Сайт о телевидении

Сайт о телевидении

» » Типы архитектур нейронных сетей. Обучение с подкреплением. Обратная передача ошибки обучения

Типы архитектур нейронных сетей. Обучение с подкреплением. Обратная передача ошибки обучения

Искусственная нейронная сеть — совокупность нейронов, взаимодействующих друг с другом. Они способны принимать, обрабатывать и создавать данные. Это настолько же сложно представить, как и работу человеческого мозга. Нейронная сеть в нашем мозгу работает для того, чтобы вы сейчас могли это прочитать: наши нейроны распознают буквы и складывают их в слова.

Искусственная нейронная сеть - это подобие мозга. Изначально она программировалась с целью упростить некоторые сложные вычислительные процессы. Сегодня у нейросетей намного больше возможностей. Часть из них находится у вас в смартфоне. Ещё часть уже записала себе в базу, что вы открыли эту статью. Как всё это происходит и для чего, читайте далее.

С чего всё началось

Людям очень хотелось понять, откуда у человека разум и как работает мозг. В середине прошлого века канадский нейропсихолог Дональд Хебб это понял. Хебб изучил взаимодействие нейронов друг с другом, исследовал, по какому принципу они объединяются в группы (по-научному - ансамбли) и предложил первый в науке алгоритм обучения нейронных сетей.

Спустя несколько лет группа американских учёных смоделировала искусственную нейросеть, которая могла отличать фигуры квадратов от остальных фигур.

Как же работает нейросеть?

Исследователи выяснили, нейронная сеть - это совокупность слоёв нейронов, каждый из которых отвечает за распознавание конкретного критерия: формы, цвета, размера, текстуры, звука, громкости и т. д. Год от года в результате миллионов экспериментов и тонн вычислений к простейшей сети добавлялись новые и новые слои нейронов. Они работают по очереди. Например, первый определяет, квадрат или не квадрат, второй понимает, квадрат красный или нет, третий вычисляет размер квадрата и так далее. Не квадраты, не красные и неподходящего размера фигуры попадают в новые группы нейронов и исследуются ими.

Какими бывают нейронные сети и что они умеют

Учёные развили нейронные сети так, что те научились различать сложные изображения, видео, тексты и речь. Типов нейронных сетей сегодня очень много. Они классифицируются в зависимости от архитектуры - наборов параметров данных и веса этих параметров, некой приоритетности. Ниже некоторые из них.

Свёрточные нейросети

Нейроны делятся на группы, каждая группа вычисляет заданную ей характеристику. В 1993 году французский учёный Ян Лекун показал миру LeNet 1 - первую свёрточную нейронную сеть, которая быстро и точно могла распознавать цифры, написанные на бумаге от руки. Смотрите сами:

Сегодня свёрточные нейронные сети используются в основном с мультимедиными целями: они работают с графикой, аудио и видео.

Рекуррентные нейросети

Нейроны последовательно запоминают информацию и строят дальнейшие действия на основе этих данных. В 1997 году немецкие учёные модифицировали простейшие рекуррентные сети до сетей с долгой краткосрочной памятью. На их основе затем были разработаны сети с управляемыми рекуррентными нейронами.

Сегодня с помощью таких сетей пишутся и переводятся тексты, программируются боты, которые ведут осмысленные диалоги с человеком, создаются коды страниц и программ.

Использование такого рода нейросетей - это возможность анализировать и генерировать данные, составлять базы и даже делать прогнозы.

В 2015 году компания SwiftKey выпустила первую в мире клавиатуру, работающую на рекуррентной нейросети с управляемыми нейронами. Тогда система выдавала подсказки в процессе набранного текста на основе последних введённых слов. В прошлом году разработчики обучили нейросеть изучать контекст набираемого текста, и подсказки стали осмысленными и полезными:

Комбинированные нейросети (свёрточные + рекуррентные)

Такие нейронные сети способны понимать, что находится на изображении, и описывать это. И наоборот: рисовать изображения по описанию. Ярчайший пример продемонстрировал Кайл Макдональд, взяв нейронную сеть на прогулку по Амстердаму. Сеть мгновенно определяла, что находится перед ней. И практически всегда точно:

Нейросети постоянно самообучаются. Благодаря этому процессу:

1. Skype внедрил возможность синхронного перевода уже для 10 языков. Среди которых, на минуточку, есть русский и японский - одни из самых сложных в мире. Конечно, качество перевода требует серьёзной доработки, но сам факт того, что уже сейчас вы можете общаться с коллегами из Японии по-русски и быть уверенными, что вас поймут, вдохновляет.

2. Яндекс на базе нейронных сетей создал два поисковых алгоритма: «Палех» и «Королёв». Первый помогал найти максимально релевантные сайты для низкочастотных запросов. «Палех» изучал заголовки страниц и сопоставлял их смысл со смыслом запросов. На основе «Палеха» появился «Королёв». Этот алгоритм оценивает не только заголовок, но и весь текстовый контент страницы. Поиск становится всё точнее, а владельцы сайтов разумнее начинают подходить к наполнению страниц.

3. Коллеги сеошников из Яндекса создали музыкальную нейросеть: она сочиняет стихи и пишет музыку. Нейрогруппа символично называется Neurona, и у неё уже есть первый альбом:

4. У Google Inbox с помощью нейросетей осуществляется ответ на сообщение. Развитие технологий идет полный ходом, и сегодня сеть уже изучает переписку и генерирует возможные варианты ответа. Можно не тратить время на печать и не бояться забыть какую-нибудь важную договорённость.

5. YouTube использует нейронные сети для ранжирования роликов, причём сразу по двум принципам: одна нейронная сеть изучает ролики и реакции аудитории на них, другая проводит исследование пользователей и их предпочтений. Именно поэтому рекомендации YouTube всегда в тему.

6. Facebook активно работает над DeepText AI - программой для коммуникаций, которая понимает жаргон и чистит чатики от обсценной лексики.

7. Приложения вроде Prisma и Fabby, созданные на нейросетях, создают изображения и видео:

Colorize восстанавливает цвета на чёрно-белых фото (удивите бабушку!).

MakeUp Plus подбирает для девушек идеальную помаду из реального ассортимента реальных брендов: Bobbi Brown, Clinique, Lancome и YSL уже в деле.


8.
Apple и Microsoft постоянно апгрейдят свои нейронные Siri и Contana. Пока они только исполняют наши приказы, но уже в ближайшем будущем начнут проявлять инициативу: давать рекомендации и предугадывать наши желания.

А что ещё нас ждет в будущем?

Самообучающиеся нейросети могут заменить людей: начнут с копирайтеров и корректоров. Уже сейчас роботы создают тексты со смыслом и без ошибок. И делают это значительно быстрее людей. Продолжат с сотрудниками кол-центров, техподдержки, модераторами и администраторами пабликов в соцсетях. Нейронные сети уже умеют учить скрипт и воспроизводить его голосом. А что в других сферах?

Аграрный сектор

Нейросеть внедрят в спецтехнику. Комбайны будут автопилотироваться, сканировать растения и изучать почву, передавая данные нейросети. Она будет решать - полить, удобрить или опрыскать от вредителей. Вместо пары десятков рабочих понадобятся от силы два специалиста: контролирующий и технический.

Медицина

В Microsoft сейчас активно работают над созданием лекарства от рака. Учёные занимаются биопрограммированием - пытаются оцифрить процесс возникновения и развития опухолей. Когда всё получится, программисты смогут найти способ заблокировать такой процесс, по аналогии будет создано лекарство.

Маркетинг

Маркетинг максимально персонализируется. Уже сейчас нейросети за секунды могут определить, какому пользователю, какой контент и по какой цене показать. В дальнейшем участие маркетолога в процессе сведётся к минимуму: нейросети будут предсказывать запросы на основе данных о поведении пользователя, сканировать рынок и выдавать наиболее подходящие предложения к тому моменту, как только человек задумается о покупке.

Ecommerce

Ecommerce будет внедрён повсеместно. Уже не потребуется переходить в интернет-магазин по ссылке: вы сможете купить всё там, где видите, в один клик. Например, читаете вы эту статью через несколько лет. Очень вам нравится помада на скрине из приложения MakeUp Plus (см. выше). Вы кликаете на неё и попадаете сразу в корзину. Или смотрите видео про последнюю модель Hololens (очки смешанной реальности) и тут же оформляете заказ прямо из YouTube.

Едва ли не в каждой области будут цениться специалисты со знанием или хотя бы пониманием устройства нейросетей, машинного обучения и систем искусственного интеллекта. Мы будем существовать с роботами бок о бок. И чем больше мы о них знаем, тем спокойнее нам будет жить.

P. S. Зинаида Фолс - нейронная сеть Яндекса, пишущая стихи. Оцените произведение, которое машина написала, обучившись на Маяковском (орфография и пунктуация сохранены):

« Это »

это
всего навсего
что-то
в будущем
и мощь
у того человека
есть на свете все или нет
это кровьа вокруг
по рукам
жиреет
слава у
земли
с треском в клюве

Впечатляет, правда?

Искусственным нейроном называется простой элемент, сначала вычисляющий взвешенную сумму V входных величин xi:

Здесь N – размерность пространства входных сигналов. Затем полученная сумма сравнивается с пороговой величиной W0, вслед за чем вступает в действие нелинейная функция активации f. Коэффициенты Wi во взвешенной сумме обычно называют синаптическими коэффициентами или весами. Саму же взвешенную сумму V мы будем называть потенциалом нейрона i . Выходной сигнал тогда имеет вид f(V). Величину порогового барьера можно рассматривать как еще один весовой коэффициент при постоянном входном сигнале. В этом случае мы говорим о расширенном входном пространстве : нейрон с N-мерным входом имеет N+1 весовой коэффициент. Если ввести в уравнение пороговую величину W0, то оно перепишется так:

В зависимости от способа преобразования сигнала и характера активации возникают различные виды нейронных структур. Существуют детерминированные нейроны , когда активизирующая функция однозначно вычисляет выход по входу, и вероятностные нейроны , состояние которых в момент t есть случайная функция потенциала и состояния в момент t-1. Рассмотрим детерминированные нейроны.

Структура нейронной сети

Используется 3-слойная нейронная сеть, структура которой приведена на рис. 2.

Рис. 2. Структура примененной нейронной сети (n – число распознаваемых букв)

Третий слой образуют выходные нейроны. В нейронной сети выбранной структуры каждый элемент младшего слоя передает свой выходной сигнал на входы всех элементов следующего слоя. Число элементов в первом и втором слоях нейронной сети может варьироваться. В частности, в разбираемом примере второй слой содержит 8, а третий – 24 нейрона.

Функции активации В искусственных нейронах могут быть различные функции активации, но и в используемых мной программах, и в известной литературе указаны только следующие виды функций: Линейная: выходной сигнал нейрона равен его потенциалу, пороговая: нейрон выбирает решение из двух вариантов: активен / неактивен, Многопороговая: выходной сигнал может принимать одно из q значений, определяемых (q-1) порогом внутри предельных значений. Сигмоидная: рассматриваются два вида сигмоидных функций:

с выходными значениями в промежутке и

с выходными значениями в промежутке [-1,1]. Коэффициент b определяет крутизну сигмоида. Поскольку сигмоидная функция является гладким отображением бесконечной функции на промежутке (-1,1), то крутизну можно учесть через величины весов и порогов, и без ограничения общности можно полагать ее равной единице. Графические изображения простейшего нейрона и виды функций с их графиками приведены на рис. 2.
РИС.2. Пример простейшего нейрона в виде математической модели

Типы архитектур нейросетей

Из точек на плоскости и соединений между ними можно построить множество графических фигур, называемых графами. Если каждую точку представить себе как один нейрон, а соединения между точками – как дендриты и синапсы, то мы получим нейронную сеть. Но не всякое соединение нейронов будет работоспособно или вообще целесообразно. Поэтому на сегодняшний день существует только несколько работающих и реализованных программно архитектур нейросетей. Я только вкратце опишу их устройство и классы решаемых ими задач. По архитектуре связей нейросети могут быть сгруппированы в два класса: сети прямого распространения , в которых связи не имеют петель (см. рис. 3 ), и сети рекуррентного типа , в которых возможны обратные связи(см. рис. 4 )

РИС.3. Нейросети прямого распространения РИС.4. Нейросети рекурентного типа

Сети прямого распространения подразделяются на однослойные перцепротроны (сети) и многослойные перцептроны (сети). Название перцептрона для нейросетей придумал американский нейрофизиолог Ф. Розенблатт, придумавший в 1957 году первый нейропроцессорный элемент (НПЭ) , то есть нейросеть . Он же доказал сходимость области решений для перцептрона при его обучении. Сразу после этого началось бурное исследование в этой области и был создан самый первый нейрокомпьютер Mark I. Многослойные сети отличаются тем, что между входными и выходными данными располагаются несколько так называемых скрытых слоев нейронов, добавляющих больше нелинейных связей в модель. Рассмотрим устройство простейшей многослойной нейросети. Любая нейронная сеть состоит из входного слоя и выходного слоя . Соответственно подаются независимые и зависимые переменные. Входные данные преобразуются нейронами сети и сравниваются с выходом. Если отклонение больше заданного, то специальным образом изменяются веса связей нейронов между собой и пороговые значения нейронов. Снова происходит процесс вычислений выходного значения и его сравнение с эталоном. Если отклонения меньше заданной погрешности, то процесс обучения прекращается. Помимо входного и выходного слоев в многослойной сети существуют так называемые скрытые слои . Они представляют собой нейроны, которые не имеют непосредственных входов исходных данных, а связаны только с выходами входного слоя и с входом выходного слоя. Таким образом, скрытые слои дополнительно преобразуют информацию и добавляют нелинейности в модели. Чтобы лучше понять устройство многослойного перцептрона смотрите рис. 5.

РИС.5. Многослойный перцептрон

Если однослойная нейросеть очень хорошо справляется с задачами классификации, так как выходной слой нейронов сравнивает полученные от предыдущего слоя значения с порогом и выдает значение либо ноль, то есть меньше порогового значения, либо единицу - больше порогового (для случая пороговой внутренней функции нейрона), и не способен решать большинство практических задач(что было доказано Минским и Пейпертом), то многослойный перцептрон с сигмоидными решающими функциями способен аппроксимировать любую функциональную зависимость (это было доказано в виде теоремы). Но при этом не известно ни нужное число слоев, ни нужное количество скрытых нейронов, ни необходимое для обучения сети время. Эти проблемы до сих пор стоят перед исследователями и разработчиками нейросетей. Лично мне кажется, что весь энтузиазм в применении нейросетей строится именно на доказательстве этой теоремы. Класс рекуррентных нейросетей гораздо обширнее, да и сами сети сложнее по своему устройству. Поведение рекуррентных сетей описывается дифференциальными или разностными уравнениями, как правило, первого порядка. Это гораздо расширяет области применения нейросетей и способы их обучения. Сеть организована так, что каждый нейрон получает входную информацию от других нейронов, возможно, и от самого себя, и от окружающей среды. Этот тип сетей имеет важное значение, так как с их помощью можно моделировать нелинейные динамические системы. Среди рекуррентных сетей можно выделить сети Хопфилда и сети Кохонена . С помощью сетей Хопфилда можно обрабатывать неупорядоченные (рукописные буквы), упорядоченные во времени (временные ряды) или пространстве (графики) образцы. Рекуррентная нейросеть простейшего вида была введена Хопфилдом и построена она из N нейронов, связанных каждый с каждым кроме самого себя, причем все нейроны являются выходными. Нейросеть Хопфилда можно использовать в качестве ассоциативной памяти. Архитектура сети Хопфилда изображена на рис. 6.

РИС.6. Архитектура сети Хопфилда

Сеть Кохонена еще называют "самоорганизующейся картой признаков". Сеть такого типа рассчитана на самостоятельное обучение во время обучения сообщать ей правильные ответы необязательно. В процессе обучения на вход сети подаются различные образцы. Сеть улавливает особенности их структуры и разделяет образцы на кластеры, а уже обученная сеть относит каждый вновь поступающий пример к одному из кластеров, руководствуясь некоторым критерием "близости". Сеть состоит из одного входного и одного выходного слоя. Количество элементов в выходном слое непосредственно определяет, сколько различных кластеров сеть сможет распознать. Каждый из выходных элементов получает на вход весь входной вектор. Как и во всякой нейронной сети, каждой связи приписан некоторый синаптический вес. В большинстве случаев каждый выходной элемент соединен также со своими соседями. Эти внутрислойные связи играют важную роль в процессе обучения, так как корректировка весов происходит только в окрестности того элемента, который наилучшим образом откликается на очередной вход. Выходные элементы соревнуются между собой за право вступить в действи и "получить урок". Выигрывает тот из них, чей вектор весов окажется ближе всех к входному вектору.

13.10.2017

Можно провести следующую классификацию нейронных сетей:

Характер обучения

Классификация нейронных сетей по характеру обучения делит их на:

  • нейронные сети, использующие обучение с учителем;
  • нейронные сети, использующие обучение без учителя.

Рассмотрим это подробнее.

Нейронные сети, использующие обучение с учителем. Обучение с учителем предполагает, что для каждого входного вектора существует целевой вектор, представляющий собой требуемый выход. Вместе они называются обучающей парой. Обычно сеть обучается на некотором числе таких обучающих пар. Предъявляется выходной вектор, вычисляется выход сети и сравнивается с соответствующим целевым вектором. Далее веса изменяются в соответствии с алгоритмом, стремящимся минимизировать ошибку. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемого уровня.

Нейронные сети, использующие обучение без учителя. Обучение без учителя является намного более правдоподобной моделью обучения с точки зрения биологических корней искусственных нейронных сетей. Развитая Кохоненом и многими другими, она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределенными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т. е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы.

Настройка весов

  • сети с фиксированными связями – весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи;
  • сети с динамическими связями – для них в процессе обучения происходит настройка синаптических весов.

Тип входной информации

  • аналоговая – входная информация представлена в форме действительных чисел;
  • двоичная – вся входная информация в таких сетях представляется в виде нулей и единиц.

Применяемая модель нейронной сети

Сети прямого распространения – все связи направлены строго от входных нейронов к выходным. К таким сетям относятся, например: простейший персептрон (разработанный Розенблаттом) и многослойный персептрон.

Реккурентные нейронные сети – сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя.

Радиально базисные функции – вид нейронной сети, имеющий скрытый слой из радиальных элементов и выходной слой из линейных элементов. Сети этого типа довольно компактны и быстро обучаются. Предложены в работах Broomhead and Lowe (1988) и Moody and Darkin (1989). Радиально базисная сеть обладает следующими особенностями: один скрытый слой, только нейроны скрытого слоя имеют нелинейную активационную функцию и синаптические веса входного и скрытого слоев равны единицы.

Самоорганизующиеся карты или Сети Кохонена – такой класс сетей, как правило, обучается без учителя и успешно применяется в задачах распознавания. Сети такого класса способны выявлять новизну во входных данных: если после обучения сеть встретится с набором данных, непохожим ни на один из известных образцов, то она не сможет классифицировать такой набор и тем самым выявит его новизну. Сеть Кохонена имеет всего два слоя: входной и выходной, составленный из радиальных элементов.

Типы нейронных сетей

Проблема нарисованных выше графов заключается в том, что они не показывают, как соответствующие сети используются на практике. Например, вариационные автокодировщики (VAE) выглядят совсем как простые автокодировщики (AE), но их процессы обучения существенно различаются. Случаи использования отличаются ещё больше, поскольку VAE - это генератор, которому для получения нового образца подаётся новый шум. AE же просто сравнивает полученные данные с наиболее похожим образцом, полученным во время обучения.

Стоит заметить, что хотя большинство этих аббревиатур общеприняты, есть и исключения. Под RNN иногда подразумевают рекурсивную нейронную сеть, но обычно имеют в виду рекуррентную. Также можно часто встретить использование аббревиатуры RNN, когда речь идёт про любую рекуррентную НС. Автокодировщики также сталкиваются с этой проблемой, когда вариационные и шумоподавляющие автокодировщики (VAE, DAE) называют просто автокодировщиками (AE). Кроме того, во многих аббревиатурах различается количество букв “N” в конце, поскольку в каких-то случаях используется “neural network”, а в каких-то - просто “network”.

Часть 1: Базовые архитектуры

Нейронные сети прямого распространения (feed forward neural networks, FF или FFNN) и перцептроны (perceptrons, P) очень прямолинейны, они передают информацию от входа к выходу. Нейронные сети часто описываются в виде слоёного торта, где каждый слой состоит из входных, скрытых или выходных клеток. Клетки одного слоя не связаны между собой, а соседние слои обычно полностью связаны. Самая простая нейронная сеть имеет две входных клетки и одну выходную, и может использоваться в качестве модели логических вентилей. FFNN обычно обучается по методу обратного распространения ошибки, в котором сеть получает множества входных и выходных данных. Этот процесс называется обучением с учителем, и он отличается от обучения без учителя тем, что во втором случае множество выходных данных сеть составляет самостоятельно. Вышеупомянутая ошибка является разницей между вводом и выводом. Если у сети есть достаточное количество скрытых нейронов, она теоретически способна смоделировать взаимодействие между входным и выходными данными. Практически такие сети используются редко, но их часто комбинируют с другими типами для получения новых.

Сети радиально-базисных функций (radial basis function, RBF) - это FFNN, которая использует радиальные базисные функции как функции активации. Больше она ничем не выделяется.

Нейронная сеть Хопфилда (Hopfield network, HN) - это полносвязная нейронная сеть с симметричной матрицей связей. Во время получения входных данных каждый узел является входом, в процессе обучения он становится скрытым, а затем становится выходом. Сеть обучается так: значения нейронов устанавливаются в соответствии с желаемым шаблоном, после чего вычисляются веса, которые в дальнейшем не меняются. После того, как сеть обучилась на одном или нескольких шаблонах, она всегда будет сводиться к одному из них (но не всегда - к желаемому). Она стабилизируется в зависимости от общей “энергии” и “температуры” сети. У каждого нейрона есть свой порог активации, зависящий от температуры, при прохождении которого нейрон принимает одно из двух значений (обычно -1 или 1, иногда 0 или 1). Такая сеть часто называется сетью с ассоциативной памятью; как человек, видя половину таблицы, может представить вторую половину таблицы, так и эта сеть, получая таблицу, наполовину зашумленную, восстанавливает её до полной.

Цепи Маркова (Markov chains, MC или discrete time Markov Chains, DTMC) - это предшественники машин Больцмана (BM) и сетей Хопфилда (HN). Их смысл можно объяснить так: каковы мои шансы попасть в один из следующих узлов, если я нахожусь в данном? Каждое следующее состояние зависит только от предыдущего. Хотя на самом деле цепи Маркова не являются НС, они весьма похожи. Также цепи Маркова не обязательно полносвязны.

Машина Больцмана (Boltzmann machine, BM) очень похожа на сеть Хопфилда, но в ней некоторые нейроны помечены как входные, а некоторые - как скрытые. Входные нейроны в дальнейшем становятся выходными. Машина Больцмана - это стохастическая сеть. Обучение проходит по методу обратного распространения ошибки или по алгоритму сравнительной расходимости. В целом процесс обучения очень похож на таковой у сети Хопфилда.

Ограниченная машина Больцмана (restricted Boltzmann machine, RBM) удивительно похожа на машину Больцмана и, следовательно, на сеть Хопфилда. Единственной разницей является её ограниченность. В ней нейроны одного типа не связаны между собой. Ограниченную машину Больцмана можно обучать как FFNN, но с одним нюансом: вместо прямой передачи данных и обратного распространения ошибки нужно передавать данные сперва в прямом направлении, затем в обратном. После этого проходит обучение по методу прямого и обратного распространения ошибки.

Автокодировщик (autoencoder, AE) чем-то похож на FFNN, так как это скорее другой способ использования FFNN, нежели фундаментально другая архитектура. Основной идеей является автоматическое кодирование (в смысле сжатия, не шифрования) информации. Сама сеть по форме напоминает песочные часы, в ней скрытые слои меньше входного и выходного, причём она симметрична. Сеть можно обучить методом обратного распространения ошибки, подавая входные данные и задавая ошибку равной разнице между входом и выходом.

Разреженный автокодировщик (sparse autoencoder, SAE) - в каком-то смысле противоположность обычного. Вместо того, чтобы обучать сеть отображать информацию в меньшем “объёме” узлов, мы увеличиваем их количество. Вместо того, чтобы сужаться к центру, сеть там раздувается. Сети такого типа полезны для работы с большим количеством мелких свойств набора данных. Если обучать сеть как обычный автокодировщик, ничего полезного не выйдет. Поэтому кроме входных данных подаётся ещё и специальный фильтр разреженности, который пропускает только определённые ошибки.

Вариационные автокодировщики (variational autoencoder, VAE) обладают схожей с AE архитектурой, но обучают их иному: приближению вероятностного распределения входных образцов. В этом они берут начало от машин Больцмана. Тем не менее, они опираются на байесовскую математику, когда речь идёт о вероятностных выводах и независимости, которые интуитивно понятны, но сложны в реализации. Если обобщить, то можно сказать что эта сеть принимает в расчёт влияния нейронов. Если что-то одно происходит в одном месте, а что-то другое – в другом, то эти события не обязательно связаны, и это должно учитываться.

Шумоподавляющие автокодировщики (denoising autoencoder, DAE) - это AE, в которые входные данные подаются в зашумленном состоянии. Ошибку мы вычисляем так же, и выходные данные сравниваются с зашумленными. Благодаря этому сеть учится обращать внимание на более широкие свойства, поскольку маленькие могут изменяться вместе с шумом.

Сеть типа “deep belief” (deep belief networks, DBN) - это название, которое получил тип архитектуры, в которой сеть состоит из нескольких соединённых RBM или VAE. Такие сети обучаются поблочно, причём каждому блоку требуется лишь уметь закодировать предыдущий. Такая техника называется “жадным обучением”, которая заключается в выборе локальных оптимальных решений, не гарантирующих оптимальный конечный результат. Также сеть можно обучить (методом обратного распространения ошибки) отображать данные в виде вероятностной модели. Если использовать обучение без учителя, стабилизированную модель можно использовать для генерации новых данных.

Свёрточные нейронные сети (convolutional neural networks, CNN) и глубинные свёрточные нейронные сети (deep convolutional neural networks, DCNN) сильно отличаются от других видов сетей. Обычно они используются для обработки изображений, реже для аудио. Типичным способом применения CNN является классификация изображений: если на изображении есть кошка, сеть выдаст “кошка”, если есть собака - “собака”. Такие сети обычно используют “сканер”, не парсящий все данные за один раз. Например, если у вас есть изображение 200×200, вы не будете сразу обрабатывать все 40 тысяч пикселей. Вместо это сеть считает квадрат размера 20 x 20 (обычно из левого верхнего угла), затем сдвинется на 1 пиксель и считает новый квадрат, и т.д. Эти входные данные затем передаются через свёрточные слои, в которых не все узлы соединены между собой. Эти слои имеют свойство сжиматься с глубиной, причём часто используются степени двойки: 32, 16, 8, 4, 2, 1. На практике к концу CNN прикрепляют FFNN для дальнейшей обработки данных. Такие сети называются глубинными (DCNN).

Развёртывающие нейронные сети (deconvolutional networks, DN), также называемые обратными графическими сетями, являются обратным к свёрточным нейронным сетям. Представьте, что вы передаёте сети слово “кошка”, а она генерирует картинки с кошками, похожие на реальные изображения котов. DNN тоже можно объединять с FFNN. Стоит заметить, что в большинстве случаев сети передаётся не строка, а какой бинарный вектор: например, - это кошка, - собака, а - и кошка, и собака.

Часть 2: Продвинутые конфигурации

Глубинные свёрточные обратные графические сети (deep convolutional inverse graphics networks, DCIGN) названы слегка некорректно, поскольку они по сути являются вариационными автокодировщиками, кодирующая и декодирующая части которых представлены свёрточной и развёртывающей НС соответственно. Сети такого типа моделируют свойства в виде вероятностей, поэтому их можно научить создавать картинку с собакой и кошкой, даже если сеть видела только картинки, на которых было только одно из животных. Возможно и удаление одного из двух объектов. Также были созданы сети, которые могли менять источник освещения и вращать объект. Сети такого типа обычно обучают методом обратного распространения ошибки.

Генеративные состязательные сети (generative adversarial networks, GAN) - это сети другого вида, они похожи на близнецов. Такие сети состоят из любых двух (обычно из FF и CNN), одна из которых контент генерирует, а другая - оценивает. Сеть-дискриминатор получает обучающие или созданные генератором данные. Степень угадывания дискриминатором источника данных в дальнейшем участвует в формировании ошибки. Таким образом, возникает состязание между генератором и дискриминатором, где первый учится обманывать первого, а второй - раскрывать обман. Обучать такие сети весьма тяжело, поскольку нужно не только обучить каждую из них, но и настроить баланс.

Рекуррентные нейронные сети (recurrent neural networks, RNN) - это сети типа FFNN, но с особенностью: нейроны получают информацию не только от предыдущего слоя, но и от самих себя предыдущего прохода. Это означает, что порядок, в котором вы подаёте данные и обучаете сеть, становится важным. Большой сложностью сетей RNN является проблема исчезающего (или взрывного) градиента, которая заключается в быстрой потере информации с течением времени. Конечно, это влияет лишь на веса, а не состояния нейронов, но ведь именно в них накапливается информация. Обычно сети такого типа используются для автоматического дополнения информации.

Сети с долгой краткосрочной памятью (long short term memory, LSTM) стараются решить вышеупомянутую проблему потери информации, используя фильтры и явно заданную клетку памяти. У каждого нейрона есть клетка памяти и три фильтра: входной, выходной и забывающий. Целью этих фильтров является защита информации. Входной фильтр определяет, сколько информации из предыдущего слоя будет храниться в клетке. Выходной фильтр определяет, сколько информации получат следующие слои. Ну а забывающий фильтр, каким бы странным не казался, также выполняет полезную функцию: например, если сеть изучает книгу и переходит на новую главу, какие-то символы из старой можно забыть. Такие сети способны научиться создавать сложные структуры, например, писать как Шекспир или сочинять простую музыку, но и ресурсов они потребляют немало.

Управляемые рекуррентные нейроны (gated recurrent units, GRU) - это небольшая вариация предыдущей сети. У них на один фильтр меньше, и связи реализованы иначе. Фильтр обновления определяет, сколько информации останется от прошлого состояния и сколько будет взято из предыдущего слоя. Фильтр сброса работает примерно как забывающий фильтр.

Нейронные машины Тьюринга (neural Turing machines, NTM) можно рассматривать как абстрактную модель LSTM и попытку показать, что на самом деле происходит внутри нейронной сети. Ячейка памяти не помещена в нейрон, а размещена отдельно с целью объединить эффективность обычного хранилища данных и мощь нейронной сети. Собственно, поэтому такие сети и называются машинами Тьюринга - в силу способности читать и записывать данные и менять состояние в зависимости от прочитанного они являются тьюринг-полными.

Двунаправленные RNN, LSTM и GRU (bidirectional recurrent neural networks, bidirectional long / short term memory networks и bidirectional gated recurrent units, BiRNN, BiLSTM и BiGRU) не показаны в таблице, поскольку они ничем не отличаются от своих однонаправленных вариантов. Разница заключается в том, что эти сети используют не только данные из «прошлого», но и из «будущего». Например, обычную сеть типа LSTM обучают угадывать слово «рыба», подавая буквы по одной, а двунаправленную - подавая ещё и следующую букву из последовательности. Такие сети способны, например, не только расширять изображение по краям, но и заполнять дыры внутри.

Глубинные остаточные сети (deep residual networks, DRN) - это очень глубокие сети типа FFNN с дополнительными связями между отделёнными друг от друга слоями. Такие сети можно обучать на шаблонах глубиной аж до 150 слоёв - гораздо больше, чем можно было бы ожидать. Однако, было показано, что эти сети мало чем отличаются от рекуррентных, и их часто сравнивают с сетями LSTM.

Нейронная эхо-сеть (echo state networks, ESN) - это ещё одна разновидность рекуррентных сетей. Её особенностью является отсутствие сформированных слоёв, т.е. связи между нейронами случайны. Соответственно, метод обратного распространения ошибки не срабатывает. Вместо этого нужно подавать входных данные, передавать их по сети и обновлять нейроны, наблюдая за выходными данными.

Метод экстремального обучения (extreme learning machines, ELM) - это, по сути, сеть типа FFNN, но со случайными связями. Они очень похожи на сети LSM и ESN, но используются как FFNN. Так происходит не только потому, что они не рекуррентны, но и потому, что их можно обучать просто методом обратного распространения ошибки.

Метод неустойчивых состояний (liquid state machines, LSM) похож на эхо-сеть, но есть существенное отличие: сигмоидная активация заменена пороговой функцией, а каждый нейрон является накопительной ячейкой памяти. Таким образом, при обновлении нейрона его значение не становится равным сумме соседей, а прибавляется само к себе, и при достижении порога сообщается другим нейронам.

Метод опорных векторов (support vector machines, SVM) находит оптимальные решения задачи оптимизации. Классическая версия способна категоризировать линейно разделяемые данные: например, различать изображения с котом Томом и с котом Гарфилдом. В процессе обучения сеть как бы размещает все данные на 2D-графике и пытается разделить данные прямой линией так, чтобы с каждой стороны были данные только одного класса и чтобы расстояние от данные до линии было максимальным. Используя трюк с ядром, можно классифицировать данные размерности n. Что характерно, этот метод не всегда рассматривается как нейронная сеть.

И наконец, нейронные сети Кохонена (Kohonen networks, KN) , также известные как самоорганизующиеся карты (self organising (feature) maps, SOM, SOFM) , завершают наш список. Эти сети используют соревновательное обучение для классификации данных без учителя. Сети подаются входные данные, после чего сеть определяет, какие из нейронов максимально совпадают с ними. После этого эти нейроны изменяются для ещё большей точности совпадения, в процессе двигая за собой соседей. Иногда карты Кохонена также не считаются нейронными сетями.

Новые виды архитектуры нейронных сетей появляются постоянно, и в них можно запутаться. Мы собрали для вас своеобразную шпаргалку, содержащую большую часть существующих видов ИНС. Хотя все они представлены как уникальные, картинки свидетельствуют о том, что многие из них очень похожи.

Проблема нарисованных выше графов заключается в том, что они не показывают, как соответствующие сети используются на практике. Например, вариационные автокодировщики (VAE) выглядят совсем как простые автокодировщики (AE), но их процессы обучения существенно различаются. Случаи использования отличаются ещё больше, поскольку VAE - это генератор, которому для получения нового образца подаётся новый шум. AE же просто сравнивает полученные данные с наиболее похожим образцом, полученным во время обучения.

Стоит заметить, что хотя большинство этих аббревиатур общеприняты, есть и исключения. Под RNN иногда подразумевают рекурсивную нейронную сеть, но обычно имеют в виду рекуррентную. Также можно часто встретить использование аббревиатуры RNN, когда речь идёт про любую рекуррентную НС. Автокодировщики также сталкиваются с этой проблемой, когда вариационные и шумоподавляющие автокодировщики (VAE, DAE) называют просто автокодировщиками (AE). Кроме того, во многих аббревиатурах различается количество букв «N» в конце, поскольку в каких-то случаях используется «neural network», а в каких-то - просто «network».

Для каждой архитектуры будет дано очень краткое описание и ссылка на статью, ей посвящённую. Если вы хотите быстро познакомиться с нейронными сетями с нуля, следуйте переведенному нами , состоящему всего из четырех шагов.


Нейронные сети прямого распространения
(feed forward neural networks, FF или FFNN) и перцептроны (perceptrons, P) очень прямолинейны, они передают информацию от входа к выходу. Нейронные сети часто описываются в виде слоёного торта, где каждый слой состоит из входных, скрытых или выходных клеток. Клетки одного слоя не связаны между собой, а соседние слои обычно полностью связаны. Самая простая нейронная сеть имеет две входных клетки и одну выходную, и может использоваться в качестве модели логических вентилей. FFNN обычно обучается по методу обратного распространения ошибки, в котором сеть получает множества входных и выходных данных. Этот процесс называется обучением с учителем, и он отличается от обучения без учителя тем, что во втором случае множество выходных данных сеть составляет самостоятельно. Вышеупомянутая ошибка является разницей между вводом и выводом. Если у сети есть достаточное количество скрытых нейронов, она теоретически способна смоделировать взаимодействие между входным и выходными данными. Практически такие сети используются редко, но их часто комбинируют с другими типами для получения новых.

Сети радиально-базисных функций (radial basis function, RBF) - это FFNN, которая использует радиальные базисные функции как функции активации. Больше она ничем не выделяется 🙂

Нейронная сеть Хопфилда (Hopfield network, HN) - это полносвязная нейронная сеть с симметричной матрицей связей. Во время получения входных данных каждый узел является входом, в процессе обучения он становится скрытым, а затем становится выходом. Сеть обучается так: значения нейронов устанавливаются в соответствии с желаемым шаблоном, после чего вычисляются веса, которые в дальнейшем не меняются. После того, как сеть обучилась на одном или нескольких шаблонах, она всегда будет сводиться к одному из них (но не всегда - к желаемому). Она стабилизируется в зависимости от общей «энергии» и «температуры» сети. У каждого нейрона есть свой порог активации, зависящий от температуры, при прохождении которого нейрон принимает одно из двух значений (обычно -1 или 1, иногда 0 или 1). Такая сеть часто называется сетью с ассоциативной памятью; как человек, видя половину таблицы, может представить вторую половину таблицы, так и эта сеть, получая таблицу, наполовину зашумленную, восстанавливает её до полной.

Цепи Маркова (Markov chains, MC или discrete time Markov Chains, DTMC) - это предшественники машин Больцмана (BM) и сетей Хопфилда (HN). Их смысл можно объяснить так: каковы мои шансы попасть в один из следующих узлов, если я нахожусь в данном? Каждое следующее состояние зависит только от предыдущего. Хотя на самом деле цепи Маркова не являются НС, они весьма похожи. Также цепи Маркова не обязательно полносвязны.

Машина Больцмана (Boltzmann machine, BM) очень похожа на сеть Хопфилда, но в ней некоторые нейроны помечены как входные, а некоторые - как скрытые. Входные нейроны в дальнейшем становятся выходными. Машина Больцмана - это стохастическая сеть. Обучение проходит по методу обратного распространения ошибки или по алгоритму сравнительной расходимости. В целом процесс обучения очень похож на таковой у сети Хопфилда.

Ограниченная машина Больцмана (restricted Boltzmann machine, RBM) удивительно похожа на машину Больцмана и, следовательно, на сеть Хопфилда. Единственной разницей является её ограниченность. В ней нейроны одного типа не связаны между собой. Ограниченную машину Больцмана можно обучать как FFNN, но с одним нюансом: вместо прямой передачи данных и обратного распространения ошибки нужно передавать данные сперва в прямом направлении, затем в обратном. После этого проходит обучение по методу прямого и обратного распространения ошибки.

Автокодировщик (autoencoder, AE) чем-то похож на FFNN, так как это скорее другой способ использования FFNN, нежели фундаментально другая архитектура. Основной идеей является автоматическое кодирование (в смысле сжатия, не шифрования) информации. Сама сеть по форме напоминает песочные часы, в ней скрытые слои меньше входного и выходного, причём она симметрична. Сеть можно обучить методом обратного распространения ошибки, подавая входные данные и задавая ошибку равной разнице между входом и выходом.

Разреженный автокодировщик (sparse autoencoder, SAE) - в каком-то смысле противоположность обычного. Вместо того, чтобы обучать сеть отображать информацию в меньшем «объёме» узлов, мы увеличиваем их количество. Вместо того, чтобы сужаться к центру, сеть там раздувается. Сети такого типа полезны для работы с большим количеством мелких свойств набора данных. Если обучать сеть как обычный автокодировщик, ничего полезного не выйдет. Поэтому кроме входных данных подаётся ещё и специальный фильтр разреженности, который пропускает только определённые ошибки.

Вариационные автокодировщики (variational autoencoder, VAE) обладают схожей с AE архитектурой, но обучают их иному: приближению вероятностного распределения входных образцов. В этом они берут начало от машин Больцмана. Тем не менее, они опираются на байесовскую математику, когда речь идёт о вероятностных выводах и независимости, которые интуитивно понятны, но сложны в реализации. Если обобщить, то можно сказать что эта сеть принимает в расчёт влияния нейронов. Если что-то одно происходит в одном месте, а что-то другое — в другом, то эти события не обязательно связаны, и это должно учитываться.

Шумоподавляющие автокодировщики (denoising autoencoder, DAE) - это AE, в которые входные данные подаются в зашумленном состоянии. Ошибку мы вычисляем так же, и выходные данные сравниваются с зашумленными. Благодаря этому сеть учится обращать внимание на более широкие свойства, поскольку маленькие могут изменяться вместе с шумом.


Сеть типа «deep belief»
(deep belief networks, DBN) - это название, которое получил тип архитектуры, в которой сеть состоит из нескольких соединённых RBM или VAE. Такие сети обучаются поблочно, причём каждому блоку требуется лишь уметь закодировать предыдущий. Такая техника называется «жадным обучением», которая заключается в выборе локальных оптимальных решений, не гарантирующих оптимальный конечный результат. Также сеть можно обучить (методом обратного распространения ошибки) отображать данные в виде вероятностной модели. Если использовать обучение без учителя, стабилизированную модель можно использовать для генерации новых данных.


Свёрточные нейронные сети
(convolutional neural networks, CNN) и глубинные свёрточные нейронные сети (deep convolutional neural networks, DCNN) сильно отличаются от других видов сетей. Обычно они используются для обработки изображений, реже для аудио. Типичным способом применения CNN является классификация изображений: если на изображении есть кошка, сеть выдаст «кошка», если есть собака - «собака». Такие сети обычно используют «сканер», не парсящий все данные за один раз. Например, если у вас есть изображение 200×200, вы не будете сразу обрабатывать все 40 тысяч пикселей. Вместо это сеть считает квадрат размера 20 x 20 (обычно из левого верхнего угла), затем сдвинется на 1 пиксель и считает новый квадрат, и т.д. Эти входные данные затем передаются через свёрточные слои, в которых не все узлы соединены между собой. Эти слои имеют свойство сжиматься с глубиной, причём часто используются степени двойки: 32, 16, 8, 4, 2, 1. На практике к концу CNN прикрепляют FFNN для дальнейшей обработки данных. Такие сети называются глубинными (DCNN).

Развёртывающие нейронные сети (deconvolutional networks, DN) , также называемые обратными графическими сетями, являются обратным к свёрточным нейронным сетям. Представьте, что вы передаёте сети слово «кошка», а она генерирует картинки с кошками, похожие на реальные изображения котов. DNN тоже можно объединять с FFNN. Стоит заметить, что в большинстве случаев сети передаётся не строка, а какой бинарный вектор: например, <0, 1> - это кошка, <1, 0> - собака, а <1, 1> - и кошка, и собака.

    Шаг 4. Применяем правило 2. условием которого является данное утверждение. Получаем вывод исходного утверждения.

    Заметим, что для упрощения ситуации мы предположили, что в обоих случаях факты "Небо покрыто тучами" и "Барометр падает" уже известны системе. На самом деле система выясняет истинность или ложность факта, входящего в условие некоторого правила, спрашивая об этом пользователя в тот момент, когда она пытается применить правило. Приведенный пример сознательно выбран очень простым и не отражающим многих проблем, связанных с организацией вывода в экспертной системе. В частности, из примера может создаться впечатление, что прямая цепочка рассуждений эффективнее, чем обратная, что на самом деле, вообще говоря, не так. Эффективность той или иной стратегии вывода зависит от характера задачи и содержимого базы знаний. В системах диагностики чаще применяется прямой вывод, в то время как в планирующих системах более эффективным оказывается обратный вывод. В некоторых системах вывод основывается на сочетании обратного и ограниченно- прямого. Такой комбинированный метод получил название циклического.

  • 2.7 Объяснение решений

Объяснительный компонент ЭС объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование и повышает доверие пользователя к полученному результату. Поскольку системы, основанные на знаниях, реализуются на компьютерах, то и входная информация воспринимается или в виде, понятном компьютеру, т.е. в битах и байтах. Однако для того чтобы мог взаимодействовать неподготовленный пользователь, в нее требуется включить средства общения на естественном языке. Подавляющее большинство систем, основанных на знаниях, обладают достаточно примитивным интерфейсом на естественном языке - допустимые входные сообщения пользователя ограничены набором понятий, содержащихся в базе знаний. Итак, на примере простой ЭС и базы знаний диалог пользователя с системой можно представить себе следующим образом:

Система: Вы хотите узнать, нужно ли взять с собой зонтик?

Пользователь: Да.

Система: Верно ли, что небо покрыто тучами?

Пользователь: Да.

Система: Верно ли, что барометр падает?

Пользователь: Да.

Система: (после некоторого "размышления") Нужно взять с собой зонтик.

Как видно из этого примера, в ходе консультации инициатива диалога принадлежит системе, а сама консультация у ЭС выглядит так же, как и консультация у эксперта- человека: задается ряд вопросов и на основании их анализа выдается экспертное заключение.

Одной из наиболее важных проблем, характерных для систем, основанных на знаниях, является проблема представления знаний. Это объясняется тем, что форма представления знаний оказывает существенное влияние на характеристики и свойства системы. Для того чтобы манипулировать всевозможными знаниями из реального мира с помощью компьютера, необходимо осуществлять их моделирование. В таких случаях необходимо отличать знания, предназначенные для обработки компьютером, от знаний, используемых человеком.

При проектировании модели представления знаний следует учитывать однородность представления и простота понимания. Однородное представление приводит к упрощению механизма управления логическим выводом и упрощению управления знаниями. Представление знаний должно быть понятным экспертам и пользователям системы. В противном случае затрудняются приобретение знаний и их оценка. Однако выполнить это требование в равной степени, как для простых, так и для сложных задач довольно трудно. Обычно для несложных задач останавливаются на некотором среднем (компромиссном) представлении, но для решения сложных и больших задач необходимы структурирование и модульное представление.

Типичными моделями представления знаний являются: модели: продукционная, основанная на использовании фреймов, семантической сети, логическая модель.

23. Нейронные сети. Виды нейронных сетей. Алгоритмы обучения нейронных сетей. Применение нейронных сетей для задач распознавания образов.

Искусственная нейронная сеть (ИНС) - математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей - сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге при мышлении, и при попытке смоделировать эти процессы. Первой такой моделью мозга был перцептрон. Впоследствии эти модели стали использовать в практических целях, как правило в задачах прогнозирования.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах. Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п. С математической точки зрения обучение нейронных сетей, это многопараметрическая задача нелинейной оптимизации. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. С точки зрения развития вычислительной техники и программирования, нейронная сеть - способ решения проблемы эффективного параллелизма. А с точки зрения искусственного интеллекта, ИНС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения (моделирования) естественного интеллекта с помощью компьютерных алгоритмов.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются . Возможность обучения - одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке.

Известные применения

Распознавание образов и классификация. В качестве образов могут выступать различные по своей природе объекты: символы текста, изображения, образцы звуков и т. д. При обучении сети предлагаются различные образцы образов с указанием того, к какому классу они относятся. Образец, как правило, представляется как вектор значений признаков. При этом совокупность всех признаков должна однозначно определять класс , к которому относится образец. В случае, если признаков недостаточно, сеть может соотнести один и тот же образец с несколькими классами, что неверно . По окончании обучения сети ей можно предъявлять неизвестные ранее образы и получать ответ о принадлежности к определённому классу.

Топология такой сети характеризуется тем, что количество нейронов в выходном слое, как правило, равно количеству определяемых классов. При этом устанавливается соответствие между выходом нейронной сети и классом, который он представляет. Когда сети предъявляется некий образ, на одном из её выходов должен появиться признак того, что образ принадлежит этому классу. В то же время на других выходах должен быть признак того, что образ данному классу не принадлежит . Если на двух или более выходах есть признак принадлежности к классу, считается что сеть «не уверена» в своём ответе.

Принятие решений и управление. Классификации подлежат ситуации, характеристики которых поступают на вход нейронной сети. На выходе сети должен появится признак решения. При этом в качестве входных сигналов используются различные критерии описания состояния управляемой системы.

Кластеризация. Под кластеризацией понимается разбиение множества входных сигналов на классы, при том, что ни количество, ни признаки классов заранее неизвестны. После обучения такая сеть способна определять, к какому классу относится входной сигнал. Сеть также может сигнализировать о том, что входной сигнал не относится ни к одному из выделенных классов - это является признаком новых, отсутствующих в обучающей выборке, данных. Таким образом, подобная сеть может выявлять новые, неизвестные ранее классы сигналов . Соответствие между классами, выделенными сетью, и классами, существующими в предметной области, устанавливается человеком. Кластеризацию осуществляют, например, нейронные сети Кохонена.

Прогнозирование и аппроксимация . Способности нейронной сети к прогнозированию напрямую следуют из ее способности к обобщению и выделению скрытых зависимостей между входными и выходными данными. После обучения сеть способна предсказать будущее значение некой последовательности на основе нескольких предыдущих значений и/или каких-то существующих в настоящий момент факторов. Следует отметить, что прогнозирование возможно только тогда, когда предыдущие изменения действительно в какой-то степени предопределяют будущие . Например, прогнозирование котировок акций на основе котировок за прошлую неделю может оказаться успешным (а может и не оказаться), тогда как прогнозирование результатов завтрашней лотереи на основе данных за последние 50 лет почти наверняка не даст никаких результатов.

Сжатие данных и Ассоциативная память . Способность нейросетей к выявлению взаимосвязей между различными параметрами дает возможность выразить данные большой размерности более компактно, если данные тесно взаимосвязаны друг с другом. Обратный процесс - восстановление исходного набора данных из части информации - называется (авто)ассоциативной памятью. Ассоциативная память позволяет также восстанавливать исходный сигнал/образ из зашумленных/поврежденных входных данных. Решение задачи гетероассоциативной памяти позволяет реализовать память, адресуемую по содержимому .

Этапы решения задач

Сбор данных для обучения;

    Подготовка и нормализация данных;

    Выбор топологии сети;

    Экспериментальный подбор характеристик сети;

    Экспериментальный подбор параметров обучения;

    Собственно обучение;

    Проверка адекватности обучения;

    Корректировка параметров, окончательное обучение;

    Вербализация сети с целью дальнейшего использования.

    Следует рассмотреть подробнее некоторые из этих этапов.

Сбор данных для обучения

Выбор данных для обучения сети и их обработка является самым сложным этапом решения задачи. Набор данных для обучения должен удовлетворять нескольким критериям:

Репрезентативность - данные должны иллюстрировать истинное положение вещей в предметной области;

Непротиворечивость - противоречивые данные в обучающей выборке приведут к плохому качеству обучения сети;

Исходные данные преобразуются к виду, в котором их можно подать на входы сети. Каждая запись в файле данных называется обучающей парой или обучающим вектором . Обучающий вектор содержит по одному значению на каждый вход сети и, в зависимости от типа обучения (с учителем или без), по одному значению для каждого выхода сети. Обучение сети на «сыром» наборе, как правило, не даёт качественных результатов. Существует ряд способов улучшить «восприятие» сети.

Нормировка выполняется, когда на различные входы подаются данные разной размерности. Например, на первый вход сети подается величины со значениями от нуля до единицы, а на второй - от ста до тысячи. При отсутствии нормировки значения на втором входе будут всегда оказывать существенно большее влияние на выход сети, чем значения на первом входе. При нормировке размерности всех входных и выходных данных сводятся воедино;

Квантование выполняется над непрерывными величинами, для которых выделяется конечный набор дискретных значений. Например, квантование используют для задания частот звуковых сигналов при распознавании речи;

Фильтрация выполняется для «зашумленных» данных.

Кроме того, большую роль играет само представление как входных, так и выходных данных. Предположим, сеть обучается распознаванию букв на изображениях и имеет один числовой выход - номер буквы в алфавите. В этом случае сеть получит ложное представление о том, что буквы с номерами 1 и 2 более похожи, чем буквы с номерами 1 и 3, что, в общем, неверно. Для того, чтобы избежать такой ситуации, используют топологию сети с большим числом выходов, когда каждый выход имеет свой смысл. Чем больше выходов в сети, тем большее расстояние между классами и тем сложнее их спутать.

Выбор топологии сети. Выбирать тип сети следует исходя из постановки задачи и имеющихся данных для обучения. Для обучения с учителем требуется наличие для каждого элемента выборки «экспертной» оценки. Иногда получение такой оценки для большого массива данных просто невозможно. В этих случаях естественным выбором является сеть, обучающаяся без учителя, например, самоорганизующаяся карта Кохонена или нейронная сеть Хопфилда. При решении других задач, таких как прогнозирование временных рядов, экспертная оценка уже содержится в исходных данных и может быть выделена при их обработке. В этом случае можно использовать многослойный перцептрон или сеть Ворда.

Экспериментальный подбор характеристик сети. После выбора общей структуры нужно экспериментально подобрать параметры сети. Для сетей, подобных перцептрону, это будет число слоев, число блоков в скрытых слоях (для сетей Ворда), наличие или отсутствие обходных соединений, передаточные функции нейронов. При выборе количества слоев и нейронов в них следует исходить из того, что способности сети к обобщению тем выше, чем больше суммарное число связей между нейронами . С другой стороны, число связей ограничено сверху количеством записей в обучающих данных.

Экспериментальный подбор параметров обучения. После выбора конкретной топологии, необходимо выбрать параметры обучения нейронной сети. Этот этап особенно важен для сетей, обучающихся с учителем. От правильного выбора параметров зависит не только то, насколько быстро ответы сети будут сходиться к правильным ответам. Например, выбор низкой скорости обучения увеличит время схождения, однако иногда позволяет избежать паралича сети. Увеличение момента обучения может привести как к увеличению, так и к уменьшению времени сходимости, в зависимости от формы поверхности ошибки. Исходя из такого противоречивого влияния параметров, можно сделать вывод, что их значения нужно выбирать экспериментально, руководствуясь при этом критерием завершения обучения (например, минимизация ошибки или ограничение по времени обучения).

Собственно обучение сети. В процессе обучения сеть в определенном порядке просматривает обучающую выборку. Порядок просмотра может быть последовательным, случайным и т. д. Некоторые сети, обучающиеся без учителя, например, сети Хопфилда просматривают выборку только один раз. Другие, например, сети Кохонена, а также сети, обучающиеся с учителем, просматривают выборку множество раз, при этом один полный проход по выборке называется эпохой обучения . При обучении с учителем набор исходных данных делят на две части - собственно обучающую выборку и тестовые данные; принцип разделения может быть произвольным. Обучающие данные подаются сети для обучения, а проверочные используются для расчета ошибки сети (проверочные данные никогда для обучения сети не применяются). Таким образом, если на проверочных данных ошибка уменьшается, то сеть действительно выполняет обобщение. Если ошибка на обучающих данных продолжает уменьшаться, а ошибка на тестовых данных увеличивается, значит, сеть перестала выполнять обобщение и просто «запоминает» обучающие данные. Это явление называется переобучением сети или оверфиттингом. В таких случаях обучение обычно прекращают. В процессе обучения могут проявиться другие проблемы, такие как паралич или попадание сети в локальный минимум поверхности ошибок. Невозможно заранее предсказать проявление той или иной проблемы, равно как и дать однозначные рекомендации к их разрешению.

Проверка адекватности обучения. Даже в случае успешного, на первый взгляд, обучения сеть не всегда обучается именно тому, чего от неё хотел создатель. Известен случай, когда сеть обучалась распознаванию изображений танков по фотографиям, однако позднее выяснилось, что все танки были сфотографированы на

одном и том же фоне. В результате сеть «научилась» распознавать этот тип ландшафта, вместо того, чтобы «научиться» распознавать танки . Таким образом, сеть «понимает» не то, что от неё требовалось, а то, что проще всего обобщить.

Классификация по типу входной информации

Аналоговые нейронные сети (используют информацию в форме действительных чисел);

Двоичные нейронные сети (оперируют с информацией, представленной в двоичном виде).

Классификация по характеру обучения

Обучение с учителем - выходное пространство решений нейронной сети известно;

Обучение без учителя - нейронная сеть формирует выходное пространство решений только на основе входных воздействий. Такие сети называют самоорганизующимися;

Обучение с подкреплением - система назначения штрафов и поощрений от среды.

Классификация по характеру настройки синапсов

Сети с фиксированными связями (весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи, при этом: , где W - весовые коэффициенты сети);

сети с динамическими связями (для них в процессе обучения происходит настройка синаптических связей, то есть , где W - весовые коэффициенты сети).

Классификация по времени передачи сигнала

В ряде нейронных сетей активирующая функция может зависеть не только от весовых коэффициентов связей w ij , но и от времени передачи импульса (сигнала) по каналам связи τ ij . По этому в общем виде активирующая (передающая) функция связи c ij от элемента u i к элементу u j имеет вид: . Тогдасинхронной сетью называют такую сеть у которой время передачи τ ij каждой связи равна либо нулю, либо фиксированной постоянной τ. Асинхронной называют такую сеть у которой время передачи τ ij для каждой связи между элементами u i и u j свое, но тоже постоянное.

Классификация по характеру связей

Сети прямого распространения (Feedforward)

Все связи направлены строго от входных нейронов к выходным. Примерами таких сетей являются перцептрон Розенблатта, многослойный перцептрон, сети Ворда.

Рекуррентные нейронные сети

Сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя (обратная связь). Рекуррентная сеть сеть Хопфилда «фильтрует» входные данные, возвращаясь к устойчивому состоянию и, таким образом, позволяет решать задачи компрессии данных и построения ассоциативной памяти . Частным случаем рекуррентных сетей является двунаправленные сети. В таких сетях между слоями существуют связи как в направлении от входного слоя к выходному, так и в обратном. Классическим примером является Нейронная сеть Коско.

Радиально-базисные функции

Искусственные нейронные сети, использующие в качестве активационных функций радиально-базисные (такие сети сокращённо называются RBF-сетями). Общий вид радиально-базисной функции:

, например,

где x - вектор входных сигналов нейрона, σ - ширина окна функции, φ(y ) - убывающая функция (чаще всего, равная нулю вне некоторого отрезка).

Радиально-базисная сеть характеризуется тремя особенностями:

Единственный скрытый слой

Только нейроны скрытого слоя имеют нелинейную активационную функцию

Синаптические веса связей входного и скрытого слоев равны единице

Про процедуру обучения - см. литературу

Самоорганизующиеся карты. Такие сети представляют собой соревновательную нейронную сеть с обучением

без учителя, выполняющую задачу визуализации и

кластеризации. Является методом проецирования многомерного пространства в пространство с более низкой размерностью (чаще всего, двумерное), применяется также для решения задач моделирования, прогнозирования и др. Является одной из версий нейронных сетей Кохонена. Самоорганизующиеся карты Кохонена служат, в первую очередь, для визуализации и первоначального («разведывательного») анализа данных.

Сигнал в сеть Кохонена поступает сразу на все нейроны, веса соответствующих синапсов интерпретируются как координаты положения узла, и выходной сигнал формируется по принципу «победитель забирает всё» - то есть ненулевой выходной сигнал имеет нейрон, ближайший (в смысле весов синапсов) к подаваемому на вход объекту. В процессе обучения веса синапсов настраиваются таким образом, чтобы узлы решетки «располагались» в местах локальных сгущений данных, то есть описывали кластерную структуру облака данных, с другой стороны, связи между нейронами соответствуют отношениям соседства между соответствующими кластерами в пространстве признаков.

Удобно рассматривать такие карты как двумерные сетки узлов, размещенных в многомерном пространстве. Изначально самоорганизующаяся карта представляет из себя сетку из узлов, соединенный между собой связями. Кохонен рассматривал два варианта соединения узлов - в прямоугольную и гексагональную сетку - отличие состоит в том, что в прямоугольной сетке каждый узел соединен с 4-мя соседними, а в гексагональной - с 6-ю ближайщими узлами. Для двух таких сеток процесс построения сети Кохонена отличается лишь в том месте, где перебираются ближайшие к данному узлу соседи.

Начальное вложение сетки в пространство данных выбирается произвольным образом. В авторском пакете SOM_PAK предлагаются варианты случайного начального расположения узлов в пространстве и вариант расположения узлов в плоскости. После этого узлы начинают перемещаться в пространстве согласно следующему алгоритму:

Случайным образом выбирается точка данных x .

Определяется ближайший к x узел карты (BMU - Best Matching Unit).

Этот узел перемещается на заданный шаг по направлению к x. Однако, он перемещается не один, а увлекает за собой определенное количество ближайших узлов из некоторой окрестности на карте. Из всех двигающихся узлов наиболее сильно смещается центральный - ближайший к точке данных - узел, а остальные испытывают тем меньшие смещения, чем дальше они от BMU. В настройке карты различают два этапа - этап грубой (ordering) и этап тонкой (fine-tuning) настройки. На первом этапе выбираются большие значения окрестностей и движение узлов носит коллективный характер - в результате карта «расправляется» и грубым образом отражает структуру данных; на этапе тонкой настройки радиус окрестности равен 1-2 и настраиваются уже индивидуальные положения узлов. Кроме этого, величина смещения равномерно затухает со временем, то есть она велика в начале каждого из этапов обучения и близка к нулю в конце.

Алгоритм повторяется определенное число эпох (понятно, что число шагов может сильно изменяться в зависимости от задачи).

Известные типы сетей: Персептрон Розенблатта;Многослойный перцептрон;Сеть Джордана;Сеть Элмана;Сеть Хэмминга;Сеть Ворда;Сеть Хопфилда;Сеть Кохонена;Когнитрон;Неокогнитрон;Хаотическая нейронная сеть;Осцилляторная нейронная сеть;Сеть встречного распространения;Сеть радиальных базисных функций (RBF-сеть);Сеть обобщенной регрессии;Вероятностная сеть;Сиамская нейронная сеть;Сети адаптивного резонанса.

Алгоритмы обучения нейронных сетей.

Обратное распространение

Быстрое распространение

Метод сопряженных градиентов

Алгоритм Левенберга-Маркара

Квази-ньютоновский алгоритм

Дельта-дельта с чертой

Алгоритм Кохонена

ОВК (обучающийся векторный квантователь)

Псевдообратных метод (сингулярное разложение)

Метод К-средних

Алгоритмы задания отклонений

Обучить нейронную сеть - значит, сообщить ей, чего мы

от нее добиваемся. Этот процесс очень похож на обучение ребенка алфавиту. Показав ребенку изображение буквы "А", мы спрашиваем его: "Какая это буква?" Если ответ неверен, мы сообщаем ребенку тот ответ, который мы хотели бы от него получить: "Это буква А". Ребенок запоминает этот пример вместе с верным ответом, то есть в его памяти происходят некоторые изменения в нужном направлении. Мы будем повторять процесс предъявления букв снова и снова до тех пор, когда все 33 буквы будут твердо запомнены. Такой процесс называют "обучение с учителем".

При обучении нейронной сети мы действуем совершенно аналогично. У нас имеется некоторая база данных, содержащая примеры (набор рукописных изображений букв). Предъявляя изображение буквы "А" на вход нейронной сети, мы получаем от нее некоторый ответ, не обязательно верный. Нам известен и верный (желаемый) ответ - в данном случае нам хотелось бы, чтобы на выходе нейронной сети с меткой "А" уровень сигнала был максимален. Обычно в качестве желаемого выхода в задаче классификации берут набор (1, 0, 0, ...), где 1 стоит на выходе с меткой "А", а 0 - на всех остальных выходах. Вычисляя разность между желаемым ответом и реальным ответом сети, мы получаем 33 числа - вектор ошибки . Алгоритм обратного распространения ошибки - это набор формул, который позволяет по вектору ошибки вычислить требуемые поправки для весов нейронной сети. Одну и ту же букву (а также различные изображения одной и той же буквы) мы можем предъявлять нейронной сети много раз. В этом смысле обучение скорее напоминает повторение упражнений в спорте - тренировку.

Оказывается, что после многократного предъявления примеров веса нейронной сети стабилизируются, причем нейронная сеть дает правильные ответы на все (или почти все) примеры из базы данных. В таком случае говорят, что "нейронная сеть выучила все примеры", "нейронная сеть обучена", или "нейронная сеть натренирована". В программных реализациях можно видеть, что в процессе обучения величина ошибки (сумма квадратов ошибок по всем выходам) постепенно уменьшается. Когда величина ошибки достигает нуля или приемлемого малого уровня, тренировку останавливают, а полученную нейронную сеть считают натренированной и готовой к применению на новых данных.

Важно отметить, что вся информация, которую нейронная сеть имеет о задаче, содержится в наборе примеров. Поэтому качество обучения нейронной сети напрямую зависит от количества примеров в обучающей выборке, а также от того, насколько полно эти примеры описывают данную задачу. Так, например, бессмысленно использовать нейронную сеть для предсказания финансового кризиса, если в обучающей выборке кризисов не представлено. Считается, что для полноценной тренировки нейронной сети требуется хотя бы несколько десятков (а лучше сотен) примеров.

Повторим еще раз, что обучение нейронных сетей - сложный и наукоемкий процесс. Алгоритмы обучения нейронных сетей имеют различные параметры и настройки, для управления которыми требуется понимание их влияния.

Применение нейронной сети

После того, как нейронная сеть обучена, мы можем применять ее для решения полезных задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно действовать и в тех ситуациях, в которых он не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Так же и нейронная сеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные. Например, мы можем нарисовать букву "А" другим почерком, а затем предложить нашей нейронной сети классифицировать новое изображение. Веса обученной нейронной сети хранят достаточно много информации о сходстве и различиях букв, поэтому можно рассчитывать на правильный ответ и для нового варианта изображения.

Применение нейронных сетей для задач распознавания образов.

Задача распознавания рукописных букв

Дано: растровое черно-белое изображение буквы размером 30x30 пикселов

Надо: определить, какая это буква (в алфавите 33 буквы)

Формулировка для нейронной сети:

Дано: входной вектор из 900 двоичных символов (900=30x30)

Надо: построить нейронную сеть с 900 входами и 33

выходами, которые помечены буквами. Если на входе нейронной сети изображение буквы "А", то максимальное значение выходного сигнала достигается на выходе "А". Аналогично нейронная сеть работает для всех 33 букв.

Поясним, зачем требуется выбирать выход нейронной сети с максимальным уровнем сигнала. Дело в том, что уровень выходного сигнала, как правило, может принимать любые значения из какого-то отрезка. Однако, в данной задаче нас интересует не аналоговый ответ, а всего лишь номер категории (номер буквы в алфавите). Поэтому используется следующий подход - каждой категории сопоставляется свой выход, а ответом нейронной сети считается та категория, на чьем выходе уровень сигнала максимален. В определенном смысле уровень сигнала на выходе "А" - это достоверность того, что на вход нейронной сети была подана рукописная буква "A". Задачи, в которых нужно отнести входные данные к одной из известных категорий, называются задачами классификации . Изложенный подход - стандартный способ классификации с помощью нейронных сетей.

Как построить нейронную сеть. Теперь, когда стало ясно, что именно мы хотим построить, мы можем переходить к вопросу "как строить такую нейронную сеть". Этот вопрос решается в два этапа:

Выбор типа (архитектуры) нейронной сети.

Подбор весов (обучение) нейронной сети.

На первом этапе следует выбрать следующее:

какие нейроны мы хотим использовать (число входов, передаточные функции);

каким образом следует соединить их между собой;

что взять в качестве входов и выходов нейронной сети.

Эта задача на первый взгляд кажется необозримой, но, к счастью, нам необязательно придумывать нейронную сеть "с нуля" - существует несколько десятков различных нейросетевых архитектур, причем эффективность многих из них доказана математически. Наиболее популярные и изученные архитектуры - это многослойный перцептрон, нейронная сеть с общей регрессией, нейронные сети Кохонена и другие.

На втором этапе нам следует "обучить" выбранную нейронную сеть, то есть подобрать такие значения ее весов, чтобы она работала нужным образом. Необученная нейронная сеть подобна ребенку - ее можно научить чему угодно. В используемых на практике нейронных сетях количество весов может составлять несколько десятков тысяч, поэтому обучение - действительно сложный процесс. Для многих архитектур разработаны специальные алгоритмы обучения, которые позволяют настроить веса нейронной сети определенным образом. Наиболее популярный из этих алгоритмов - метод обратного распространения ошибки (Error Back Propagation), используемый, например, для обучения перцептрона.

К задачам, успешно решаемым НС на данном этапе их развития относятся:

распознавание зрительных, слуховых образов; огромная область применения: от распознавания текста и целей на экране радара до систем голосового управления;

ассоциативный поиск информации и создание ассоциативных моделей; синтез речи; формирование естественного языка;

формирование моделей и различных нелинейных и трудно описываемых математически систем, прогнозирование развития этих систем во времени:

применение на производстве; прогнозирование развития циклонов и других природных процессов, прогнозирование изменений курсов валют и других финансовых процессов;

системы управления и регулирования с предсказанием; управление роботами, другими сложными устройствами

разнообразные конечные автоматы: системы массового обслуживания и коммутации, телекоммуникационные системы;

принятие решений и диагностика, исключающие логический вывод; особенно в областях, где

отсутствуют четкие математические модели: в медицине, криминалистике, финансовой сфере;

Хотя почти для всех перечисленных задач существуют эффективные математические методы решения и несмотря на то, что НС проигрывают специализированным методам для конкретных задач, благодаря универсальности и перспективности для решения глобальных задач, например, построения ИИ и моделирования процесса мышления, они являются важным направлением исследования, требующим тщательного изучения.