: Задача на решение того, сколько существует деревьев, у которых определенное число листьев; или сколько существует графов для решения такого-то задания и т.п.

    13. Задача о размене монет или количество способов вернуть сдачу
    14. Пример: Есть монеты разного достоинства, какими способами можно вернуть сдачу.

    Это краткое описание задач для динамического программирования, которые подробно будут рассмотрены позднее.

    Понятие динамического программирования

    Неформальное объяснение оптимальности подзадач ДП.

    Рассмотрим неформальную идею ДП.

    Итак, возьмем пример с заводом, изготавливающим мебель.

    Для достижения цели максимизации прибыли необходимо решить множество подзадач:

    • сколько стульев произвести — переменная X1 ,
    • сколько столов произвести — переменная X2 ,
    • сколько нанять работников — переменная X3 ,
    • … Хn .

    При большом количестве подзадач сложно понять, как решать такую задачу. Как правило, решить одну малую задачу проще, чем решить большую задачу , состоящую из маленьких.

    Поэтому ДП предлагает следующее:

    • берем одну подзадачу с переменной X1 , об остальных подзадачах пока забываем.
    • Например, завод производит только стулья. У директора стоит задача получения максимальной прибыли с продажи стульев.

    • После того, как найдем оптимальное решение для первой подзадачи, берем подзадачу для двух переменных Х1 и Х2 , и решаем ее с помощью уже найденного решения для первой подзадачи .
    • Получаем решение уже для большей подзадачи, где фигурируют переменные Х1 и Х2 . Затем, используя полученное решение, берем подзадачи, охватывающие X1 , X2 и Х3 .
    • И так продолжаем пока не получим решение для всей общей задачи.

    Формальная идея ДП

    Часто при постановке задачи кажущимся оптимальным решением является перебор всех возможных вариантов . Однако, вследствии очень большого количества таких вариантов и, как результат, перегрузки памяти компьютера, такой способ не всегда приемлем.

    Кроме того, может возникнуть такой вопрос: для того чтобы найти, например, минимум или максимум, почему бы нам не найти производную? или не использовать множества Ла-Гранжа, или другие методы аппарата математического анализа? Зачем нужно ДП, если есть большой арсенал средств?

    Дело в том, что:

    В основе динамического программирования лежит идея решения поставленной задачи путем деления ее на отдельные части (подзадачи, этапы), решение этих подзадач и последующего объединения этих решений в одно общее решение. Часто большинство из подзадач абсолютно одинаковы.

    При этом важно, что при решении более сложной задачи, мы не решаем заново маленькую подзадачу, а используем уже решенный ответ этой подзадачи.
    На графике это может выглядеть так:


    Важно: По этой причине разделение задачи на подзадачи и решение этих подзадач только один раз (!) , сокращая этим количество общих вычислений — более оптимальный способ, который и заложен в динамическом программировании

    Когда мы решаем задачу с производными, множествами Ла-Гранжа и т.п., то мы работаем с непрерывными функциями. При решении же задач ДП мы будем работать в основном с дискретными функциями, поэтому говорить здесь о применении непрерывных функций неуместно.
    По этой причине во многих задачах, но не во всех, применение аппарата математического анализа будет неприемлемым.

    Простой пример решения задач при помощи ДП

    Рассмотрим вариант решения задачи с помощью динамического программирования.

    Пример: Необходимо вычислить сумму n чисел: 1 + 2 + 3 + ... + n


    В чем состоит якобы «сложность» данной задачи: в том, что необходимо сразу взять большое количество чисел и получить ответ.

    Попробуем применить к задаче идеи ДП и решить ее, разбивая на простые подзадачи.
    (В ДП всегда необходимо сначала определить начальные условия или условие)

    • Начнем с суммы одного первого элемента, т.е. просто берем первый элемент:
      F(1) = 1
    • теперь с помощью решения для первого элемента, решим
      F(2) = F(1) + 2 = 1 + 2 = 3 , т.е. надо взять сумму первого элемента и добавить к нему второй элемент
    • F(3) = F(2) + 3 = 6
    • по аналогии продолжаем и получаем целевую функцию:
      F(n) = F(n-1) + An


    Итак, что мы сделали: определили порядок и вычленили подзадачи, затем решили каждую из них, опираясь на решение предыдущей.

    Простой пример, где пока неоправданно используется ДП (искусственно), демонстрирует принцип идей ДП.

    Рассмотрим еще один пример.

    Пример: имеется лесенка из n ступенек, перед которой находится человек, который за 1 шаг умеет подниматься либо на следующую ступеньку, либо перепрыгивает через одну ступеньку. Вопрос: сколькими способами он может попасть на последнюю ступеньку?


    Решение:

    Рассмотрим самые простые варианты (подзадачи):

    Рассмотрим пример из i ступенек

    Как мы можем попасть на i ступеньку:

    1. с i-1 ступеньки, а на i-1 ступеньку мы могли попасть a i-1 способами
    2. с i-2 ступеньки, а на i-2 ступеньку мы могли попасть a i-2 способами

    Например, как попасть на 4-ю ступеньку :

    Т.о., общее количество способов попасть на i ступеньку:
    f(a i) = f(a i-1) + f(a i-2)

    Определим начальные значения , с которых следует начинать решать задачу.
    Если начинать с 1, то формула соответствует нахождению последовательности чисел Фибоначчи.

    Мы видим, что задача по сути комбинаторная (т.е. количество способов сделать что-либо) свелась к вычислению некоторой рекуррентной последовательности.

    Задание 1: реализовать пример для первых десяти ступенек (по сути, первые 10 чисел ряда Фибоначчи), используя рекурсию.

    Дополните код:

    1 2 3 4 5 6 7 8 9 10 11 12 13 var c: integer ; procedure getKolSposob(i, n: integer ) ; begin writeln (i+ n, " " ) ; inc(c) ; if ... then getKolSposob(...,... ) end ; begin c: = 1 ; getKolSposob(0 , 1 ) ; end .

    var c:integer; procedure getKolSposob(i,n: integer); begin writeln (i+n," "); inc(c); if ... then getKolSposob(...,...) end; begin c:=1; getKolSposob(0,1); end.


    Задание 2:
    Решение 15-го типа заданий ЕГЭ (Графы. Поиск количества путей).

    Динамического программирования

    1. Динамическое программирование. Основные понятия…………………2

    2. Суть метода динамического программирования………………………..4

    3. Пример решения задачи методом динамического программирования………………………………………………………...7

    Список используемых источников……………………………………...11

    1. Динамическое программирование. Основные понятия.

    Динамическое программирование (ДП) в теории вычислительных систем - способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

    Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.

    Динамическое программирование представляет собой математический аппарат, который подходит к решению некоторого класса задач путем их разложения на части, небольшие и менее сложные задачи. При этом отличительной особенностью является решение задач по этапам, через фиксированные интервалы, промежутки времени, что и определило появление термина динамическое программирование. Следует заметить, что методы динамического программирования успешно применяются и при решении задач, в которых фактор времени не учитывается. В целом математический аппарат можно представить как пошаговое или поэтапное программирование. Решение задач методами динамического программирования проводится на основе сформулированного Р. Э. Беллманом принципа оптимальности: оптимальное поведение обладает тем свойством, что каким бы ни было первоначальное состояние системы и первоначальное решение, последующее решение должно определять оптимальное поведение относительно состояния, полученного в результате первоначального решения.
    Из этого следует, что планирование каждого шага должно проводиться с учетом общей выгоды, получаемой по завершении всего процесса, что и позволяет оптимизировать конечный результат по выбранному критерию.



    Таким образом, динамическое программирование в широком смысле представляет собой оптимальное управление процессом, посредством изменения управляемых параметров на каждом шаге, и, следовательно, воздействуя на ход процесса, изменяя на каждом шаге состояние системы.

    В целом динамическое программирование представляет собой стройную теорию для восприятия и достаточно простую для применения в коммерческой деятельности при решении как линейных, так и нелинейных задач.

    Динамическое программирование является одним из разделов оптимального программирования. Для него характерны специфические методы и приемы, применительные к операциям, в которых процесс принятия решения разбит на этапы (шаги). Методами динамического программирования решаются вариантные оптимизационные задачи с заданными критериями оптимальности, с определенными связями между переменными и целевой функцией, выраженными системой уравнений или неравенств. При этом, как и в задачах, решаемых методами линейного программирования, ограничения могут быть даны в виде равенств или неравенств. Однако если в задачах линейного программирования зависимости между критериальной функцией и переменными обязательно линейны, то в задачах динамического программирования эти зависимости могут иметь еще и нелинейный характер. Динамическое программирование можно использовать как для решения задач, связанных с динамикой процесса или системы, так и для статических задач, связанных, например, с распределением ресурсов. Это значительно расширяет область применения динамического программирования для решения задач управления. А возможность упрощения процесса решения, которая достигается за счет ограничения области и количества, исследуемых при переходе к очередному этапу вариантов, увеличивает достоинства этого комплекса методов.

    Вместе с тем динамическому программированию свойственны и недостатки. Прежде всего, в нем нет единого универсального метода решения. Практически каждая задача, решаемая этим методом, характеризуется своими особенностями и требует проведения поиска наиболее приемлемой совокупности методов для ее решения. Кроме того, большие объемы и трудоемкость решения многошаговых задач, имеющих множество состояний, приводят к необходимости отбора задач малой размерности либо использования сжатой информации. Последнее достигается с помощью методов анализа вариантов и переработки списка состояний.

    Для процессов с непрерывным временем динамическое программирование рассматривается как предельный вариант дискретной схемы решения. Получаемые при этом результаты практически совпадают с теми, которые получаются методами максимума Л. С. Понтрягина или Гамильтона-Якоби-Беллмана.

    Динамическое программирование применяется для решения задач, в которых поиск оптимума возможен при поэтапном подходе, например, распределение дефицитных капитальных вложений между новыми направлениями их использования; разработка правил управления спросом или запасами, устанавливающими момент пополнения запаса и размер пополняющего заказа; разработка принципов календарного планирования производства и выравнивания занятости в условиях колеблющегося спроса на продукцию; составление календарных планов текущего и капитального ремонтов оборудования и его замены; поиск кратчайших расстояний на транспортной сети; формирование последовательности развития коммерческой операции и т. д.


    Суть метода динамического программирования.

    В основу метода динамического программирования положен принцип оптимальности , сформулированный в 1957 г. американским математиком Ричардом Беллманом: «Оптимальное поведение обладает тем свойством, что каковы бы ни были первоначальные состояние и решение в начальный момент времени, последующие решения должны составлять оптимальное поведение относительно состояния, получающегося в результате первого решения».

    Физическая сущность принципа оптимальности заключается в том, что ошибка выбора решения в данный момент не может быть исправлена в будущем.

    Рассматривается следующая общая задача. Имеется некоторая физическая система, в которой происходит какой-то процесс, состоящий из n шагов. Эффективность процесса характеризуется некоторым показателем W , который называют выигрышем . Пусть общий выигрыш W за все n шагов процесса складывается из выигрышей на отдельных шагах

    где w i - выигрыш на i -м шаге. Если W обладает таким свойством, то его называют аддитивным критерием .

    Процесс, о котором идет речь, представляет собой управляемый процесс, т.е. имеется возможность выбирать какие-то параметры, влияющие на его ход и исход, причем на каждом шаге выбирается какое-то решение, от которого зависит выигрыш на данном шаге. Это решение называется шаговым управлением . Совокупность всех шаговых управлений представляет собой управление процессом в целом. Обозначим его буквой U , а шаговые управления - буквами . Тогда

    Шаговые управления в общем случае не числа, а, как правило, векторы, функции и т.п.

    В модели динамического программирования процесс на каждом шаге находится в одном из состояний s множества состояний S . Считается, что всякому состоянию сопоставлены некоторые шаговые управления. Эти управления таковы, что управление, выбранное в данном состоянии при любой предыстории процесса, определяет полностью следующее состояние процесса. Обычно выделены два особых состояния: s 0 - начальное и s w - конечное.

    Итак, пусть каждому состоянию поставлено множество допустимых шаговых управлений , и каждому шаговому управлению , соответствует - состояние, в которое процесс попадает из s i в результате использования шагового управления u . Пусть процесс находится в начальном состоянии s 0 . Выбор переводит процесс в состояние s 1 = σ(s 0 ,u 1), выбор - в состояние s 2 = σ(s 1 ,u 2) и т.д. В результате получается траектория процесса, которая состоит из последовательности пар

    и заканчивается конечным состоянием. Для единообразия можно считать, что включает только одно состояние , оставляющее процесс в том же конечном состоянии. Следует отметить, что множества допустимых состояний и управлений

    конечны и U s для различных s не пересекаются.

    В общем виде задача динамического программирования формулируется следующим образом: найти такую траекторию процесса, при которой выигрыш (2.1)будет максимальным.

    То управление, при котором достигается максимальный выигрыш, называется оптимальным управлением . Оно состоит из совокупности шаговых управлений

    Тот максимальный выигрыш, который достигается при этом управлении обозначим W max :

    W max = max U {W (u )}. (2.5)

    Рассмотрим на примере задачи о рюкзаке, что понимается под шагом, состоянием, управлением и выигрышем.

    Загрузку рюкзака можно представить себе как процесс, состоящий из n шагов. На каждом шаге требуется ответить на вопрос: взять данный предмет в рюкзак, или нет? Таким образом, шаг процесса - присваивание переменной x i значения 1 или 0.

    Теперь определим состояния. Очевидно, что текущее состояние процесса характеризует остаточная грузоподъёмность рюкзака - вес, который остался в нашем распоряжении до конца (до полной укладки рюкзака). Следовательно, под состоянием перед i -м шагом понимается величина

    (2.6)

    при этом s 0 является начальным состоянием, которому соответствует величина b - исходная грузоподъемность рюкзака.

    Управление на i -м шаге означает присваивание двоичной переменной x i значения 0 или 1. Значит, на каждом шаге имеем всего два управления. Причем допустимость управления u i , устанавливающего x i = 1, определяется условием

    (2.8)

    Шаговый выигрыш можно определить как . Поэтому

    (2.10)

    Требуется найти оптимальное управление , при котором величина выигрыша (2.10) обращается в максимум.


    3. Пример решения задачи методом динамического программирования.

    Задание . Инвестор выделяет средства в размере 5 тыс. ден. ед., которые должны быть распределены между тремя предприятиями.

    Требуется, используя принцип оптимальности Беллмана, построить план распределения инвестиций между предприятиями, обеспечивающий наибольшую общую прибыль, если каждое предприятие при инвестировании в него средств x тыс. ден. ед. приносит прибыль p;(x) тыс. ден. ед. (i=1, 2 и 3) по следующим данным:


    Решение . Составим математическую модель задачи.

    1.Число шагов равно 3.

    2.Пусть s - количество средств, имеющихся в наличии перед данным шагом, и характеризующих состояние системы на каждом шаге.

    3. Управление на i-ом шаге (i=1,2,3) выберем x i - количество средств, инвестируемых в i- ое предприятие.

    4. Выигрыш p i (x i) на i-ом шаге - это прибыль, которую приносит i-ое предприятие при инвестировании в него средств xi. Если через выигрыш в целом обозначить общую прибыль W, то W=p 1 (x 1)+ p 2 (x 2)+ p 3 (x 3).

    5. Если в наличии имеются средства в количестве s тыс. ден. ед. и в i-ое предприятие инвестируется x тыс. ден. ед, то для дальнейшего инвестирования остается (s-x) тыс. ден. ед. Таким образом, если на i-ом шаге система находилась в состоянии s и выбрано управление x, то на (i+1)-ом шаге система будет находится в состоянии (s-x), и, следовательно, функция перехода в новое состояние имеет вид: f i (s, x) = s-x.

    6.На последнем (i=3) шаге оптимальное управление соответствует количеству средств, имеющихся в наличии, а выигрыш равен доходу, приносимым последним предприятием: x 3 (s)=s, W 3 (s)=p 3 (s).

    7.Согласно принципу оптимальности Беллмана, управление на каждом шаге нужно выбирать так, чтобы оптимальной была сумма выигрышей на всех оставшихся до конца процесса шагах, включая выигрыш на данном шаге. Основное функциональное уравнение примет вид

    W 2 (s) = max{p 2 (x) + W 3 (s - x)}

    Проведем пошаговую оптимизацию, по результатам которой заполним таблицу.

    s i=3 i=2 i=1
    x 3 (s) W 3 (s) x 2 (s) W 2 (s) x i (s) W i (s)
    4,27 4,27
    7,64 7,64
    10,25 10,97
    15,93 15,93
    16,12 19,26 19,26

    В первой колонке таблицы записываются возможные состояния системы, в верхней строке - номера шагов с оптимальным управлением и выигрышем на каждом шаге, начиная с последнего. Так как для последнего шага i=3 функциональное уравнение имеет вид x 3 (s)=s, W3(s)=p3(s), то две колонки таблицы, соответствующие i=3, заполняются автоматически по таблице исходных данных.

    На шаге i=2 основное функциональное уравнение имеет вид

    W 2 (s) = max{p 2 (x) + W 3 (s - x)}


    Поэтому для проведения оптимизации на этом шаге заполним таблицу для различных состояний s при шаге i=3.

    s x s-x p 2 (x) W 3 (s-x) p 2 (x)+W 3 (s-x) W 2 (s)
    4,27 4,27 4,27
    3,33 3,33
    7,64 7,64 7,64
    3,33 4,27 7,6
    4,87 4,87
    10,25 10,25 10,97
    3,33 7,64 10,97
    4,87 4,27 9,14
    5,26 5,26
    15,93 15,93 15,93
    3,33 10,25 13,58
    4,87 7,64 12,51
    5,26 4,27 9,53
    7,34 7,34
    16,12 16,12 19,26
    3,33 15,93 19,26
    4,87 10,25 15,12
    5,26 7,64 12,9
    7,34 4,27 11,61
    9,49 9,49

    На шаге i=1 основное функциональное уравнение имеет вид

    W x (s) = max{ p x (x) + W 2 (s - x)}

    а состояние системы перед первым шагом s=5, поэтому для проведения оптимизации на этом шаге заполним таблицу.

    s x s-x p i (x) W 2 (s-x) p i (x)+W 2 (s-x) Wi(s)
    19,26 19,26 19,26
    3,22 15,93 19,15
    3,57 10,97 14,54
    4,12 7,64 11,76
    4,27 8,27
    4,85 4,85

    Видно, что наибольшее значение выигрыша составляет 19,26. При этом оптимальное управление на первом шаге составляет x 1 (s 1)=0 (s 1 =5), на втором шаге x 2 (s 2) =1 (s 2 =s 1 -x 1 =5) и на третьем шаге x 3 (s 3) =4 (s 3 =s 2 -x 2 =4).

    Это означает, что (0, 1, 4) - оптимальный план распределения инвестиций между предприятиями.

    Таким образом, для получения наибольшей общей прибыли в размере 19,26 тыс. ден. ед., необходимо вложить 1 тыс. ден. ед. во второе предприятие и 4 тыс. ден. ед. в третье предприятие.

    Список используемых источников

    1. Беллман Р., Динамическое программирование, пер. с англ., М., 1960

    2. Болтянский В. Г.,Математические методы оптимального управления, М., 1966

    Здравствуй, Хабрахабр. В настоящий момент я работаю над учебным пособием по олимпиадному программированию, один из параграфов которого посвящен динамическому программированию. Ниже приведена выдержка из данного параграфа. Пытаясь объяснить данную тему как можно проще, я постарался сложные моменты сопроводить иллюстрациями. Мне интересно ваше мнение о том, насколько понятным получился данный материал. Также буду рад советам, какие еще задачи стоит включить в данный раздел.

    Во многих олимпиадных задачах по программированию решение с помощью рекурсии или полного перебора требует выполнения очень большого числа операций. Попытка решить такие задачи, например, полным перебором, приводит к превышению времени выполнения.

    Однако среди переборных и некоторых других задач можно выделить класс задач, обладающих одним хорошим свойством: имея решения некоторых подзадач (например, для меньшего числа n ), можно практически без перебора найти решение исходной задачи.

    Такие задачи решают методом динамического программирования, а под самим динамическим программированием понимают сведение задачи к подзадачам.

    Последовательности

    Классической задачей на последовательности является следующая.

    Последовательность Фибоначчи F n задается формулами: F 1 = 1, F 2 = 1,
    F n = F n - 1 + F n - 2 при n > 1. Необходимо найти F n по номеру n .

    Один из способов решения, который может показаться логичным и эффективным, — решение с помощью рекурсии:

    Int F(int n) { if (n < 2) return 1; else return F(n - 1) + F(n - 2); }
    Используя такую функцию, мы будем решать задачу «с конца» — будем шаг за шагом уменьшать n , пока не дойдем до известных значений.

    Но как можно заметить, такая, казалось бы, простая программа уже при n = 40 работает заметно долго. Это связано с тем, что одни и те же промежуточные данные вычисляются по несколько раз — число операций нарастает с той же скоростью, с какой растут числа Фибоначчи — экспоненциально.

    Один из выходов из данной ситуации — сохранение уже найденных промежуточных результатов с целью их повторного использования:

    Int F(int n) { if (A[n] != -1) return A[n]; if (n < 2) return 1; else { A[n] = F(n - 1) + F(n - 2); return A[n]; } }
    Приведенное решение является корректным и эффективным. Но для данной задачи применимо и более простое решение:

    F = 1; F = 1; for (i = 2; i < n; i++) F[i] = F + F;
    Такое решение можно назвать решением «с начала» — мы первым делом заполняем известные значения, затем находим первое неизвестное значение (F 3), потом следующее и т.д., пока не дойдем до нужного.

    Именно такое решение и является классическим для динамического программирования: мы сначала решили все подзадачи (нашли все F i для i < n ), затем, зная решения подзадач, нашли ответ (F n = F n - 1 + F n - 2 , F n - 1 и F n - 2 уже найдены).

    Одномерное динамическое программирование

    Чтобы лучше понять суть динамического программирования, сначала более формально определим понятия задачи и подзадачи.

    Пусть исходная задача заключается в нахождении некоторого числа T при исходных данных n 1 , n 2 , ..., n k . То есть мы можем говорить о функции T (n 1 , n 2 , ..., n k ), значение которой и есть необходимый нам ответ. Тогда подзадачами будем считать задачи
    T (i 1 , i 2 , ..., i k ) при i 1 < n 1 , i 2 < n 2 , ..., i k < n k .

    Следующая задача одномерного динамического программирования встречается в различных вариациях.

    При n < 32 полный перебор потребует нескольких секунд, а при n = 64 полный перебор не осуществим в принципе. Для решения задачи методом динамического программирования сведем исходную задачу к подзадачам.

    При n = 1, n = 2 ответ очевиден. Допустим, что мы уже нашли K n - 1 , K n - 2 — число таких последовательностей длины n - 1 и n - 2.

    Посмотрим, какой может быть последовательность длины n . Если последний ее символ равен 0, то первые n - 1 — любая правильная последовательность длины
    n - 1 (не важно, заканчивается она нулем или единицей — следом идет 0). Таких последовательностей всего K n - 1 . Если последний символ равен 1, то предпоследний символ обязательно должен быть равен 0 (иначе будет две единицы подряд), а первые
    n - 2 символа — любая правильная последовательность длины n - 2, число таких последовательностей равно K n - 2 .

    Таким образом, K 1 = 2, K 2 = 3, K n = K n - 1 + K n - 2 при n > 2. То есть данная задача фактически сводится к нахождению чисел Фибоначчи.

    Двумерное динамическое программирование

    Классической задачей двумерного динамического программирования является задача о маршрутах на прямоугольном поле.
    В разных формулировках необходимо посчитать число маршрутов или найти маршрут, который является лучшим в некотором смысле.

    Приведем пару формулировок таких задач:

    Задача 2. n *m клеток. Можно совершать шаги длиной в одну клетку вправо или вниз. Посчитать, сколькими способами можно попасть из левой верхней клетки в правую нижнюю.

    Задача 3. Дано прямоугольное поле размером n *m клеток. Можно совершать шаги длиной в одну клетку вправо, вниз или по диагонали вправо-вниз. В каждой клетке записано некоторое натуральное число. Необходимо попасть из верхней левой клетки в правую нижнюю. Вес маршрута вычисляется как сумма чисел со всех посещенных клеток. Необходимо найти маршрут с минимальным весом.

    Для всех таких задач характерным является то, что каждый отдельный маршрут не может пройти два или более раз по одной и той же клетке.

    Рассмотрим более подробно задачу 2. В некоторую клетку с координатами (i ,j ) можно прийти только сверху или слева, то есть из клеток с координатами (i - 1, j ) и (i , j - 1):

    Таким образом, для клетки (i , j ) число маршрутов A[i][j] будет равно
    A[j] + A[i], то есть задача сводится к двум подзадачам. В данной реализации используется два параметра — i и j — поэтому применительно к данной задаче мы говорим о двумерном динамическом программировании.

    Теперь мы можем пройти последовательно по строкам (или по столбцам) массива A, находя число маршрутов для текущей клетки по приведенной выше формуле. Предварительно в A необходимо поместить число 1.

    В задаче 3 в клетку с координатами (i , j ) мы можем попасть из клеток с координатами
    (i - 1, j), (i , j - 1) и (i - 1, j - 1). Допустим, что для каждой из этих трех клеток мы уже нашли маршрут минимального веса, а сами веса поместили в W[j], W[i],
    W. Чтобы найти минимальный вес для (i , j ), необходимо выбрать минимальный из весов W[j], W[i], W и прибавить к нему число, записанное в текущей клетке:

    W[i][j] = min(W[j], W[i], W) + A[i][j];

    Данная задача осложнена тем, что необходимо найти не только минимальный вес, но и сам маршрут. Поэтому в другой массив мы дополнительно для каждой клетки будем записывать, с какой стороны в нее надо попасть.

    На следующем рисунке приведен пример исходных данных и одного из шагов алгоритма.

    В каждую из уже пройденных клеток ведет ровно одна стрелка. Эта стрелка показывает, с какой стороны необходимо прийти в эту клетку, чтобы получить минимальный вес, записанный в клетке.

    После прохождения всего массива необходимо будет проследить сам маршрут из последней клетки, следуя по стрелкам в обратную сторону.

    Задачи на подпоследовательности

    Рассмотрим задачу о возрастающей подпоследовательности.

    Задача 4. Дана последовательность целых чисел. Необходимо найти ее самую длинную строго возрастающую подпоследовательность.

    Начнем решать задачу с начала — будем искать ответ, начиная с первых членов данной последовательности. Для каждого номера i будем искать наибольшую возрастающую подпоследовательность, оканчивающуюся элементом в позиции i . Пусть исходная последовательность хранится в массиве A. В массиве L будем записывать длины максимальных подпоследовательностей, оканчивающихся текущим элементом. Пусть мы нашли все L[i] для 1 <= i <= k - 1. Теперь можно найти L[k] следующим образом. Просматриваем все элементы A[i] для 1 <= i < k - 1. Если
    A[i] < A[k], то k -ый элемент может стать продолжением подпоследовательности, окончившейся элементом A[i]. Длина полученной подпоследовательности будет на 1 больше L[i]. Чтобы найти L[k], необходимо перебрать все i от 1 до k - 1:
    L[k] = max(L[i]) + 1, где максимум берется по всем i таким, что A[i] < A[k] и
    1 <= i < k .

    Здесь максимум из пустого множества будем считать равным 0. В этом случае текущий элемент станет единственным в выбранной последовательности, а не будет продолжением одной из предыдущих. После заполнения массива L длина наибольшей возрастающей подпоследовательности будет равна максимальному элементу L.

    Чтобы восстановить саму подпоследовательность, можно для каждого элемента также сохранять номер предыдущего выбранного элемента, например, в массив N.

    Рассмотрим решение этой задачи на примере последовательности 2, 8, 5, 9, 12, 6. Поскольку до 2 нет ни одного элемента, то максимальная подпоследовательность содержит только один элемент — L = 1, а перед ним нет ни одного — N = 0. Далее,
    2 < 8, поэтому 8 может стать продолжением последовательности с предыдущим элементом. Тогда L = 2, N = 1.

    Меньше A = 5 только элемент A = 2, поэтому 5 может стать продолжением только одной подпоследовательности — той, которая содержит 2. Тогда
    L = L + 1 = 2, N = 1, так как 2 стоит в позиции с номером 1. Аналогично выполняем еще три шага алгоритма и получаем окончательный результат.

    Теперь выбираем максимальный элемент в массиве L и по массиву N восстанавливаем саму подпоследовательность 2, 5, 9, 12.

    Еще одной классической задачей динамического программирования является задача о палиндромах.

    Задача 5. Дана строка из заглавных букв латинского алфавита. Необходимо найти длину наибольшего палиндрома, который можно получить вычеркиванием некоторых букв из данной строки.

    Обозначим данную строку через S, а ее символы — через S[i], 1 <= i <= n . Будем рассматривать возможные подстроки данной строки с i -го по j -ый символ, обозначим их через S (i , j ). Длины максимальных палиндромов для подстрок будем записывать в квадратный массив L: L[i][j] — длина максимального палиндрома, который можно получить из подстроки S (i , j ).

    Начнем решать задачу с самых простых подстрок. Для строки из одного символа (то есть подстроки вида S (i , i )) ответ очевиден — ничего вычеркивать не надо, такая строка будет палиндромом. Для строки из двух символов S (i , i + 1) возможны два варианта: если символы равны, то мы имеем палиндром, ничего вычеркивать не надо. Если же символы не равны, то вычеркиваем любой.

    Пусть теперь нам дана подстрока S (i , j ). Если первый (S[i]) и последний (S[j]) символы подстроки не совпадают, то один из них точно нужно вычеркнуть. Тогда у нас останется подстрока S (i , j - 1) или S (i + 1, j ) — то есть мы сведем задачу к подзадаче: L[i][j] = max(L[i], L[j]). Если же первый и последний символы равны, то мы можем оставить оба, но необходимо знать решение задачи S (i + 1, j - 1):
    L[i][j] = L + 2.

    Рассмотрим решение на примере строки ABACCBA. Первым делом заполняем диагональ массива единицами, они будут соответствовать подстрокам S (i , i ) из одного символа. Затем начинаем рассматривать подстроки длины два. Во всех подстроках, кроме S (4, 5), символы различны, поэтому в соответствующие ячейки запишем 1, а в L — 2.

    Получается, что мы будем заполнять массив по диагоналям, начиная с главной диагонали, ведущей из левого верхнего угла в правый нижний. Для подстрок длины 3 получаются следующие значения: в подстроке ABA первая и последняя буквы равны, поэтому
    L = L + 2. В остальных подстроках первая и последняя буквы различны.

    BAC: L = max(L, L) = 1.
    ACC: L = max(L, L) = 2.
    CCB: L = max(L, L) = 2.
    CBA: L = max(L, L) = 1.

    Если же в задаче необходимо вывести не длину, а сам палиндром, то дополнительно к массиву длин мы должны построить массив переходов — для каждой ячейки запомнить, какой из случаев был реализован (на рисунке для наглядности вместо числовых значений, кодирующих переходы, нарисованы соответствующие стрелки).